1
0
Fork 0
flightgear/src/WeatherCM/sphrintp.inl

173 lines
5.3 KiB
Text
Raw Normal View History

2000-02-15 17:13:45 +00:00
/*
WARNING - Do not remove this header.
This code is a templated version of the 'magic-software' spherical
interpolation code by Dave Eberly. The original (un-hacked) code can be
obtained from here: http://www.magic-software.com/gr_appr.htm
This code is derived from linintp2.h/cpp and sphrintp.h/cpp.
Dave Eberly says that the conditions for use are:
* You may distribute the original source code to others at no charge.
* You may modify the original source code and distribute it to others at
no charge. The modified code must be documented to indicate that it is
not part of the original package.
* You may use this code for non-commercial purposes. You may also
incorporate this code into commercial packages. However, you may not
sell any of your source code which contains my original and/or modified
source code. In such a case, you need to factor out my code and freely
distribute it.
* The original code comes with absolutely no warranty and no guarantee is
made that the code is bug-free.
This does not seem incompatible with GPL - so this modified version
is hereby placed under GPL along with the rest of FlightGear.
Christian Mayer
*/
#include <math.h>
#include "sphrintp.h"
static const double PI = 4.0*atan(1.0);
static const double TWOPI = 2.0*PI;
//---------------------------------------------------------------------------
template<class T>
SphereInterpolate<T>::SphereInterpolate (int n, const double* x,
const double* y, const double* z,
const T* f)
{
// Assumes (x[i],y[i],z[i]) is unit length for all 0 <= i < n.
// For complete spherical coverage, include the two antipodal points
// (0,0,1,f(0,0,1)) and (0,0,-1,f(0,0,-1)) in the data set.
cout << "Initialising spherical interpolator.\n";
cout << "[ 0%] Allocating memory \r";
theta = new double[3*n];
phi = new double[3*n];
func = new T[3*n];
// convert data to spherical coordinates
int i;
T empty;
for (i = 0; i < n; i++)
{
GetSphericalCoords(x[i],y[i],z[i],theta[i],phi[i]);
func[i] = f[i];
}
// use periodicity to get wrap-around in the Delaunay triangulation
cout << "[ 10%] copying vertices for wrap-around\r";
int j, k;
for (i = 0, j = n, k = 2*n; i < n; i++, j++, k++)
{
theta[j] = theta[i]+TWOPI;
theta[k] = theta[i]-TWOPI;
phi[j] = phi[i];
phi[k] = phi[i];
func[j] = func[i];
func[k] = func[i];
}
pInterp = new mgcLinInterp2D<T>(3*n,theta,phi,func);
cout << "[100%] Finished initialising spherical interpolator. \n";
}
template<class T>
SphereInterpolate<T>::SphereInterpolate (int n, const sgVec2* p, const T* f)
{
// Assumes (x[i],y[i],z[i]) is unit length for all 0 <= i < n.
// For complete spherical coverage, include the two antipodal points
// (0,0,1,f(0,0,1)) and (0,0,-1,f(0,0,-1)) in the data set.
cout << "Initialising spherical interpolator.\n";
cout << "[ 0%] Allocating memory \r";
theta = new double[3*n];
phi = new double[3*n];
func = new T[3*n];
// convert data to spherical coordinates
cout << "[ 10%] copying vertices for wrap-around \r";
int i, j, k;
for (i = 0, j = n, k = 2*n; i < n; i++, j++, k++)
{
phi[i] = p[i][0];
theta[i] = p[i][1];
func[i] = f[i];
// use periodicity to get wrap-around in the Delaunay triangulation
phi[j] = phi[i];
phi[k] = phi[i];
theta[j] = theta[i]+TWOPI;
theta[k] = theta[i]-TWOPI;
func[j] = func[i];
func[k] = func[i];
}
pInterp = new mgcLinInterp2D<T>(3*n,theta,phi,func);
cout << "[100%] Finished initialising spherical interpolator. \n";
}
//---------------------------------------------------------------------------
template<class T>
SphereInterpolate<T>::~SphereInterpolate ()
{
delete pInterp;
delete[] theta;
delete[] phi;
delete[] func;
}
//---------------------------------------------------------------------------
template<class T>
void SphereInterpolate<T>::GetSphericalCoords (const double x, const double y, const double z,
double& thetaAngle,
double& phiAngle) const
{
// Assumes (x,y,z) is unit length. Returns -PI <= thetaAngle <= PI
// and 0 <= phiAngle <= PI.
if ( z < 1.0f )
{
if ( z > -1.0f )
{
thetaAngle = atan2(y,x);
phiAngle = acos(z);
}
else
{
thetaAngle = -PI;
phiAngle = PI;
}
}
else
{
thetaAngle = -PI;
phiAngle = 0.0f;
}
}
//---------------------------------------------------------------------------
template<class T>
int SphereInterpolate<T>::Evaluate (const double x, const double y, const double z, T& f) const
{
// assumes (x,y,z) is unit length
double thetaAngle, phiAngle;
GetSphericalCoords(x,y,z,thetaAngle,phiAngle);
return pInterp->Evaluate(thetaAngle,phiAngle,f);
}
//---------------------------------------------------------------------------
template<class T>
int SphereInterpolate<T>::Evaluate (const double thetaAngle, const double phiAngle, T& f) const
{
return pInterp->Evaluate(thetaAngle,phiAngle,f);
}
//---------------------------------------------------------------------------