1
0
Fork 0
flightgear/src/FDM/JSBSim/FGTranslation.cpp

190 lines
6.3 KiB
C++
Raw Normal View History

2000-11-03 23:02:47 +00:00
/*%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2001-03-30 01:04:50 +00:00
1999-02-05 21:26:01 +00:00
Module: FGTranslation.cpp
Author: Jon Berndt
Date started: 12/02/98
Purpose: Integrates the translational EOM
Called by: FDMExec
2001-03-30 01:04:50 +00:00
1999-02-05 21:26:01 +00:00
------------- Copyright (C) 1999 Jon S. Berndt (jsb@hal-pc.org) -------------
2001-03-30 01:04:50 +00:00
1999-02-05 21:26:01 +00:00
This program is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free Software
Foundation; either version 2 of the License, or (at your option) any later
version.
2001-03-30 01:04:50 +00:00
1999-02-05 21:26:01 +00:00
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
details.
2001-03-30 01:04:50 +00:00
1999-02-05 21:26:01 +00:00
You should have received a copy of the GNU General Public License along with
this program; if not, write to the Free Software Foundation, Inc., 59 Temple
Place - Suite 330, Boston, MA 02111-1307, USA.
2001-03-30 01:04:50 +00:00
1999-02-05 21:26:01 +00:00
Further information about the GNU General Public License can also be found on
the world wide web at http://www.gnu.org.
2001-03-30 01:04:50 +00:00
1999-02-05 21:26:01 +00:00
FUNCTIONAL DESCRIPTION
--------------------------------------------------------------------------------
This class integrates the translational EOM.
2001-03-30 01:04:50 +00:00
1999-02-05 21:26:01 +00:00
HISTORY
--------------------------------------------------------------------------------
12/02/98 JSB Created
2001-03-30 01:04:50 +00:00
7/23/99 TP Added data member and modified Run and PutState to calcuate
Mach number
2000-11-03 23:02:47 +00:00
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1999-02-05 21:26:01 +00:00
COMMENTS, REFERENCES, and NOTES
2000-11-03 23:02:47 +00:00
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1999-02-05 21:26:01 +00:00
[1] Cooke, Zyda, Pratt, and McGhee, "NPSNET: Flight Simulation Dynamic Modeling
Using Quaternions", Presence, Vol. 1, No. 4, pp. 404-420 Naval Postgraduate
School, January 1994
[2] D. M. Henderson, "Euler Angles, Quaternions, and Transformation Matrices",
JSC 12960, July 1977
[3] Richard E. McFarland, "A Standard Kinematic Model for Flight Simulation at
NASA-Ames", NASA CR-2497, January 1975
[4] Barnes W. McCormick, "Aerodynamics, Aeronautics, and Flight Mechanics",
Wiley & Sons, 1979 ISBN 0-471-03032-5
[5] Bernard Etkin, "Dynamics of Flight, Stability and Control", Wiley & Sons,
1982 ISBN 0-471-08936-2
2001-03-30 01:04:50 +00:00
1999-02-05 21:26:01 +00:00
The order of rotations used in this class corresponds to a 3-2-1 sequence,
or Y-P-R, or Z-Y-X, if you prefer.
2001-03-30 01:04:50 +00:00
2000-11-03 23:02:47 +00:00
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1999-02-05 21:26:01 +00:00
INCLUDES
2000-11-03 23:02:47 +00:00
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%*/
1999-02-05 21:26:01 +00:00
#include "FGTranslation.h"
#include "FGRotation.h"
#include "FGAtmosphere.h"
#include "FGState.h"
#include "FGFDMExec.h"
#include "FGFCS.h"
#include "FGMassBalance.h"
#include "FGAircraft.h"
#include "FGPosition.h"
#include "FGAuxiliary.h"
#include "FGOutput.h"
1999-02-05 21:26:01 +00:00
2001-03-30 01:04:50 +00:00
static const char *IdSrc = "$Id$";
static const char *IdHdr = ID_TRANSLATION;
2000-11-03 23:02:47 +00:00
/*%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
CLASS IMPLEMENTATION
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%*/
1999-02-05 21:26:01 +00:00
2000-04-24 23:49:06 +00:00
FGTranslation::FGTranslation(FGFDMExec* fdmex) : FGModel(fdmex),
vUVW(3),
vUVWdot(3),
vlastUVWdot(3),
2001-07-10 15:56:38 +00:00
mVel(3,3),
vAero(3)
1999-02-05 21:26:01 +00:00
{
Name = "FGTranslation";
qbar = 0;
Vt = 0.0;
Mach = 0.0;
alpha = beta = 0.0;
adot = bdot = 0.0;
2001-03-30 01:04:50 +00:00
if (debug_lvl & 2) cout << "Instantiated: " << Name << endl;
1999-02-05 21:26:01 +00:00
}
2000-11-03 23:02:47 +00:00
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1999-02-05 21:26:01 +00:00
2001-03-30 01:04:50 +00:00
FGTranslation::~FGTranslation()
{
if (debug_lvl & 2) cout << "Destroyed: FGTranslation" << endl;
}
1999-02-05 21:26:01 +00:00
2000-11-03 23:02:47 +00:00
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1999-02-05 21:26:01 +00:00
bool FGTranslation::Run(void)
{
2001-11-20 22:34:24 +00:00
double Tc = 0.5*State->Getdt()*rate;
if (!FGModel::Run()) {
2000-04-24 23:49:06 +00:00
mVel(1,1) = 0.0;
mVel(1,2) = -vUVW(eW);
mVel(1,3) = vUVW(eV);
mVel(2,1) = vUVW(eW);
mVel(2,2) = 0.0;
mVel(2,3) = -vUVW(eU);
mVel(3,1) = -vUVW(eV);
mVel(3,2) = vUVW(eU);
mVel(3,3) = 0.0;
1999-02-05 21:26:01 +00:00
2001-11-06 22:33:05 +00:00
vUVWdot = mVel*Rotation->GetPQR() + Aircraft->GetBodyAccel();
2001-03-30 01:04:50 +00:00
vUVW += Tc * (vlastUVWdot + vUVWdot);
2001-07-10 15:56:38 +00:00
vAero = vUVW + State->GetTl2b()*Atmosphere->GetWindNED();
2001-03-30 01:04:50 +00:00
2001-07-10 15:56:38 +00:00
Vt = vAero.Magnitude();
if ( Vt > 1) {
if (vAero(eW) != 0.0)
alpha = vAero(eU)*vAero(eU) > 0.0 ? atan2(vAero(eW), vAero(eU)) : 0.0;
if (vAero(eV) != 0.0)
beta = vAero(eU)*vAero(eU)+vAero(eW)*vAero(eW) > 0.0 ? atan2(vAero(eV),
sqrt(vAero(eU)*vAero(eU) + vAero(eW)*vAero(eW))) : 0.0;
// stolen, quite shamelessly, from LaRCsim
2001-11-20 22:34:24 +00:00
double mUW = (vAero(eU)*vAero(eU) + vAero(eW)*vAero(eW));
double signU=1;
if (vAero(eU) != 0.0)
signU = vAero(eU)/fabs(vAero(eU));
if ( (mUW == 0.0) || (Vt == 0.0) ) {
adot = 0.0;
bdot = 0.0;
} else {
adot = (vAero(eU)*vAero(eW) - vAero(eW)*vUVWdot(eU))/mUW;
bdot = (signU*mUW*vUVWdot(eV) - vAero(eV)*(vAero(eU)*vUVWdot(eU)
+ vAero(eW)*vUVWdot(eW)))/(Vt*Vt*sqrt(mUW));
}
2001-03-30 01:04:50 +00:00
} else {
alpha = beta = adot = bdot = 0;
2001-03-30 01:04:50 +00:00
}
1999-02-05 21:26:01 +00:00
qbar = 0.5*Atmosphere->GetDensity()*Vt*Vt;
Mach = Vt / State->Geta();
1999-08-17 21:18:11 +00:00
vlastUVWdot = vUVWdot;
if (debug_lvl > 1) Debug();
return false;
} else {
return true;
}
1999-02-05 21:26:01 +00:00
}
2000-11-03 23:02:47 +00:00
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2001-03-30 01:04:50 +00:00
void FGTranslation::Debug(void)
{
if (debug_lvl & 16) { // Sanity check variables
if (fabs(vUVW(eU)) > 1e6)
cout << "FGTranslation::U velocity out of bounds: " << vUVW(eU) << endl;
if (fabs(vUVW(eV)) > 1e6)
cout << "FGTranslation::V velocity out of bounds: " << vUVW(eV) << endl;
if (fabs(vUVW(eW)) > 1e6)
cout << "FGTranslation::W velocity out of bounds: " << vUVW(eW) << endl;
if (fabs(vUVWdot(eU)) > 1e4)
cout << "FGTranslation::U acceleration out of bounds: " << vUVWdot(eU) << endl;
if (fabs(vUVWdot(eV)) > 1e4)
cout << "FGTranslation::V acceleration out of bounds: " << vUVWdot(eV) << endl;
if (fabs(vUVWdot(eW)) > 1e4)
cout << "FGTranslation::W acceleration out of bounds: " << vUVWdot(eW) << endl;
if (Mach > 100 || Mach < 0.00)
cout << "FGTranslation::Mach is out of bounds: " << Mach << endl;
if (qbar > 1e6 || qbar < 0.00)
cout << "FGTranslation::qbar is out of bounds: " << qbar << endl;
}
1999-02-05 21:26:01 +00:00
}