1
0
Fork 0
flightgear/src/Environment/atmosphere.cxx

306 lines
9.2 KiB
C++
Raw Normal View History

#include <boost/tuple/tuple.hpp>
2007-03-31 17:45:23 +00:00
#include <simgear/math/SGMath.hxx>
#include <simgear/debug/logstream.hxx>
2007-03-31 17:45:23 +00:00
#include "atmosphere.hxx"
using namespace std;
#include <iostream>
const ISA_layer ISA_def[] = {
// 0 1 2 3 4 5 6 7 8
// id (m) (ft) (Pa) (inHg) (K) (C) (K/m) (K/ft)
ISA_layer(0, 0, 0, 101325, 29.92126, 288.15, 15.00, 0.0065, 0.0019812),
ISA_layer(1, 11000, 36089, 22632.1, 6.683246, 216.65, -56.50, 0, 0),
ISA_layer(2, 20000, 65616, 5474.89, 1.616734, 216.65, -56.50, -0.0010, -0.0003048),
ISA_layer(3, 32000, 104986, 868.019, 0.256326, 228.65, -44.50, -0.0028, -0.0008534),
ISA_layer(4, 47000, 154199, 110.906, 0.0327506, 270.65, -2.50, 0, 0),
ISA_layer(5, 51000, 167322, 66.9389, 0.0197670, 270.65, -2.50, 0.0028, 0.0008534),
ISA_layer(6, 71000, 232939, 3.95642, 0.00116833, 214.65, -58.50, 0.0020, 0.0006096),
ISA_layer(7, 80000, 262467, 0.88628, 0.000261718, 196.65, -76.50),
};
const int ISA_def_size(sizeof(ISA_def) / sizeof(ISA_layer));
// Pressure within a layer, as a function of height.
// Physics model: standard or nonstandard atmosphere,
// depending on what parameters you pass in.
// Height in meters, pressures in pascals.
// As always, lapse is positive in the troposphere,
// and zero in the first part of the stratosphere.
double P_layer(const double height, const double href,
const double Pref, const double Tref,
const double lapse) {
using namespace atmodel;
if (lapse) {
double N = lapse * Rgas / mm / g;
return Pref * pow( (Tref - lapse*(height - href)) / Tref , (1/N));
} else {
return Pref * exp(-g * mm / Rgas / Tref * (height - href));
}
}
// Temperature within a layer, as a function of height.
// Physics model: standard or nonstandard atmosphere
// depending on what parameters you pass in.
// $hh in meters, pressures in Pa.
// As always, $lambda is positive in the troposphere,
// and zero in the first part of the stratosphere.
double T_layer (
const double hh,
const double hb,
const double Pb,
const double Tb,
const double lambda) {
return Tb - lambda*(hh - hb);
}
// Pressure and temperature as a function of height, Psl, and Tsl.
// heights in meters, pressures in Pa.
// Daisy chain version.
// We need "seed" values for sea-level pressure and temperature.
// In addition, for every layer, we need three things
// from the table: the reference height in that layer,
// the lapse in that layer, and the cap (if any) for that layer
// (which we take from the /next/ row of the table, if any).
pair<double,double> PT_vs_hpt(
const double hh,
const double _p0,
const double _t0
) {
const double d0(0);
double hgt = ISA_def[0].height;
double p0 = _p0;
double t0 = _t0;
#if 0
cout << "PT_vs_hpt: " << hh << " " << p0 << " " << t0 << endl;
#endif
int ii = 0;
for (const ISA_layer* pp = ISA_def; pp->lapse != -1; pp++, ii++) {
#if 0
cout << "PT_vs_hpt: " << ii
<< " height: " << pp->height
<< " temp: " << pp->temp
<< " lapse: " << pp->lapse
<< endl;
#endif
double xhgt(9e99);
double lapse = pp->lapse;
// Stratosphere starts at a definite temperature,
// not a definite height:
if (ii == 0) {
xhgt = hgt + (t0 - (pp+1)->temp) / lapse;
} else if ((pp+1)->lapse != -1) {
xhgt = (pp+1)->height;
}
if (hh <= xhgt) {
return make_pair(P_layer(hh, hgt, p0, t0, lapse),
T_layer(hh, hgt, p0, t0, lapse));
}
p0 = P_layer(xhgt, hgt, p0, t0, lapse);
t0 = t0 - lapse * (xhgt - hgt);
hgt = xhgt;
}
// Should never get here.
SG_LOG(SG_GENERAL, SG_ALERT, "PT_vs_hpt: ran out of layers");
return make_pair(d0, d0);
}
FGAtmoCache::FGAtmoCache() :
a_tvs_p(0)
{}
FGAtmoCache::~FGAtmoCache() {
delete a_tvs_p;
}
/////////////
// The following two routines are called "fake" because they
// bypass the exceedingly complicated layer model implied by
// the "weather conditioins" popup menu.
// For now we must bypass it for several reasons, including
// the fact that we don't have an "environment" object for
// the airport (only for the airplane).
// degrees C, height in feet
double FGAtmo::fake_T_vs_a_us(const double h_ft,
const double Tsl) const {
using namespace atmodel;
return Tsl - ISA::lam0 * h_ft * foot;
}
// Dewpoint. degrees C or K, height in feet
double FGAtmo::fake_dp_vs_a_us(const double dpsl, const double h_ft) {
const double dp_lapse(0.002); // [K/m] approximate
// Reference: http://en.wikipedia.org/wiki/Lapse_rate
return dpsl - dp_lapse * h_ft * atmodel::foot;
}
// Height as a function of pressure.
// Valid in the troposphere only.
double FGAtmo::a_vs_p(const double press, const double qnh) {
using namespace atmodel;
using namespace ISA;
double nn = lam0 * Rgas / g / mm;
return T0 * ( pow(qnh/P0,nn) - pow(press/P0,nn) ) / lam0;
}
// force retabulation
void FGAtmoCache::tabulate() {
using namespace atmodel;
delete a_tvs_p;
a_tvs_p = new SGInterpTable;
for (double hgt = -1000; hgt <= 32000;) {
double press,temp;
boost::tie(press, temp) = PT_vs_hpt(hgt);
a_tvs_p->addEntry(press / inHg, hgt / foot);
#ifdef DEBUG_EXPORT_P_H
char buf[100];
char* fmt = " { %9.2f , %5.0f },";
if (press < 10000) fmt = " { %9.3f , %5.0f },";
snprintf(buf, 100, fmt, press, hgt);
cout << buf << endl;
#endif
if (hgt < 6000) {
hgt += 500;
} else {
hgt += 1000;
}
}
}
// make sure cache is valid
void FGAtmoCache::cache() {
if (!a_tvs_p)
tabulate();
}
// Check the basic function,
// then compare against the interpolator.
void FGAtmoCache::check_model() {
double hgts[] = {
-1000,
-250,
0,
250,
1000,
5250,
11000,
11000.00001,
15500,
20000,
20000.00001,
25500,
32000,
32000.00001,
-9e99
};
for (int i = 0; ; i++) {
double height = hgts[i];
if (height < -1e6)
break;
using namespace atmodel;
cache();
double press,temp;
boost::tie(press, temp) = PT_vs_hpt(height);
cout << "Height: " << height
<< " \tpressure: " << press << endl;
cout << "Check: "
<< a_tvs_p->interpolate(press / inHg)*foot << endl;
}
}
//////////////////////////////////////////////////////////////////////
FGAltimeter::FGAltimeter() : kset(atmodel::ISA::P0), kft(0)
{
cache();
}
double FGAltimeter::reading_ft(const double p_inHg, const double set_inHg) {
using namespace atmodel;
double press_alt = a_tvs_p->interpolate(p_inHg);
double kollsman_shift = a_tvs_p->interpolate(set_inHg);
return (press_alt - kollsman_shift);
}
// Altimeter setting _in pascals_
// ... caller gets to convert to inHg or millibars
// Field elevation in m
// Field pressure in pascals
// Valid for fields within the troposphere only.
double FGAtmo::QNH(const double field_elev, const double field_press) {
using namespace atmodel;
// Equation derived in altimetry.htm
// exponent in QNH equation:
double nn = ISA::lam0 * Rgas / g / mm;
// pressure ratio factor:
double prat = pow(ISA::P0 / field_press, nn);
double rslt = field_press
* pow(1. + ISA::lam0 * field_elev / ISA::T0 * prat, 1./nn);
#if 0
SG_LOG(SG_GENERAL, SG_ALERT, "QNH: elev: " << field_elev
<< " press: " << field_press
<< " prat: " << prat
<< " rslt: " << rslt
<< " inHg: " << inHg
<< " rslt/inHG: " << rslt/inHg);
#endif
return rslt;
}
void FGAltimeter::dump_stack1(const double Tref) {
using namespace atmodel;
const int bs(200);
char buf[bs];
double Psl = P_layer(0, 0, ISA::P0, Tref, ISA::lam0);
snprintf(buf, bs, "Tref: %6.2f Psl: %5.0f = %7.4f",
Tref, Psl, Psl / inHg);
cout << buf << endl;
snprintf(buf, bs,
" %6s %6s %6s %6s %6s %6s %6s",
"A", "Aind", "Apr", "Aprind", "P", "Psl", "Qnh");
cout << buf << endl;
double hgts[] = {0, 2500, 5000, 7500, 10000, -9e99};
for (int ii = 0; ; ii++) {
double hgt_ft = hgts[ii];
double hgt = hgt_ft * foot;
if (hgt_ft < -1e6)
break;
double press = P_layer(hgt, 0, ISA::P0, Tref, ISA::lam0);
double qnhx = QNH(hgt, press) / inHg;
2007-03-31 17:45:23 +00:00
double qnh2 = SGMiscd::round(qnhx*100)/100;
double p_inHg = press / inHg;
double Aprind = reading_ft(p_inHg);
double Apr = a_vs_p(p_inHg*inHg) / foot;
double hind = reading_ft(p_inHg, qnh2);
snprintf(buf, bs,
" %6.0f %6.0f %6.0f %6.0f %6.2f %6.2f %6.2f",
hgt_ft, hind, Apr, Aprind, p_inHg, Psl/inHg, qnh2);
cout << buf << endl;
}
}
void FGAltimeter::dump_stack() {
using namespace atmodel;
cout << "........." << endl;
cout << "Size: " << sizeof(FGAtmo) << endl;
dump_stack1(ISA::T0);
dump_stack1(ISA::T0 - 20);
}