1
0
Fork 0
flightgear/src/FDM/YASim/PistonEngine.cpp

227 lines
6.6 KiB
C++
Raw Normal View History

2001-12-06 18:13:24 +00:00
#include "Atmosphere.hpp"
#include "Math.hpp"
#include "PistonEngine.hpp"
namespace yasim {
2001-12-24 13:54:03 +00:00
const static float HP2W = 745.7;
const static float CIN2CM = 1.6387064e-5;
const static float RPM2RADPS = 0.1047198;
2001-12-24 13:54:03 +00:00
PistonEngine::PistonEngine(float power, float speed)
{
2001-12-24 13:54:03 +00:00
_boost = 1;
_running = false;
_cranking = false;
2001-12-24 13:54:03 +00:00
// Presume a BSFC (in lb/hour per HP) of 0.45. In SI that becomes
2001-12-24 13:54:03 +00:00
// (2.2 lb/kg, 745.7 W/hp, 3600 sec/hour) 7.62e-08 kg/Ws.
_f0 = power * 7.62e-08;
2001-12-07 20:00:59 +00:00
_power0 = power;
_omega0 = speed;
// We must be at sea level under standard conditions
2001-12-06 18:13:24 +00:00
_rho0 = Atmosphere::getStdDensity(0);
// Further presume that takeoff is (duh) full throttle and
// peak-power, that means that by our efficiency function, we are
// at 11/8 of "ideal" fuel flow.
float realFlow = _f0 * (11.0/8.0);
_mixCoeff = realFlow * 1.1 / _omega0;
2001-12-06 18:13:24 +00:00
_turbo = 1;
_maxMP = 1e6; // No waste gate on non-turbo engines.
2001-12-24 13:54:03 +00:00
// Guess at reasonable values for these guys. Displacements run
// at about 2 cubic inches per horsepower or so, at least for
// non-turbocharged engines.
_compression = 8;
_displacement = power * (2*CIN2CM/HP2W);
2001-12-06 18:13:24 +00:00
}
void PistonEngine::setTurboParams(float turbo, float maxMP)
{
_turbo = turbo;
_maxMP = maxMP;
// This changes the "sea level" manifold air density
float P0 = Atmosphere::getStdPressure(0);
2001-12-24 13:54:03 +00:00
float P = P0 * (1 + _boost * (_turbo - 1));
2001-12-06 18:13:24 +00:00
if(P > _maxMP) P = _maxMP;
float T = Atmosphere::getStdTemperature(0) * Math::pow(P/P0, 2./7.);
_rho0 = P / (287.1 * T);
}
2001-12-24 13:54:03 +00:00
void PistonEngine::setDisplacement(float d)
{
_displacement = d;
}
void PistonEngine::setCompression(float c)
{
_compression = c;
}
float PistonEngine::getMaxPower()
2001-12-06 18:13:24 +00:00
{
2001-12-07 20:00:59 +00:00
return _power0;
}
void PistonEngine::setThrottle(float t)
{
_throttle = t;
}
void PistonEngine::setRunning(bool r)
{
_running = r;
}
void PistonEngine::setStarter(bool s)
{
_cranking = s;
}
void PistonEngine::setMagnetos(int m)
{
_magnetos = m;
}
void PistonEngine::setMixture(float m)
{
_mixture = m;
}
2001-12-24 13:54:03 +00:00
void PistonEngine::setBoost(float boost)
{
_boost = boost;
}
bool PistonEngine::isRunning()
{
return _running;
}
bool PistonEngine::isCranking()
{
return _cranking;
}
2001-12-24 13:54:03 +00:00
float PistonEngine::getTorque()
{
2001-12-24 13:54:03 +00:00
return _torque;
}
float PistonEngine::getFuelFlow()
{
return _fuelFlow;
}
float PistonEngine::getMP()
{
return _mp;
}
float PistonEngine::getEGT()
{
return _egt;
}
void PistonEngine::calc(float pressure, float temp, float speed)
{
if(_magnetos == 0 || speed < 200*RPM2RADPS)
_running = false;
else
_running = true;
2001-12-24 13:54:03 +00:00
// Calculate manifold pressure as ambient pressure modified for
// turbocharging and reduced by the throttle setting. According
// to Dave Luff, minimum throttle at sea level corresponds to 6"
// manifold pressure. Assume that this means that minimum MP is
// always 20% of ambient pressure. But we need to produce _zero_
// thrust at that setting, so hold onto the "output" value
// separately. Ick.
2001-12-24 13:54:03 +00:00
_mp = pressure * (1 + _boost*(_turbo-1)); // turbocharger
float mp = _mp * (0.2 + 0.8 * _throttle); // throttle
_mp *= _throttle;
if(mp > _maxMP) mp = _maxMP; // wastegate
2001-12-24 13:54:03 +00:00
// Air entering the manifold does so rapidly, and thus the
// pressure change can be assumed to be adiabatic. Calculate a
// temperature change, and use that to get the density.
float T = temp * Math::pow(mp/pressure, 2.0/7.0);
float rho = mp / (287.1 * T);
2001-12-24 13:54:03 +00:00
// The actual fuel flow is determined only by engine RPM and the
// mixture setting. Not all of this will burn with the same
// efficiency.
_fuelFlow = _mixture * speed * _mixCoeff;
// How much fuel could be burned with ideal (i.e. uncorrected!)
// combustion.
float burnable = _f0 * (rho/_rho0) * (speed/_omega0);
// Calculate the fuel that actually burns to produce work. The
// idea is that less than 5/8 of ideal, we get complete
// combustion. We use up all the oxygen at 1 3/8 of ideal (that
// is, you need to waste fuel to use all your O2). In between,
// interpolate. This vaguely matches a curve I copied out of a
// book for a single engine. Shrug.
float burned;
2001-12-24 13:54:03 +00:00
float r = _fuelFlow/burnable;
if (burnable == 0) burned = 0;
2001-12-24 13:54:03 +00:00
else if(r < .625) burned = _fuelFlow;
else if(r > 1.375) burned = burnable;
2001-12-24 13:54:03 +00:00
else
burned = _fuelFlow + (burnable-_fuelFlow)*(r-.625)*(4.0/3.0);
// Correct for engine control state
if(!_running)
burned = 0;
if(_magnetos < 3)
burned *= 0.9;
// And finally the power is just the reference power scaled by the
2001-12-24 13:54:03 +00:00
// amount of fuel burned, and torque is that divided by RPM.
2001-12-07 20:00:59 +00:00
float power = _power0 * burned/_f0;
2001-12-24 13:54:03 +00:00
_torque = power/speed;
// Figure that the starter motor produces 20% of the engine's
// cruise torque.
if(_cranking && !_running)
_torque += 0.20 * _power0/_omega0;
// Also, add a negative torque of 10% of cruise, to represent
// internal friction. Propeller aerodynamic friction is too low
// at low RPMs to provide a good deceleration. Interpolate it
// away as we approach cruise RPMs, though, to prevent interaction
// with the power computations. Ugly.
if(speed > 0 && speed < _omega0)
_torque -= 0.05 * (_power0/_omega0) * (1 - speed/_omega0);
2001-12-24 13:54:03 +00:00
// Now EGT. This one gets a little goofy. We can calculate the
// work done by an isentropically expanding exhaust gas as the
// mass of the gas times the specific heat times the change in
// temperature. The mass is just the engine displacement times
// the manifold density, plus the mass of the fuel, which we know.
// The change in temperature can be calculated adiabatically as a
// function of the exhaust gas temperature and the compression
// ratio (which we know). So just rearrange the equation to get
// EGT as a function of engine power. Cool. I'm using a value of
// 1300 J/(kg*K) for the exhaust gas specific heat. I found this
// on a web page somewhere; no idea if it's accurate. Also,
// remember that four stroke engines do one combustion cycle every
// TWO revolutions, so the displacement per revolution is half of
// what we'd expect. And diddle the work done by the gas a bit to
// account for non-thermodynamic losses like internal friction;
// 10% should do it.
float massFlow = _fuelFlow + (rho * 0.5 * _displacement * speed);
float specHeat = 1300;
float corr = 1.0/(Math::pow(_compression, 0.4) - 1);
_egt = corr * (power * 1.1) / (massFlow * specHeat);
if(_egt < temp) _egt = temp;
}
}; // namespace yasim