1
0
Fork 0
flightgear/src/FDM/YASim/yasim-test.cpp

126 lines
4.2 KiB
C++
Raw Normal View History

#include <stdio.h>
#include <simgear/props/props.hxx>
#include <simgear/xml/easyxml.hxx>
#include "FGFDM.hpp"
#include "Atmosphere.hpp"
#include "Airplane.hpp"
using namespace yasim;
// Stubs. Not needed by a batch program, but required to link.
bool fgSetFloat (const char * name, float val) { return false; }
bool fgSetBool(char const * name, bool val) { return false; }
bool fgGetBool(char const * name, bool def) { return false; }
SGPropertyNode* fgGetNode (const char * path, bool create) { return 0; }
SGPropertyNode* fgGetNode (const char * path, int i, bool create) { return 0; }
float fgGetFloat (const char * name, float defaultValue) { return 0; }
double fgGetDouble (const char * name, double defaultValue = 0.0) { return 0; }
bool fgSetDouble (const char * name, double defaultValue = 0.0) { return 0; }
static const float RAD2DEG = 57.2957795131;
static const float DEG2RAD = 0.0174532925199;
static const float KTS2MPS = 0.514444444444;
// Generate a graph of lift, drag and L/D against AoA at the specified
// speed and altitude. The result is a space-separated file of
// numbers: "aoa lift drag LD" (aoa in degrees, lift and drag in
// G's). You can use this in gnuplot like so (assuming the output is
// in a file named "dat":
//
// plot "dat" using 1:2 with lines title 'lift', \
// "dat" using 1:3 with lines title 'drag', \
// "dat" using 1:4 with lines title 'LD'
//
void yasim_graph(Airplane* a, float alt, float kts)
{
Model* m = a->getModel();
State s;
m->setAir(Atmosphere::getStdPressure(alt),
Atmosphere::getStdTemperature(alt),
Atmosphere::getStdDensity(alt));
m->getBody()->recalc();
for(int deg=-179; deg<=179; deg++) {
float aoa = deg * DEG2RAD;
Airplane::setupState(aoa, kts * KTS2MPS, 0 ,&s);
m->getBody()->reset();
m->initIteration();
m->calcForces(&s);
float acc[3];
m->getBody()->getAccel(acc);
Math::tmul33(s.orient, acc, acc);
float drag = acc[0] * (-1/9.8);
float lift = 1 + acc[2] * (1/9.8);
printf("%d %g %g %g\n", deg, lift, drag, lift/drag);
}
}
int usage()
{
fprintf(stderr, "Usage: yasim <ac.xml> [-g [-a alt] [-s kts]]\n");
return 1;
}
int main(int argc, char** argv)
{
FGFDM* fdm = new FGFDM();
Airplane* a = fdm->getAirplane();
if(argc < 2) return usage();
// Read
try {
string file = argv[1];
readXML(file, *fdm);
} catch (const sg_exception &e) {
printf("XML parse error: %s (%s)\n",
e.getFormattedMessage().c_str(), e.getOrigin().c_str());
}
// ... and run
a->compile();
if(a->getFailureMsg())
printf("SOLUTION FAILURE: %s\n", a->getFailureMsg());
if(!a->getFailureMsg() && argc > 2 && strcmp(argv[2], "-g") == 0) {
float alt = 5000, kts = 100;
for(int i=3; i<argc; i++) {
if (strcmp(argv[i], "-a") == 0) alt = atof(argv[++i]);
else if(strcmp(argv[i], "-s") == 0) kts = atof(argv[++i]);
else return usage();
}
yasim_graph(a, alt, kts);
} else {
float aoa = a->getCruiseAoA() * RAD2DEG;
float tail = -1 * a->getTailIncidence() * RAD2DEG;
float drag = 1000 * a->getDragCoefficient();
float cg[3];
a->getModel()->getBody()->getCG(cg);
a->getModel()->getBody()->recalc();
float SI_inertia[9];
a->getModel()->getBody()->getInertiaMatrix(SI_inertia);
printf("Solution results:");
printf(" Iterations: %d\n", a->getSolutionIterations());
printf(" Drag Coefficient: %f\n", drag);
printf(" Lift Ratio: %f\n", a->getLiftRatio());
printf(" Cruise AoA: %f\n", aoa);
printf(" Tail Incidence: %f\n", tail);
printf("Approach Elevator: %f\n", a->getApproachElevator());
printf(" CG: x:%.3f, y:%.3f, z:%.3f\n\n", cg[0], cg[1], cg[2]);
printf(" Inertia tensor : %.3f, %.3f, %.3f\n", SI_inertia[0], SI_inertia[1], SI_inertia[2]);
printf(" [kg*m^2] %.3f, %.3f, %.3f\n", SI_inertia[3], SI_inertia[4], SI_inertia[5]);
printf(" Origo at CG %.3f, %.3f, %.3f\n", SI_inertia[6], SI_inertia[7], SI_inertia[8]);
}
delete fdm;
return 0;
}