1
0
Fork 0
flightgear/GenAirports/convex_hull.cxx

274 lines
7.4 KiB
C++
Raw Normal View History

// convex_hull.cxx -- calculate the convex hull of a set of points
//
// Written by Curtis Olson, started September 1998.
//
// Copyright (C) 1998 Curtis L. Olson - curt@me.umn.edu
//
// This program is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 2 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software
// Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
//
// $Id$
// (Log is kept at end of this file)
//
#include <math.h>
#include <stdio.h>
#include <list>
#include <map>
#ifdef NEEDNAMESPACESTD
using namespace std;
#endif
#include <Include/fg_constants.h>
#include "convex_hull.hxx"
#include "point2d.hxx"
// stl map typedefs
typedef map < double, double, less<double> > map_container;
typedef map_container::iterator map_iterator;
// Calculate theta of angle (a, b, c)
double calc_angle(point2d a, point2d b, point2d c) {
point2d u, v;
double udist, vdist, uv_dot, tmp;
// u . v = ||u|| * ||v|| * cos(theta)
u.x = b.x - a.x;
u.y = b.y - a.y;
udist = sqrt( u.x * u.x + u.y * u.y );
// printf("udist = %.6f\n", udist);
v.x = b.x - c.x;
v.y = b.y - c.y;
vdist = sqrt( v.x * v.x + v.y * v.y );
// printf("vdist = %.6f\n", vdist);
uv_dot = u.x * v.x + u.y * v.y;
// printf("uv_dot = %.6f\n", uv_dot);
tmp = uv_dot / (udist * vdist);
// printf("tmp = %.6f\n", tmp);
return acos(tmp);
}
// Test to see if angle(Pa, Pb, Pc) < 180 degrees
bool test_point(point2d Pa, point2d Pb, point2d Pc) {
point2d origin, a, b, c;
double a1, a2;
origin.x = origin.y = 0.0;
a.x = cos(Pa.theta) * Pa.dist;
a.y = sin(Pa.theta) * Pa.dist;
b.x = cos(Pb.theta) * Pb.dist;
b.y = sin(Pb.theta) * Pb.dist;
c.x = cos(Pc.theta) * Pc.dist;
c.y = sin(Pc.theta) * Pc.dist;
// printf("a is %.6f %.6f\n", a.x, a.y);
// printf("b is %.6f %.6f\n", b.x, b.y);
// printf("c is %.6f %.6f\n", c.x, c.y);
a1 = calc_angle(a, b, origin);
a2 = calc_angle(origin, b, c);
// printf("a1 = %.2f a2 = %.2f\n", a1 * RAD_TO_DEG, a2 * RAD_TO_DEG);
return ( (a1 + a2) < FG_PI );
}
// calculate the convex hull of a set of points, return as a list of
// point2d. The algorithm description can be found at:
// http://riot.ieor.berkeley.edu/riot/Applications/ConvexHull/CHDetails.html
list_container convex_hull( list_container input_list )
{
list_iterator current, last;
map_iterator map_current, map_next, map_next_next, map_last;
// list of translated points
list_container trans_list;
// points sorted by radian degrees
map_container radians_map;
// will contain the convex hull
list_container con_hull;
point2d p, average, Pa, Pb, Pc, result;
double sum_x, sum_y;
int in_count, last_size;
// STEP ONE: Find an average midpoint of the input set of points
current = input_list.begin();
last = input_list.end();
in_count = input_list.size();
sum_x = sum_y = 0.0;
for ( ; current != last ; ++current ) {
sum_x += (*current).x;
sum_y += (*current).y;
}
average.x = sum_x / in_count;
average.y = sum_y / in_count;
// printf("Average center point is %.4f %.4f\n", average.x, average.y);
// STEP TWO: Translate input points so average is at origin
current = input_list.begin();
last = input_list.end();
trans_list.erase( trans_list.begin(), trans_list.end() );
for ( ; current != last ; ++current ) {
p.x = (*current).x - average.x;
p.y = (*current).y - average.y;
// printf("%.6f %.6f\n", p.x, p.y);
trans_list.push_back(p);
}
// STEP THREE: convert to radians and sort by theta
current = trans_list.begin();
last = trans_list.end();
radians_map.erase( radians_map.begin(), radians_map.end() );
for ( ; current != last ; ++current) {
p = cart_to_polar_2d(*current);
if ( p.dist > radians_map[p.theta] ) {
radians_map[p.theta] = p.dist;
}
}
// printf("Sorted list\n");
map_current = radians_map.begin();
map_last = radians_map.end();
for ( ; map_current != map_last ; ++map_current ) {
p.x = (*map_current).first;
p.y = (*map_current).second;
// printf("p is %.6f %.6f\n", p.x, p.y);
}
// STEP FOUR: traverse the sorted list and eliminate everything
// not on the perimeter.
// printf("Traversing list\n");
// double check list size ... this should never fail because a
// single runway will always generate four points.
if ( radians_map.size() < 3 ) {
// printf("convex hull not possible with < 3 points\n");
exit(0);
}
// ensure that we run the while loop at least once
last_size = radians_map.size() + 1;
while ( last_size > radians_map.size() ) {
// printf("Running an iteration of the graham scan algorithm\n");
last_size = radians_map.size();
map_current = radians_map.begin();
while ( map_current != radians_map.end() ) {
// get first element
Pa.theta = (*map_current).first;
Pa.dist = (*map_current).second;
// get second element
map_next = map_current;
++map_next;
if ( map_next == radians_map.end() ) {
map_next = radians_map.begin();
}
Pb.theta = (*map_next).first;
Pb.dist = (*map_next).second;
// get third element
map_next_next = map_next;
++map_next_next;
if ( map_next_next == radians_map.end() ) {
map_next_next = radians_map.begin();
}
Pc.theta = (*map_next_next).first;
Pc.dist = (*map_next_next).second;
// printf("Pa is %.6f %.6f\n", Pa.theta, Pa.dist);
// printf("Pb is %.6f %.6f\n", Pb.theta, Pb.dist);
// printf("Pc is %.6f %.6f\n", Pc.theta, Pc.dist);
if ( test_point(Pa, Pb, Pc) ) {
// printf("Accepted a point\n");
// accept point, advance Pa, Pb, and Pc.
++map_current;
} else {
// printf("REJECTED A POINT\n");
// reject point, delete it and advance only Pb and Pc
map_next = map_current;
++map_next;
if ( map_next == radians_map.end() ) {
map_next = radians_map.begin();
}
radians_map.erase( map_next );
}
}
}
// translate back to correct lon/lat
1998-09-17 18:40:42 +00:00
// printf("Final sorted convex hull\n");
con_hull.erase( con_hull.begin(), con_hull.end() );
map_current = radians_map.begin();
map_last = radians_map.end();
for ( ; map_current != map_last ; ++map_current ) {
p.theta = (*map_current).first;
p.dist = (*map_current).second;
result.x = cos(p.theta) * p.dist + average.x;
result.y = sin(p.theta) * p.dist + average.y;
1998-09-17 18:40:42 +00:00
// printf("%.6f %.6f\n", result.x, result.y);
con_hull.push_back(result);
}
return con_hull;
}
// $Log$
1998-09-17 18:40:42 +00:00
// Revision 1.4 1998/09/17 18:40:42 curt
// Debug message tweaks.
//
// Revision 1.3 1998/09/09 20:59:55 curt
// Loop construct tweaks for STL usage.
// Output airport file to be used to generate airport scenery on the fly
// by the run time sim.
//
// Revision 1.2 1998/09/09 16:26:32 curt
// Continued progress in implementing the convex hull algorithm.
//
// Revision 1.1 1998/09/04 23:04:51 curt
// Beginning of convex hull genereration routine.
//
//