1
0
Fork 0
flightgear/src/FDM/YASim/Jet.cpp

227 lines
5.1 KiB
C++
Raw Normal View History

#include "Atmosphere.hpp"
#include "Math.hpp"
#include "Jet.hpp"
namespace yasim {
Jet::Jet()
{
2001-12-24 13:54:03 +00:00
_maxThrust = 0;
_abFactor = 1;
_reheat = 0;
2001-12-24 13:54:03 +00:00
_rotControl = 0;
_maxRot = 0;
// Initialize parameters for an early-ish subsonic turbojet. More
// recent turbofans will typically have a lower vMax, epr0, and
// tsfc.
_vMax = 800;
_epr0 = 3.0;
_tsfc = 0.8;
_egt0 = 1050;
_n1Min = 55;
_n1Max = 102;
_n2Min = 73;
_n2Max = 103;
setSpooling(4); // 4 second spool time? s'bout right.
// And initialize to an engine that is idling
_n1 = _n1Min;
_n2 = _n2Min;
// And sanify the remaining junk, just in case.
_running = true;
_cranking = false;
2001-12-24 13:54:03 +00:00
_epr = 1;
_fuelFlow = 0;
_egt = 273;
_tempCorrect = 1;
_pressureCorrect = 1;
}
2001-12-06 18:13:24 +00:00
void Jet::stabilize()
{
2001-12-24 13:54:03 +00:00
// Just run it for an hour, there's no need to iterate given the
// algorithms used.
integrate(3600);
}
void Jet::setMaxThrust(float thrust, float afterburner)
{
_maxThrust = thrust;
if(afterburner == 0) _abFactor = 1;
else _abFactor = afterburner/thrust;
}
void Jet::setVMax(float spd)
{
_vMax = spd;
}
void Jet::setTSFC(float tsfc)
{
_tsfc = tsfc;
}
2001-12-24 13:54:03 +00:00
void Jet::setRPMs(float idleN1, float maxN1, float idleN2, float maxN2)
{
2001-12-24 13:54:03 +00:00
_n1Min = idleN1;
_n1Max = maxN1;
_n2Min = idleN2;
_n2Max = maxN2;
}
2001-12-24 13:54:03 +00:00
void Jet::setEGT(float takeoffEGT)
2001-12-06 18:13:24 +00:00
{
2001-12-24 13:54:03 +00:00
_egt0 = takeoffEGT;
}
void Jet::setEPR(float takeoffEPR)
{
_epr0 = takeoffEPR;
}
void Jet::setSpooling(float time)
{
// 2.3 = -ln(0.1), i.e. x=2.3 is the 90% point we're defining
// The extra fudge factor is there because the N1 speed (which
// determines thrust) lags the N2 speed.
_decay = 1.5 * 2.3 / time;
}
void Jet::setVectorAngle(float angle)
{
_maxRot = angle;
2001-12-06 18:13:24 +00:00
}
void Jet::setReheat(float reheat)
{
2001-12-06 18:13:24 +00:00
_reheat = Math::clamp(reheat, 0, 1);
}
2001-12-24 13:54:03 +00:00
void Jet::setRotation(float rot)
{
2001-12-24 13:54:03 +00:00
if(rot < 0) rot = 0;
if(rot > 1) rot = 1;
_rotControl = rot;
}
2001-12-24 13:54:03 +00:00
float Jet::getN1()
{
2001-12-24 13:54:03 +00:00
return _n1 * _tempCorrect;
}
2001-12-24 13:54:03 +00:00
float Jet::getN2()
{
2001-12-24 13:54:03 +00:00
return _n2 * _tempCorrect;
}
float Jet::getEPR()
{
return _epr;
}
float Jet::getEGT()
{
// Exactly zero means "off" -- return the ambient temperature
if(_egt == 0) return _temp;
return _egt * _tempCorrect * _tempCorrect;
}
float Jet::getFuelFlow()
{
2001-12-24 13:54:03 +00:00
return _fuelFlow * _pressureCorrect;
}
void Jet::integrate(float dt)
{
2001-12-24 13:54:03 +00:00
// Sea-level values
const static float P0 = Atmosphere::getStdPressure(0);
const static float T0 = Atmosphere::getStdTemperature(0);
const static float D0 = Atmosphere::getStdDensity(0);
float speed = -Math::dot3(_wind, _dir);
float statT, statP, statD;
Atmosphere::calcStaticAir(_pressure, _temp, _rho, speed,
&statP, &statT, &statD);
_pressureCorrect = statP/P0;
_tempCorrect = Math::sqrt(statT/T0);
// Linearly taper maxThrust to zero at vMax
float vCorr = 1 - (speed/_vMax);
float maxThrust = _maxThrust * vCorr * (statD/D0);
_thrust = maxThrust * _throttle;
// Now get a "beta" (i.e. EPR - 1) value. The output values are
// expressed as functions of beta.
float ibeta0 = 1/(_epr0 - 1);
float betaTarget = (_epr0 - 1) * (_thrust/_maxThrust) * (P0/_pressure)
* (_temp/statT);
float n2Target = _n2Min + (betaTarget*ibeta0) * (_n2Max - _n2Min);
// Note that this "first" beta value is used to compute a target
// for N2 only Integrate the N2 speed and back-calculate a beta1
// target. The N1 speed will seek to this.
_n2 = (_n2 + dt*_decay * n2Target) / (1 + dt*_decay);
float betaN2 = (_epr0-1) * (_n2 - _n2Min) / (_n2Max - _n2Min);
float n1Target = _n1Min + betaN2*ibeta0 * (_n1Max - _n1Min);
_n1 = (_n1 + dt*_decay * n1Target) / (1 + dt*_decay);
// The actual thrust produced is keyed to the N1 speed. Add the
// afterburners in at the end.
float betaN1 = (_epr0-1) * (_n1 - _n1Min) / (_n1Max - _n1Min);
_thrust *= betaN1/(betaTarget+.00001); // blowup protection
_thrust *= 1 + _reheat*(_abFactor-1);
// Finally, calculate the output variables. Use a 80/20 mix of
// the N2/N1 speeds as the key.
float beta = 0.8*betaN2 + 0.2*betaN1;
_epr = beta + 1;
float ff0 = _maxThrust*_tsfc*(1/(3600*9.8)); // takeoff fuel flow, kg/s
_fuelFlow = ff0 * beta*ibeta0;
_fuelFlow *= 1 + (3.5 * _reheat * _abFactor); // Afterburners take
// 3.5 times as much
// fuel per thrust unit
_egt = T0 + beta*ibeta0 * (_egt0 - T0);
}
bool Jet::isRunning()
{
return _running;
}
bool Jet::isCranking()
{
return _cranking;
}
2001-12-24 13:54:03 +00:00
void Jet::getThrust(float* out)
{
Math::mul3(_thrust, _dir, out);
// Rotate about the Y axis for thrust vectoring
float angle = _rotControl * _maxRot;
float s = Math::sin(angle);
float c = Math::cos(angle);
float o0 = out[0];
out[0] = c * o0 + s * out[2];
out[2] = -s * o0 + c * out[2];
}
void Jet::getTorque(float* out)
{
out[0] = out[1] = out[2] = 0;
return;
}
void Jet::getGyro(float* out)
{
out[0] = out[1] = out[2] = 0;
return;
}
}; // namespace yasim