1
0
Fork 0
flightgear/src/Network/ATC-Outputs.cxx

989 lines
30 KiB
C++
Raw Normal View History

// ATC-Outputs.hxx -- Translate FGFS properties to ATC hardware outputs.
//
// Written by Curtis Olson, started November 2004.
//
// Copyright (C) 2004 Curtis L. Olson - http://www.flightgear.org/~curt
//
// This program is free software; you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of the
// License, or (at your option) any later version.
//
// This program is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software
2006-02-21 01:16:04 +00:00
// Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
//
// $Id$
#ifdef HAVE_CONFIG_H
# include <config.h>
#endif
#include <simgear/compiler.h>
#if defined( unix ) || defined( __CYGWIN__ )
# include <sys/types.h>
# include <sys/stat.h>
# include <fcntl.h>
2005-03-08 19:47:51 +00:00
# include <unistd.h>
# include <ostream>
2002-02-08 00:07:53 +00:00
#endif
#include <errno.h>
#include <math.h>
#include STL_STRING
#include <simgear/debug/logstream.hxx>
#include <simgear/misc/sg_path.hxx>
#include <Main/fg_props.hxx>
#include "ATC-Outputs.hxx"
SG_USING_STD(string);
// Lock the ATC hardware
static int ATCLock( int fd ) {
#if defined( unix ) || defined( __CYGWIN__ )
// rewind
lseek( fd, 0, SEEK_SET );
char tmp[2];
int result = read( fd, tmp, 1 );
if ( result != 1 ) {
SG_LOG( SG_IO, SG_DEBUG, "Lock failed" );
}
return result;
#else
return -1;
#endif
}
// Release the ATC hardware
static int ATCRelease( int fd ) {
#if defined( unix ) || defined( __CYGWIN__ )
// rewind
lseek( fd, 0, SEEK_SET );
char tmp[2];
tmp[0] = tmp[1] = 0;
int result = write( fd, tmp, 1 );
if ( result != 1 ) {
SG_LOG( SG_IO, SG_DEBUG, "Release failed" );
}
return result;
#else
return -1;
#endif
}
// Constructor: The _board parameter specifies which board to
// reference. Possible values are 0 or 1. The _config_file parameter
// specifies the location of the output config file (xml)
FGATCOutput::FGATCOutput( const int _board, const SGPath &_config_file ) :
is_open(false),
lamps_out_node(NULL),
radio_display_node(NULL),
steppers_node(NULL)
{
board = _board;
config = _config_file;
}
// Write a radios command
static int ATCSetRadios( int fd, unsigned char data[ATC_RADIO_DISPLAY_BYTES] ) {
#if defined( unix ) || defined( __CYGWIN__ )
// rewind
lseek( fd, 0, SEEK_SET );
int result = write( fd, data, ATC_RADIO_DISPLAY_BYTES );
if ( result != ATC_RADIO_DISPLAY_BYTES ) {
SG_LOG( SG_IO, SG_DEBUG, "Write failed" );
}
return result;
#else
return -1;
#endif
}
// Write a stepper command
static int ATCSetStepper( int fd, unsigned char channel,
unsigned char value )
{
#if defined( unix ) || defined( __CYGWIN__ )
// rewind
lseek( fd, 0, SEEK_SET );
// Write the value
unsigned char buf[3];
buf[0] = channel;
buf[1] = value;
buf[2] = 0;
int result = write( fd, buf, 2 );
if ( result != 2 ) {
SG_LOG( SG_IO, SG_INFO, "Write failed" );
}
SG_LOG( SG_IO, SG_DEBUG,
"Sent cmd = " << (int)channel << " value = " << (int)value );
return result;
#else
return -1;
#endif
}
// Read status of last stepper written to
static unsigned char ATCReadStepper( int fd ) {
#if defined( unix ) || defined( __CYGWIN__ )
int result;
// rewind
lseek( fd, 0, SEEK_SET );
// Write the value
unsigned char buf[2];
result = read( fd, buf, 1 );
if ( result != 1 ) {
SG_LOG( SG_IO, SG_ALERT, "Read failed" );
exit( -1 );
}
SG_LOG( SG_IO, SG_DEBUG, "Read result = " << (int)buf[0] );
return buf[0];
#else
return 0;
#endif
}
// Turn a lamp on or off
void ATCSetLamp( int fd, int channel, bool value ) {
#if defined( unix ) || defined( __CYGWIN__ )
// lamp channels 0-63 are written to LampPort0, channels 64-127
// are written to LampPort1
// bits 0-6 are the lamp address
// bit 7 is the value (on/off)
int result;
// Write the value
unsigned char buf[3];
buf[0] = channel;
buf[1] = value;
buf[2] = 0;
result = write( fd, buf, 2 );
if ( result != 2 ) {
2002-06-05 17:44:09 +00:00
SG_LOG( SG_IO, SG_ALERT, "Write failed" );
exit( -1 );
}
#endif
}
void FGATCOutput::init_config() {
#if defined( unix ) || defined( __CYGWIN__ )
if ( config.str()[0] != '/' ) {
// not an absolute path, prepend the standard location
SGPath tmp;
char *envp = ::getenv( "HOME" );
if ( envp != NULL ) {
tmp = envp;
tmp.append( ".atcflightsim" );
tmp.append( config.str() );
config = tmp;
}
}
readProperties( config.str(), globals->get_props() );
#endif
}
// Open and initialize the ATC hardware
bool FGATCOutput::open( int lock_fd ) {
if ( is_open ) {
SG_LOG( SG_IO, SG_ALERT, "This board is already open for output! "
<< board );
return false;
}
// This loads the config parameters generated by "simcal"
init_config();
SG_LOG( SG_IO, SG_ALERT,
"Initializing ATC output hardware, please wait ..." );
snprintf( lamps_file, 256,
"/proc/atcflightsim/board%d/lamps", board );
snprintf( radio_display_file, 256,
"/proc/atcflightsim/board%d/radios", board );
snprintf( stepper_file, 256,
"/proc/atcflightsim/board%d/steppers", board );
#if defined( unix ) || defined( __CYGWIN__ )
/////////////////////////////////////////////////////////////////////
// Open the /proc files
/////////////////////////////////////////////////////////////////////
lamps_fd = ::open( lamps_file, O_WRONLY );
if ( lamps_fd == -1 ) {
SG_LOG( SG_IO, SG_ALERT, "errno = " << errno );
char msg[256];
snprintf( msg, 256, "Error opening %s", lamps_file );
perror( msg );
exit( -1 );
}
radio_display_fd = ::open( radio_display_file, O_RDWR );
if ( radio_display_fd == -1 ) {
SG_LOG( SG_IO, SG_ALERT, "errno = " << errno );
char msg[256];
snprintf( msg, 256, "Error opening %s", radio_display_file );
perror( msg );
exit( -1 );
}
stepper_fd = ::open( stepper_file, O_RDWR );
if ( stepper_fd == -1 ) {
SG_LOG( SG_IO, SG_ALERT, "errno = " << errno );
char msg[256];
snprintf( msg, 256, "Error opening %s", stepper_file );
perror( msg );
exit( -1 );
}
#endif
2005-02-15 18:09:52 +00:00
#ifdef ATCFLIGHTSIM_HAVE_COMPASS
/////////////////////////////////////////////////////////////////////
// Home the compass stepper motor
/////////////////////////////////////////////////////////////////////
SG_LOG( SG_IO, SG_ALERT,
" - Homing the compass stepper motor" );
// Lock the hardware, keep trying until we succeed
while ( ATCLock( lock_fd ) <= 0 );
// Send the stepper home command
ATCSetStepper( stepper_fd, ATC_COMPASS_CH, ATC_STEPPER_HOME );
// Release the hardware
ATCRelease( lock_fd );
SG_LOG( SG_IO, SG_ALERT,
" - Waiting for compass to come home." );
bool home = false;
int timeout = 900; // about 30 seconds
timeout = 0;
while ( ! home && timeout > 0 ) {
if ( timeout % 150 == 0 ) {
SG_LOG( SG_IO, SG_INFO, "waiting for compass = " << timeout );
} else {
SG_LOG( SG_IO, SG_DEBUG, "Checking if compass home ..." );
}
while ( ATCLock( lock_fd ) <= 0 );
unsigned char result = ATCReadStepper( stepper_fd );
if ( result == 0 ) {
home = true;
}
ATCRelease( lock_fd );
2002-02-11 15:24:08 +00:00
#if defined( _MSC_VER )
2002-02-08 00:07:53 +00:00
ulMilliSecondSleep(33);
2002-02-11 15:25:19 +00:00
#elif defined (WIN32) && !defined(__CYGWIN__)
Sleep (33);
2002-02-08 00:07:53 +00:00
#else
usleep(33);
2002-02-08 00:07:53 +00:00
#endif
--timeout;
}
compass_position = 0.0;
2005-02-15 18:09:52 +00:00
#endif
/////////////////////////////////////////////////////////////////////
// Blank the radio display
/////////////////////////////////////////////////////////////////////
SG_LOG( SG_IO, SG_ALERT,
" - Clearing the radios displays." );
// Prepair the data
unsigned char value = 0xff;
for ( int channel = 0; channel < ATC_RADIO_DISPLAY_BYTES; ++channel ) {
radio_display_data[channel] = value;
}
// Lock the hardware, keep trying until we succeed
while ( ATCLock( lock_fd ) <= 0 );
// Set radio display
ATCSetRadios( radio_display_fd, radio_display_data );
ATCRelease( lock_fd );
/////////////////////////////////////////////////////////////////////
// Blank the lamps
/////////////////////////////////////////////////////////////////////
for ( int i = 0; i < 128; ++i ) {
ATCSetLamp( lamps_fd, i, false );
}
/////////////////////////////////////////////////////////////////////
// Finished initing hardware
/////////////////////////////////////////////////////////////////////
SG_LOG( SG_IO, SG_ALERT,
"Done initializing ATC output hardware." );
is_open = true;
/////////////////////////////////////////////////////////////////////
// Connect up to property values
/////////////////////////////////////////////////////////////////////
char base_name[256];
snprintf( base_name, 256, "/output/atc-board[%d]/lamps", board );
lamps_out_node = fgGetNode( base_name );
snprintf( base_name, 256, "/output/atc-board[%d]/radio-display", board );
radio_display_node = fgGetNode( base_name );
snprintf( base_name, 256, "/output/atc-board[%d]/steppers", board );
steppers_node = fgGetNode( base_name );
return true;
}
/////////////////////////////////////////////////////////////////////
// Write the lights
/////////////////////////////////////////////////////////////////////
bool FGATCOutput::do_lamps() {
if ( lamps_out_node != NULL ) {
for ( int i = 0; i < lamps_out_node->nChildren(); ++i ) {
// read the next config entry from the property tree
SGPropertyNode *child = lamps_out_node->getChild(i);
string cname = child->getName();
int index = child->getIndex();
string name = "";
string type = "";
SGPropertyNode *src_prop = NULL;
if ( cname == "lamp" ) {
SGPropertyNode *prop;
prop = child->getChild( "name" );
if ( prop != NULL ) {
name = prop->getStringValue();
}
prop = child->getChild( "type" );
if ( prop != NULL ) {
type = prop->getStringValue();
}
prop = child->getChild( "prop" );
if ( prop != NULL ) {
src_prop = fgGetNode( prop->getStringValue(), true );
}
ATCSetLamp( lamps_fd, index, src_prop->getBoolValue() );
} else {
SG_LOG( SG_IO, SG_DEBUG,
"Input config error, expecting 'lamp' but found "
<< cname );
}
}
}
return true;
}
/////////////////////////////////////////////////////////////////////
// Update the radio display
/////////////////////////////////////////////////////////////////////
static bool navcom1_has_power() {
static SGPropertyNode *navcom1_bus_power
= fgGetNode( "/systems/electrical/outputs/nav[0]", true );
static SGPropertyNode *navcom1_power_btn
= fgGetNode( "/instrumentation/nav[0]/power-btn", true );
return (navcom1_bus_power->getDoubleValue() > 1.0)
&& navcom1_power_btn->getBoolValue();
}
static bool navcom2_has_power() {
static SGPropertyNode *navcom2_bus_power
= fgGetNode( "/systems/electrical/outputs/nav[1]", true );
static SGPropertyNode *navcom2_power_btn
= fgGetNode( "/instrumentation/nav[1]/power-btn", true );
return (navcom2_bus_power->getDoubleValue() > 1.0)
&& navcom2_power_btn->getBoolValue();
}
static bool dme_has_power() {
static SGPropertyNode *dme_bus_power
= fgGetNode( "/systems/electrical/outputs/dme", true );
return (dme_bus_power->getDoubleValue() > 1.0);
}
static bool adf_has_power() {
static SGPropertyNode *adf_bus_power
= fgGetNode( "/systems/electrical/outputs/adf", true );
static SGPropertyNode *adf_power_btn
= fgGetNode( "/instrumentation/kr-87/inputs/power-btn", true );
return (adf_bus_power->getDoubleValue() > 1.0)
&& adf_power_btn->getBoolValue();
}
static bool xpdr_has_power() {
static SGPropertyNode *xpdr_bus_power
= fgGetNode( "/systems/electrical/outputs/transponder", true );
static SGPropertyNode *xpdr_func_knob
2004-12-30 21:49:53 +00:00
= fgGetNode( "/instrumentation/transponder/inputs/func-knob", true );
return (xpdr_bus_power->getDoubleValue() > 1.0)
&& (xpdr_func_knob->getIntValue() > 0);
}
bool FGATCOutput::do_radio_display() {
static SGPropertyNode *dme_serviceable
= fgGetNode( "/instrumentation/dme/serviceable", true );
static SGPropertyNode *dme_in_range
= fgGetNode( "/instrumentation/dme/in-range", true );
static SGPropertyNode *dme_min
= fgGetNode( "/instrumentation/dme/indicated-time-min", true );
static SGPropertyNode *dme_kt
= fgGetNode( "/instrumentation/dme/indicated-ground-speed-kt", true );
static SGPropertyNode *dme_nm
= fgGetNode( "/instrumentation/dme/indicated-distance-nm", true );
static SGPropertyNode *comm1_serviceable
= fgGetNode( "/instrumentation/comm[0]/serviceable", true );
static SGPropertyNode *com1_freq
= fgGetNode( "/instrumentation/comm[0]/frequencies/selected-mhz", true);
static SGPropertyNode *com1_stby_freq
= fgGetNode( "/instrumentation/comm[0]/frequencies/standby-mhz", true );
static SGPropertyNode *comm2_serviceable
= fgGetNode( "/instrumentation/comm[1]/serviceable", true );
static SGPropertyNode *com2_freq
= fgGetNode( "/instrumentation/comm[1]/frequencies/selected-mhz", true);
static SGPropertyNode *com2_stby_freq
= fgGetNode( "/instrumentation/comm[1]/frequencies/standby-mhz", true );
static SGPropertyNode *nav1_serviceable
= fgGetNode( "/instrumentation/nav[0]/serviceable", true );
static SGPropertyNode *nav1_freq
= fgGetNode( "/instrumentation/nav[0]/frequencies/selected-mhz", true );
static SGPropertyNode *nav1_stby_freq
= fgGetNode( "/instrumentation/nav[0]/frequencies/standby-mhz", true );
static SGPropertyNode *nav2_serviceable
= fgGetNode( "/instrumentation/nav[1]/serviceable", true );
static SGPropertyNode *nav2_freq
= fgGetNode( "/instrumentation/nav[1]/frequencies/selected-mhz", true );
static SGPropertyNode *nav2_stby_freq
= fgGetNode( "/instrumentation/nav[1]/frequencies/standby-mhz", true );
static SGPropertyNode *adf_serviceable
= fgGetNode( "/instrumentation/adf/serviceable", true );
static SGPropertyNode *adf_freq
= fgGetNode( "/instrumentation/kr-87/outputs/selected-khz", true );
static SGPropertyNode *adf_stby_freq
= fgGetNode( "/instrumentation/kr-87/outputs/standby-khz", true );
static SGPropertyNode *adf_stby_mode
= fgGetNode( "/instrumentation/kr-87/modes/stby", true );
static SGPropertyNode *adf_timer_mode
= fgGetNode( "/instrumentation/kr-87/modes/timer", true );
// static SGPropertyNode *adf_count_mode
// = fgGetNode( "/instrumentation/kr-87/modes/count", true );
static SGPropertyNode *adf_flight_timer
= fgGetNode( "/instrumentation/kr-87/outputs/flight-timer", true );
static SGPropertyNode *adf_elapsed_timer
= fgGetNode( "/instrumentation/kr-87/outputs/elapsed-timer", true );
static SGPropertyNode *xpdr_serviceable
2004-12-30 21:49:53 +00:00
= fgGetNode( "/instrumentation/transponder/inputs/serviceable", true );
static SGPropertyNode *xpdr_func_knob
2004-12-30 21:49:53 +00:00
= fgGetNode( "/instrumentation/transponder/inputs/func-knob", true );
static SGPropertyNode *xpdr_flight_level
2004-12-30 21:49:53 +00:00
= fgGetNode( "/instrumentation/transponder/outputs/flight-level", true );
static SGPropertyNode *xpdr_id_code
2004-12-30 21:49:53 +00:00
= fgGetNode( "/instrumentation/transponder/outputs/id-code", true );
char digits[10];
2002-02-05 15:57:46 +00:00
int i;
if ( dme_has_power() && dme_serviceable->getBoolValue() ) {
if ( dme_in_range->getBoolValue() ) {
// DME minutes
float minutes = dme_min->getFloatValue();
if ( minutes > 999 ) {
minutes = 999.0;
}
snprintf(digits, 7, "%03.0f", minutes);
for ( i = 0; i < 6; ++i ) {
digits[i] -= '0';
}
radio_display_data[0] = digits[1] << 4 | digits[2];
radio_display_data[1] = 0xf0 | digits[0];
// DME knots
float knots = dme_kt->getFloatValue();
if ( knots > 999 ) {
knots = 999.0;
}
snprintf(digits, 7, "%03.0f", knots);
for ( i = 0; i < 6; ++i ) {
digits[i] -= '0';
}
radio_display_data[2] = digits[1] << 4 | digits[2];
radio_display_data[3] = 0xf0 | digits[0];
// DME distance (nm)
float nm = dme_nm->getFloatValue();
if ( nm > 99 ) {
nm = 99.0;
}
snprintf(digits, 7, "%04.1f", nm);
for ( i = 0; i < 6; ++i ) {
digits[i] -= '0';
}
radio_display_data[4] = digits[1] << 4 | digits[3];
radio_display_data[5] = 0x00 | digits[0];
// the 0x00 in the upper nibble of the 6th byte of each
// display turns on the decimal point
} else {
// out of range
2003-04-23 18:31:22 +00:00
radio_display_data[0] = 0xbb;
radio_display_data[1] = 0xfb;
radio_display_data[2] = 0xbb;
radio_display_data[3] = 0xfb;
radio_display_data[4] = 0xbb;
radio_display_data[5] = 0x0b;
}
} else {
// blank dem display
2002-02-05 15:57:46 +00:00
for ( i = 0; i < 6; ++i ) {
radio_display_data[i] = 0xff;
}
}
if ( navcom1_has_power() && comm1_serviceable->getBoolValue() ) {
// Com1 standby frequency
float com1_stby = com1_stby_freq->getFloatValue();
if ( fabs(com1_stby) > 999.99 ) {
com1_stby = 0.0;
}
snprintf(digits, 7, "%06.3f", com1_stby);
for ( i = 0; i < 6; ++i ) {
digits[i] -= '0';
}
radio_display_data[6] = digits[4] << 4 | digits[5];
radio_display_data[7] = digits[1] << 4 | digits[2];
radio_display_data[8] = 0xf0 | digits[0];
// Com1 in use frequency
float com1 = com1_freq->getFloatValue();
if ( fabs(com1) > 999.99 ) {
com1 = 0.0;
}
snprintf(digits, 7, "%06.3f", com1);
for ( i = 0; i < 6; ++i ) {
digits[i] -= '0';
}
radio_display_data[9] = digits[4] << 4 | digits[5];
radio_display_data[10] = digits[1] << 4 | digits[2];
radio_display_data[11] = 0x00 | digits[0];
// the 0x00 in the upper nibble of the 6th byte of each display
// turns on the decimal point
} else {
radio_display_data[6] = 0xff;
radio_display_data[7] = 0xff;
radio_display_data[8] = 0xff;
radio_display_data[9] = 0xff;
radio_display_data[10] = 0xff;
radio_display_data[11] = 0xff;
}
if ( navcom2_has_power() && comm2_serviceable->getBoolValue() ) {
// Com2 standby frequency
float com2_stby = com2_stby_freq->getFloatValue();
if ( fabs(com2_stby) > 999.99 ) {
com2_stby = 0.0;
}
snprintf(digits, 7, "%06.3f", com2_stby);
for ( i = 0; i < 6; ++i ) {
digits[i] -= '0';
}
radio_display_data[18] = digits[4] << 4 | digits[5];
radio_display_data[19] = digits[1] << 4 | digits[2];
radio_display_data[20] = 0xf0 | digits[0];
// Com2 in use frequency
float com2 = com2_freq->getFloatValue();
if ( fabs(com2) > 999.99 ) {
com2 = 0.0;
}
snprintf(digits, 7, "%06.3f", com2);
for ( i = 0; i < 6; ++i ) {
digits[i] -= '0';
}
radio_display_data[21] = digits[4] << 4 | digits[5];
radio_display_data[22] = digits[1] << 4 | digits[2];
radio_display_data[23] = 0x00 | digits[0];
// the 0x00 in the upper nibble of the 6th byte of each display
// turns on the decimal point
} else {
radio_display_data[18] = 0xff;
radio_display_data[19] = 0xff;
radio_display_data[20] = 0xff;
radio_display_data[21] = 0xff;
radio_display_data[22] = 0xff;
radio_display_data[23] = 0xff;
}
if ( navcom1_has_power() && nav1_serviceable->getBoolValue() ) {
// Nav1 standby frequency
float nav1_stby = nav1_stby_freq->getFloatValue();
if ( fabs(nav1_stby) > 999.99 ) {
nav1_stby = 0.0;
}
snprintf(digits, 7, "%06.2f", nav1_stby);
for ( i = 0; i < 6; ++i ) {
digits[i] -= '0';
}
radio_display_data[12] = digits[4] << 4 | digits[5];
radio_display_data[13] = digits[1] << 4 | digits[2];
radio_display_data[14] = 0xf0 | digits[0];
// Nav1 in use frequency
float nav1 = nav1_freq->getFloatValue();
if ( fabs(nav1) > 999.99 ) {
nav1 = 0.0;
}
snprintf(digits, 7, "%06.2f", nav1);
for ( i = 0; i < 6; ++i ) {
digits[i] -= '0';
}
radio_display_data[15] = digits[4] << 4 | digits[5];
radio_display_data[16] = digits[1] << 4 | digits[2];
radio_display_data[17] = 0x00 | digits[0];
// the 0x00 in the upper nibble of the 6th byte of each display
// turns on the decimal point
} else {
radio_display_data[12] = 0xff;
radio_display_data[13] = 0xff;
radio_display_data[14] = 0xff;
radio_display_data[15] = 0xff;
radio_display_data[16] = 0xff;
radio_display_data[17] = 0xff;
}
if ( navcom2_has_power() && nav2_serviceable->getBoolValue() ) {
// Nav2 standby frequency
float nav2_stby = nav2_stby_freq->getFloatValue();
if ( fabs(nav2_stby) > 999.99 ) {
nav2_stby = 0.0;
}
snprintf(digits, 7, "%06.2f", nav2_stby);
for ( i = 0; i < 6; ++i ) {
digits[i] -= '0';
}
radio_display_data[24] = digits[4] << 4 | digits[5];
radio_display_data[25] = digits[1] << 4 | digits[2];
radio_display_data[26] = 0xf0 | digits[0];
// Nav2 in use frequency
float nav2 = nav2_freq->getFloatValue();
if ( fabs(nav2) > 999.99 ) {
nav2 = 0.0;
}
snprintf(digits, 7, "%06.2f", nav2);
for ( i = 0; i < 6; ++i ) {
digits[i] -= '0';
}
radio_display_data[27] = digits[4] << 4 | digits[5];
radio_display_data[28] = digits[1] << 4 | digits[2];
radio_display_data[29] = 0x00 | digits[0];
// the 0x00 in the upper nibble of the 6th byte of each display
// turns on the decimal point
} else {
radio_display_data[24] = 0xff;
radio_display_data[25] = 0xff;
radio_display_data[26] = 0xff;
radio_display_data[27] = 0xff;
radio_display_data[28] = 0xff;
radio_display_data[29] = 0xff;
}
// ADF standby frequency / timer
if ( adf_has_power() && adf_serviceable->getBoolValue() ) {
if ( adf_stby_mode->getIntValue() == 0 ) {
// frequency
float adf_stby = adf_stby_freq->getFloatValue();
if ( fabs(adf_stby) > 1799 ) {
adf_stby = 1799;
}
2002-07-05 13:56:46 +00:00
snprintf(digits, 7, "%04.0f", adf_stby);
for ( i = 0; i < 6; ++i ) {
digits[i] -= '0';
}
radio_display_data[30] = digits[3] << 4 | 0x0f;
radio_display_data[31] = digits[1] << 4 | digits[2];
if ( digits[0] == 0 ) {
radio_display_data[32] = 0xff;
} else {
radio_display_data[32] = 0xf0 | digits[0];
}
} else {
// timer
double time;
int hours, min, sec;
if ( adf_timer_mode->getIntValue() == 0 ) {
time = adf_flight_timer->getDoubleValue();
} else {
time = adf_elapsed_timer->getDoubleValue();
}
// cout << time << endl;
hours = (int)(time / 3600.0);
time -= hours * 3600.00;
min = (int)(time / 60.0);
time -= min * 60.0;
sec = (int)time;
2002-07-05 05:23:53 +00:00
int big, little;
if ( hours > 0 ) {
big = hours;
if ( big > 99 ) {
big = 99;
}
2002-07-05 05:23:53 +00:00
little = min;
} else {
big = min;
2002-07-05 05:23:53 +00:00
little = sec;
}
if ( big > 99 ) {
big = 99;
}
2002-07-05 05:23:53 +00:00
// cout << big << ":" << little << endl;
2002-07-05 13:56:46 +00:00
snprintf(digits, 7, "%02d%02d", big, little);
for ( i = 0; i < 6; ++i ) {
digits[i] -= '0';
}
radio_display_data[30] = digits[2] << 4 | digits[3];
radio_display_data[31] = digits[0] << 4 | digits[1];
radio_display_data[32] = 0xff;
}
// ADF in use frequency
float adf = adf_freq->getFloatValue();
if ( fabs(adf) > 1799 ) {
adf = 1799;
}
2002-07-05 13:56:46 +00:00
snprintf(digits, 7, "%04.0f", adf);
for ( i = 0; i < 6; ++i ) {
digits[i] -= '0';
}
radio_display_data[33] = digits[2] << 4 | digits[3];
if ( digits[0] == 0 ) {
radio_display_data[34] = 0xf0 | digits[1];
} else {
radio_display_data[34] = digits[0] << 4 | digits[1];
}
if ( adf_stby_mode->getIntValue() == 0 ) {
radio_display_data[35] = 0xff;
} else {
radio_display_data[35] = 0x0f;
}
} else {
radio_display_data[30] = 0xff;
radio_display_data[31] = 0xff;
radio_display_data[32] = 0xff;
radio_display_data[33] = 0xff;
radio_display_data[34] = 0xff;
radio_display_data[35] = 0xff;
}
// Transponder code and flight level
if ( xpdr_has_power() && xpdr_serviceable->getBoolValue() ) {
if ( xpdr_func_knob->getIntValue() == 2 ) {
// test mode
radio_display_data[36] = 8 << 4 | 8;
radio_display_data[37] = 8 << 4 | 8;
radio_display_data[38] = 0xff;
radio_display_data[39] = 8 << 4 | 0x0f;
radio_display_data[40] = 8 << 4 | 8;
} else {
// other on modes
int id_code = xpdr_id_code->getIntValue();
int place = 1000;
for ( i = 0; i < 4; ++i ) {
digits[i] = id_code / place;
id_code -= digits[i] * place;
place /= 10;
}
radio_display_data[36] = digits[2] << 4 | digits[3];
radio_display_data[37] = digits[0] << 4 | digits[1];
radio_display_data[38] = 0xff;
if ( xpdr_func_knob->getIntValue() == 3 ||
xpdr_func_knob->getIntValue() == 5 )
{
// do flight level display
snprintf(digits, 7, "%03d", xpdr_flight_level->getIntValue() );
for ( i = 0; i < 6; ++i ) {
digits[i] -= '0';
}
radio_display_data[39] = digits[2] << 4 | 0x0f;
radio_display_data[40] = digits[0] << 4 | digits[1];
} else {
// blank flight level display
radio_display_data[39] = 0xff;
radio_display_data[40] = 0xff;
}
}
} else {
// off
radio_display_data[36] = 0xff;
radio_display_data[37] = 0xff;
radio_display_data[38] = 0xff;
radio_display_data[39] = 0xff;
radio_display_data[40] = 0xff;
}
ATCSetRadios( radio_display_fd, radio_display_data );
return true;
}
/////////////////////////////////////////////////////////////////////
// Drive the stepper motors
/////////////////////////////////////////////////////////////////////
bool FGATCOutput::do_steppers() {
SGPropertyNode *mag_compass
= fgGetNode( "/instrumentation/magnetic-compass/indicated-heading-deg",
true );
float diff = mag_compass->getFloatValue() - compass_position;
while ( diff < -180.0 ) { diff += 360.0; }
while ( diff > 180.0 ) { diff -= 360.0; }
int steps = (int)(diff * 4);
// cout << "steps = " << steps << endl;
if ( steps > 4 ) { steps = 4; }
if ( steps < -4 ) { steps = -4; }
if ( abs(steps) > 0 ) {
unsigned char cmd = 0x80; // stepper command
if ( steps > 0 ) {
cmd |= 0x20; // go up
} else {
cmd |= 0x00; // go down
}
cmd |= abs(steps);
// sync compass_position with hardware position
compass_position += (float)steps / 4.0;
ATCSetStepper( stepper_fd, ATC_COMPASS_CH, cmd );
}
return true;
}
// process the hardware outputs. This code assumes the calling layer
// will lock the hardware.
bool FGATCOutput::process() {
if ( !is_open ) {
SG_LOG( SG_IO, SG_ALERT, "This board has not been opened for output! "
<< board );
return false;
}
do_lamps();
do_radio_display();
2005-02-15 18:09:52 +00:00
#ifdef ATCFLIGHTSIM_HAVE_COMPASS
do_steppers();
2005-02-15 18:09:52 +00:00
#endif
return true;
}
bool FGATCOutput::close() {
#if defined( unix ) || defined( __CYGWIN__ )
if ( !is_open ) {
return true;
}
int result;
result = ::close( lamps_fd );
if ( result == -1 ) {
SG_LOG( SG_IO, SG_ALERT, "errno = " << errno );
char msg[256];
snprintf( msg, 256, "Error closing %s", lamps_file );
perror( msg );
exit( -1 );
}
result = ::close( radio_display_fd );
if ( result == -1 ) {
SG_LOG( SG_IO, SG_ALERT, "errno = " << errno );
char msg[256];
snprintf( msg, 256, "Error closing %s", radio_display_file );
perror( msg );
exit( -1 );
}
result = ::close( stepper_fd );
if ( result == -1 ) {
SG_LOG( SG_IO, SG_ALERT, "errno = " << errno );
char msg[256];
snprintf( msg, 256, "Error closing %s", stepper_file );
perror( msg );
exit( -1 );
}
#endif
return true;
}