1
0
Fork 0
flightgear/src/FDM/SP/BalloonSim.cpp

341 lines
12 KiB
C++
Raw Normal View History

/*****************************************************************************
Module: BalloonSim.cpp
Author: Christian Mayer
Date started: 01.09.99
Called by:
-------- Copyright (C) 1999 Christian Mayer (fgfs@christianmayer.de) --------
This program is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free Software
Foundation; either version 2 of the License, or (at your option) any later
version.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
Further information about the GNU General Public License can also be found on
the world wide web at http://www.gnu.org.
FUNCTIONAL DESCRIPTION
------------------------------------------------------------------------------
A hot air balloon simulator
HISTORY
------------------------------------------------------------------------------
01.09.1999 Christian Mayer Created
03.10.1999 Christian Mayer cleaned the code by moveing WeatherDatabase
calls inside the update()
*****************************************************************************/
/****************************************************************************/
/* INCLUDES */
/****************************************************************************/
#ifdef HAVE_CONFIG_H
# include "config.h"
#endif
#include <stdio.h>
2016-01-27 14:00:09 +00:00
#include <cmath>
#include <simgear/constants.h>
#include "BalloonSim.h"
/****************************************************************************/
/********************************** CODE ************************************/
/****************************************************************************/
/****************************************************************************/
/* */
/* Constructor: */
/* Set the balloon model to some values that seem reasonable as I haven't */
/* got much original values */
/* */
/****************************************************************************/
balloon::balloon()
{
dt = 0.1;
ground_level = 3400.0;
gravity_vector = SGVec3f(0.0, 0.0, -9.81);
velocity = SGVec3f(0.0, 0.0, 0.0);
position = SGVec3f(0.0, 0.0, 0.0);
hpr = SGVec3f(0.0, 0.0, 0.0);
/************************************************************************/
/* My balloon has a radius of 8.8 metres as that gives a envelope */
/* volume of about 2854 m^3 which is about 77000 ft^3, a very common */
/* size for hot air balloons */
/************************************************************************/
balloon_envelope_area = 4.0 * (8.8 * 8.8) * SGD_PI;
balloon_envelope_volume = (4.0/3.0) * (8.8 * 8.8 * 8.8) * SGD_PI;
wind_facing_area_of_balloon = SGD_PI * (8.8 * 8.8);
wind_facing_area_of_basket = 2.0; //guessed: 2 m^2
cw_envelope=0.45; //a sphere in this case
cw_basket=0.8;
weight_of_total_fuel = 40.0; //big guess
weight_of_envelope = 200.0; //big guess
weight_of_basket = 40.0; //big guess
weight_of_cargo = 750.0; //big guess
fuel_left=1.0;
max_flow_of_fuel_per_second=10.0*1.0/3600.0; //assuming 10% of one hour of total burn time
current_burner_strength = 0.0; //the throttle
lambda = 0.15; //for plasic
l_of_the_envelope = 1.0/1000.0; //the thickness of the envelope (in m): 1mm
T = 273.16 + 130.6; //Temperature in the envelope => still at ground level
}
void balloon::update()
{
/************************************************************************/
/* I'm simplifying the balloon by reducing the simulation to two */
/* points: */
/* the center of the basket (CB) and the center of the envelope (CE) */
/* */
/* ce */
/* I */
/* I */
/* cg (=center of gravity) */
/* I */
/* cb */
/* */
/* On each center are forces acting: gravity and wind resitance. CE */
/* additionally got the lift (=> I need to calculate the weight of the */
/* air inside, too) */
/* */
/* The weight of the air in the envelope is dependant of the tempera- */
/* ture. This temperature is decreasing over the time that is dependant */
/* of the insulation of the envelope material (lambda), the gas used */
/* (air) and the wind speed. For a plane surface it's for air: */
/* */
/* alpha = 4.8 + 3.4*v with v < 5.0 m/s */
/* */
/* The value k that takes all of that into account is defined as: */
/* */
/* 1 / k = 1 / alpha1 + 1 / alpha2 + l / lambda */
/* */
/* with 'l' beeing the 'length' i.e. thickness of the insulator, alpha1 */
/* the air inside and alpha2 the air outside of the envelope. So our k */
/* is: */
/* */
/* k = 1 / [1/4.8 + 1/(4.8+3.4v) + l/lambda] */
/* */
/* The energy lost by this process is defined as: */
/* */
/* dQ = k * A * t * dT */
/* */
/* with Q being the energy, k that value defined above, A the total */
/* area of the envelope, t the time (in hours) and dT the temperature */
/* difference between the inside and the outside. */
/* To get the temperature of the air in the inside I need the formula: */
/* */
/* dQ = cAir * m * dT */
/* */
/* with cAir being the specific heat capacity(?) of air (= 1.00 kcal / */
/* kg * degree), m the mass of the air and dT the temperature change. */
/* As the envelope is open I'm assuming that the same air pressure is */
/* inside and outside of it (practical there should be a slightly */
/* higher air pressure in the inside or the envelope would collapse). */
/* So it's easy to calculate the density of the air inside: */
/* */
/* rho = p / R * T */
/* */
/* with p being the pressure, R the gas constant(?) which is for air */
/* 287.14 N * m / kg * K and T the absolute temperature. */
/* */
/* The value returned by this function is the displacement of the CB */
/************************************************************************/
/************************************************************************/
/* NOTE: This is the simplified version: I'm assuming that the whole */
/* balloon consists only of the envelope.I will improove the simulation */
/* later, but currently was my main concern to get it going... */
/************************************************************************/
// I realy don't think there is a solution for this without WeatherCM
// but this is a hack, and it's working -- EMH
double mAir = 1;
float Q = 0;
// gain of energy by heating:
if (fuel_left > 0.0) //but only with some fuel left ;-)
{
float fuel_burning = current_burner_strength * max_flow_of_fuel_per_second * dt * weight_of_total_fuel; //in kg
//convert to cubemetres (I'm wrongly assuming 'normal' conditions; but that's correct for my special case)
float cube_metres_burned = fuel_burning / 2.2; //2.2 is the density for propane
fuel_left -= fuel_burning / weight_of_total_fuel;
// get energy through burning.
Q += 22250.0 * cube_metres_burned; //22250 for propan, 29500 would be butane and if you dare: 2580 would be hydrogen...
}
// calculate the new temperature in the inside:
T += Q / (1.00 * mAir);
//calculate the masses of the envelope and the basket
float mEnvelope = mAir + weight_of_envelope;
float mBasket = weight_of_total_fuel*fuel_left + weight_of_basket + weight_of_cargo;
float mTotal = mEnvelope + mBasket;
//calulate the forces
SGVec3f fTotal, fFriction, fLift;
fTotal = mTotal*gravity_vector;
// fTotal += fLift; //FIXME: uninitialized fLift
// fTotal += fFriction; //FIXME: uninitialized fFriction
//claculate acceleration: a = F / m
SGVec3f aTotal, vTotal, dTotal;
aTotal = (1.0 / mTotal)*fTotal;
//integrate the displacement: d = 0.5 * a * dt**2 + v * dt + d
vTotal = dt*velocity;
dTotal = (0.5*dt*dt)*aTotal; dTotal += vTotal;
//integrate the velocity to 'velocity': v = a * dt + v
vTotal = dt*aTotal; velocity += vTotal;
/************************************************************************/
/* VERY WRONG STUFF: it's just here to get some results to start with */
/************************************************************************/
// care for the ground
if (position[2] < (ground_level+0.001) )
position[2] = ground_level;
//return results
position += dTotal;
//cout << "BallonSim: T: " << (T-273.16) << " alt: " << position[2] << " ground: " << ground_level << " throttle: " << current_burner_strength << "\n";
}
void balloon::set_burner_strength(const float bs)
{
if ((bs>=0.0) && (bs<=1.0))
current_burner_strength = bs;
}
void balloon::getVelocity(SGVec3f& v) const
{
v = velocity;
}
void balloon::setVelocity(const SGVec3f& v)
{
velocity = v;
}
void balloon::getPosition(SGVec3f& v) const
{
v = position;
}
void balloon::setPosition(const SGVec3f& v)
{
position = v;
}
void balloon::getHPR(SGVec3f& angles) const //the balloon isn't allways exactly vertical
{
angles = hpr;
}
void balloon::setHPR(const SGVec3f& angles) //the balloon isn't allways exactly vertical
{
hpr = angles;
}
void balloon::setGroundLevel(const float altitude)
{
ground_level = altitude;
}
float balloon::getTemperature(void) const
{
return T;
}
float balloon::getFuelLeft(void) const
{
return fuel_left;
}
/*
void main(void)
{
bool burner = true;
balloon bal;
bool exit = false;
sgVec3 pos={0.0, 0.0, 0.0};
char c;
float acc_dt = 0.0;
float alt;
bool hysteresis = false; // moving up
for (;!exit;)
{
for (int i=0; i<100; i++)
{
bal.update(0.1); acc_dt += 0.1;
bal.getPosition(pos);
alt = pos[2];
if (alt > 3010)
{
hysteresis = true;
burner = false;
}
if ((alt < 2990) && (hysteresis == true))
{
hysteresis = false;
burner = true;
}
if ((bal.getTemperature()-273.16)>250.0)
burner = false; //emergency
}
// toogle burner
c = getch();
if (c==' ')
burner=!burner;
//if (c=='s')
// show=!show;
//printf("Position: (%f/%f/%f), dP: (%f/%f/%f), burner: ", pos[0], pos[1], pos[2], dp[0], dp[1], dp[2]);
printf("%f \t%f \t%f \t%f\n", acc_dt/60.0, bal.getTemperature()-273.16, pos[2], bal.getFuelLeft());
if (burner==true)
{
//printf("on\n");
bal.set_burner_strength(1.0);
}
else
{
//printf("off\n");
bal.set_burner_strength(0.0);
}
}
}
*/