1
0
Fork 0
flightgear/Areas/area.cxx

162 lines
4.1 KiB
C++
Raw Normal View History

1998-07-20 12:54:05 +00:00
// area.c -- routines to assist with inserting "areas" into FG terrain
//
// Written by Curtis Olson, started March 1998.
//
// Copyright (C) 1998 Curtis L. Olson - curt@me.umn.edu
//
// This program is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 2 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software
// Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
//
// $Id$
// (Log is kept at end of this file)
//
#include <math.h>
#include <stdio.h>
#include <Include/fg_constants.h>
#include "area.hxx"
// calc new x, y for a rotation
double rot_x(double x, double y, double theta) {
return ( x * cos(theta) + y * sin(theta) );
}
// calc new x, y for a rotation
double rot_y(double x, double y, double theta) {
return ( -x * sin(theta) + y * cos(theta) );
}
// calc new lon/lat given starting lon/lat, and offset radial, and
// distance. NOTE: distance is specified in meters (and converted
// internally to radians)
point2d calc_lon_lat( point2d orig, point2d offset ) {
point2d result;
offset.dist *= METER_TO_NM * NM_TO_RAD;
result.lat = asin( sin(orig.lat) * cos(offset.dist) +
cos(orig.lat) * sin(offset.dist) * cos(offset.theta) );
if ( cos(result.lat) < FG_EPSILON ) {
result.lon = orig.lon; // endpoint a pole
} else {
result.lon =
fmod(orig.lon - asin( sin(offset.theta) * sin(offset.dist) /
cos(result.lat) ) + FG_PI, FG_2PI) - FG_PI;
}
return(result);
}
point2d cart_to_polar_2d(point2d in) {
point2d result;
result.dist = sqrt( in.x * in.x + in.y * in.y );
result.theta = atan2(in.y, in.x);
return(result);
}
void batch_cart_to_polar_2d(point2d *in, point2d *out, int size) {
int i;
for ( i = 0; i < size; i++ ) {
out[i] = cart_to_polar_2d( in[i] );
}
}
// given a set of 2d coordinates relative to a center point, and the
// lon, lat of that center point, as well as a potential orientation
// angle, generate the corresponding lon and lat of the original 2d
// verticies.
void make_area(point2d orig, point2d *cart, point2d *result,
int size, double angle ) {
point2d rad[size];
int i;
// convert to polar coordinates
batch_cart_to_polar_2d(cart, rad, size);
for ( i = 0; i < size; i++ ) {
printf("(%.2f, %.2f)\n", rad[i].dist, rad[i].theta);
}
printf("\n");
// rotate by specified angle
for ( i = 0; i < size; i++ ) {
rad[i].theta += angle;
while ( rad[i].theta > FG_2PI ) {
rad[i].theta -= FG_2PI;
}
printf("(%.2f, %.2f)\n", rad[i].dist, rad[i].theta);
}
printf("\n");
for ( i = 0; i < size; i++ ) {
result[i] = calc_lon_lat(orig, rad[i]);
printf("(%.8f, %.8f)\n", result[i].lon, result[i].lat);
}
printf("\n");
}
// generate an area for a runway
void gen_runway_area( double lon, double lat, double heading,
double length, double width,
point2d *result, int *count)
{
point2d cart[4];
point2d orig;
double l, w;
int i;
orig.lon = lon;
orig.lat = lat;
l = (length / 2.0) + (length * 0.1);
w = (width / 2.0) + (width * 0.1);
// generate untransformed runway area vertices
cart[0].x = l; cart[0].y = w;
cart[1].x = l; cart[1].y = -w;
cart[2].x = -l; cart[2].y = -w;
cart[3].x = -l; cart[3].y = w;
for ( i = 0; i < 4; i++ ) {
printf("(%.2f, %.2f)\n", cart[i].x, cart[i].y);
}
printf("\n");
make_area(orig, cart, result, 4, heading);
for ( i = 0; i < 4; i++ ) {
printf("(%.8f, %.8f)\n", result[i].lon, result[i].lat);
}
printf("\n");
*count = 4;
}
// $Log$
// Revision 1.1 1998/07/20 12:54:05 curt
// Initial revision.
//
//