1
0
Fork 0
flightgear/src/Navaids/PositionedOctree.cxx

371 lines
9.3 KiB
C++
Raw Normal View History

/**
* PositionedOctree - define a spatial octree containing Positioned items
* arranged by their global cartesian position.
*/
// Written by James Turner, started 2012.
//
// Copyright (C) 2012 James Turner
//
// This program is free software; you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of the
// License, or (at your option) any later version.
//
// This program is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software
// Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
#ifdef HAVE_CONFIG_H
# include "config.h"
#endif
#include "PositionedOctree.hxx"
#include "positioned.hxx"
#include <cassert>
#include <algorithm> // for sort
#include <cstring> // for memset
#include <iostream>
#include <boost/foreach.hpp>
#include <simgear/debug/logstream.hxx>
#include <simgear/structure/exception.hxx>
#include <simgear/timing/timestamp.hxx>
namespace flightgear
{
namespace Octree
{
Node* global_spatialOctree = NULL;
2015-11-24 22:36:07 +00:00
void Node::addPolyLine(const PolyLineRef& aLine)
{
lines.push_back(aLine);
}
void Node::visitForLines(const SGVec3d& aPos, double aCutoff,
PolyLineList& aLines,
FindLinesDeque& aQ) const
{
SG_UNUSED(aPos);
SG_UNUSED(aCutoff);
aLines.insert(aLines.end(), lines.begin(), lines.end());
}
Node *Node::findNodeForBox(const SGBoxd&) const
{
return const_cast<Node*>(this);
}
Leaf::Leaf(const SGBoxd& aBox, int64_t aIdent) :
Node(aBox, aIdent),
childrenLoaded(false)
{
}
void Leaf::visit(const SGVec3d& aPos, double aCutoff,
FGPositioned::Filter* aFilter,
FindNearestResults& aResults, FindNearestPQueue&)
{
int previousResultsSize = aResults.size();
int addedCount = 0;
NavDataCache* cache = NavDataCache::instance();
loadChildren();
ChildMap::const_iterator it = children.lower_bound(aFilter->minType());
ChildMap::const_iterator end = children.upper_bound(aFilter->maxType());
for (; it != end; ++it) {
FGPositioned* p = cache->loadById(it->second);
double d = dist(aPos, p->cart());
if (d > aCutoff) {
continue;
}
if (aFilter && !aFilter->pass(p)) {
continue;
}
++addedCount;
aResults.push_back(OrderedPositioned(p, d));
}
if (addedCount == 0) {
return;
}
// keep aResults sorted
// sort the new items, usually just one or two items
std::sort(aResults.begin() + previousResultsSize, aResults.end());
// merge the two sorted ranges together - in linear time
std::inplace_merge(aResults.begin(),
aResults.begin() + previousResultsSize, aResults.end());
}
void Leaf::insertChild(FGPositioned::Type ty, PositionedID id)
{
assert(childrenLoaded);
children.insert(children.end(), TypedPositioned(ty, id));
}
void Leaf::loadChildren()
{
if (childrenLoaded) {
return;
}
NavDataCache* cache = NavDataCache::instance();
BOOST_FOREACH(TypedPositioned tp, cache->getOctreeLeafChildren(guid())) {
children.insert(children.end(), tp);
} // of leaf members iteration
childrenLoaded = true;
}
///////////////////////////////////////////////////////////////////////////////
Branch::Branch(const SGBoxd& aBox, int64_t aIdent) :
Node(aBox, aIdent),
childrenLoaded(false)
{
memset(children, 0, sizeof(Node*) * 8);
}
void Branch::visit(const SGVec3d& aPos, double aCutoff,
FGPositioned::Filter*,
FindNearestResults&, FindNearestPQueue& aQ)
{
loadChildren();
for (unsigned int i=0; i<8; ++i) {
if (!children[i]) {
continue;
}
double d = children[i]->distToNearest(aPos);
if (d > aCutoff) {
continue; // exceeded cutoff
}
aQ.push(Ordered<Node*>(children[i], d));
} // of child iteration
}
void Branch::visitForLines(const SGVec3d& aPos, double aCutoff,
PolyLineList& aLines,
FindLinesDeque& aQ) const
{
2015-11-24 22:36:07 +00:00
// add our own lines, easy
Node::visitForLines(aPos, aCutoff, aLines, aQ);
for (unsigned int i=0; i<8; ++i) {
if (!children[i]) {
continue;
}
double d = children[i]->distToNearest(aPos);
if (d > aCutoff) {
continue; // exceeded cutoff
}
aQ.push_back(children[i]);
} // of child iteration
}
2015-11-24 22:36:07 +00:00
static bool boxContainsBox(const SGBoxd& a, const SGBoxd& b)
{
const SGVec3d aMin(a.getMin()),
aMax(a.getMax()),
bMin(b.getMin()),
bMax(b.getMax());
for (int i=0; i<3; ++i) {
if ((bMin[i] < aMin[i]) || (bMax[i] > aMax[i])) return false;
}
return true;
}
Node *Branch::findNodeForBox(const SGBoxd &box) const
{
// do this so childAtIndex sees consistent state of
// children[] and loaded flag.
loadChildren();
for (unsigned int i=0; i<8; ++i) {
const SGBoxd childBox(boxForChild(i));
if (boxContainsBox(childBox, box)) {
return childAtIndex(i)->findNodeForBox(box);
}
}
return Node::findNodeForBox(box);
}
Node* Branch::childForPos(const SGVec3d& aCart) const
{
assert(contains(aCart));
int childIndex = 0;
SGVec3d center(_box.getCenter());
// tests must match indices in SGbox::getCorner
if (aCart.x() < center.x()) {
childIndex += 1;
}
if (aCart.y() < center.y()) {
childIndex += 2;
}
if (aCart.z() < center.z()) {
childIndex += 4;
}
return childAtIndex(childIndex);
}
Node* Branch::childAtIndex(int childIndex) const
{
Node* child = children[childIndex];
if (!child) { // lazy building of children
SGBoxd cb(boxForChild(childIndex));
double d2 = dot(cb.getSize(), cb.getSize());
assert(((_ident << 3) >> 3) == _ident);
// child index is 0..7, so 3-bits is sufficient, and hence we can
// pack 20 levels of octree into a int64, which is plenty
int64_t childIdent = (_ident << 3) | childIndex;
if (d2 < LEAF_SIZE_SQR) {
child = new Leaf(cb, childIdent);
} else {
child = new Branch(cb, childIdent);
}
children[childIndex] = child;
if (childrenLoaded) {
// childrenLoad is done, so we're defining a new node - add it to the
// cache too.
NavDataCache::instance()->defineOctreeNode(const_cast<Branch*>(this), child);
}
}
return children[childIndex];
}
void Branch::loadChildren() const
{
if (childrenLoaded) {
return;
}
int childrenMask = NavDataCache::instance()->getOctreeBranchChildren(guid());
for (int i=0; i<8; ++i) {
if ((1 << i) & childrenMask) {
childAtIndex(i); // accessing will create!
}
} // of child index iteration
// set this after creating the child nodes, so the cache update logic
// in childAtIndex knows any future created children need to be added.
childrenLoaded = true;
}
int Branch::childMask() const
{
int result = 0;
for (int i=0; i<8; ++i) {
if (children[i]) {
result |= 1 << i;
}
}
return result;
}
bool findNearestN(const SGVec3d& aPos, unsigned int aN, double aCutoffM, FGPositioned::Filter* aFilter, FGPositionedList& aResults, int aCutoffMsec)
{
aResults.clear();
FindNearestPQueue pq;
FindNearestResults results;
pq.push(Ordered<Node*>(global_spatialOctree, 0));
double cut = aCutoffM;
SGTimeStamp tm;
tm.stamp();
while (!pq.empty() && (tm.elapsedMSec() < aCutoffMsec)) {
if (!results.empty()) {
// terminate the search if we have sufficent results, and we are
// sure no node still on the queue contains a closer match
double furthestResultOrder = results.back().order();
if ((results.size() >= aN) && (furthestResultOrder < pq.top().order())) {
// clear the PQ to mark this has 'full results' instead of partial
pq = FindNearestPQueue();
break;
}
}
Node* nd = pq.top().get();
pq.pop();
nd->visit(aPos, cut, aFilter, results, pq);
} // of queue iteration
// depending on leaf population, we may have (slighty) more results
// than requested
unsigned int numResults = std::min((unsigned int) results.size(), aN);
// copy results out
aResults.resize(numResults);
for (unsigned int r=0; r<numResults; ++r) {
aResults[r] = results[r].get();
}
return !pq.empty();
}
bool findAllWithinRange(const SGVec3d& aPos, double aRangeM, FGPositioned::Filter* aFilter, FGPositionedList& aResults, int aCutoffMsec)
{
aResults.clear();
FindNearestPQueue pq;
FindNearestResults results;
pq.push(Ordered<Node*>(global_spatialOctree, 0));
double rng = aRangeM;
SGTimeStamp tm;
tm.stamp();
while (!pq.empty() && (tm.elapsedMSec() < aCutoffMsec)) {
Node* nd = pq.top().get();
pq.pop();
nd->visit(aPos, rng, aFilter, results, pq);
} // of queue iteration
unsigned int numResults = results.size();
// copy results out
aResults.resize(numResults);
for (unsigned int r=0; r<numResults; ++r) {
aResults[r] = results[r].get();
}
return !pq.empty();
}
} // of namespace Octree
} // of namespace flightgear