2001-12-06 18:13:24 +00:00
|
|
|
#include "Atmosphere.hpp"
|
|
|
|
#include "Math.hpp"
|
2001-12-01 06:22:24 +00:00
|
|
|
#include "PistonEngine.hpp"
|
|
|
|
namespace yasim {
|
|
|
|
|
2001-12-24 13:54:03 +00:00
|
|
|
const static float HP2W = 745.7;
|
|
|
|
const static float CIN2CM = 1.6387064e-5;
|
|
|
|
|
2001-12-01 06:22:24 +00:00
|
|
|
PistonEngine::PistonEngine(float power, float speed)
|
|
|
|
{
|
2001-12-24 13:54:03 +00:00
|
|
|
_boost = 1;
|
2002-02-20 04:27:22 +00:00
|
|
|
_running = false;
|
|
|
|
_cranking = false;
|
2001-12-24 13:54:03 +00:00
|
|
|
|
2001-12-01 06:22:24 +00:00
|
|
|
// Presume a BSFC (in lb/hour per HP) of 0.45. In SI that becomes
|
2001-12-24 13:54:03 +00:00
|
|
|
// (2.2 lb/kg, 745.7 W/hp, 3600 sec/hour) 7.62e-08 kg/Ws.
|
|
|
|
_f0 = power * 7.62e-08;
|
2001-12-01 06:22:24 +00:00
|
|
|
|
2001-12-07 20:00:59 +00:00
|
|
|
_power0 = power;
|
2001-12-01 06:22:24 +00:00
|
|
|
_omega0 = speed;
|
|
|
|
|
|
|
|
// We must be at sea level under standard conditions
|
2001-12-06 18:13:24 +00:00
|
|
|
_rho0 = Atmosphere::getStdDensity(0);
|
2001-12-01 06:22:24 +00:00
|
|
|
|
|
|
|
// Further presume that takeoff is (duh) full throttle and
|
|
|
|
// peak-power, that means that by our efficiency function, we are
|
|
|
|
// at 11/8 of "ideal" fuel flow.
|
|
|
|
float realFlow = _f0 * (11.0/8.0);
|
|
|
|
_mixCoeff = realFlow * 1.1 / _omega0;
|
2001-12-06 18:13:24 +00:00
|
|
|
|
|
|
|
_turbo = 1;
|
|
|
|
_maxMP = 1e6; // No waste gate on non-turbo engines.
|
2001-12-24 13:54:03 +00:00
|
|
|
|
|
|
|
// Guess at reasonable values for these guys. Displacements run
|
|
|
|
// at about 2 cubic inches per horsepower or so, at least for
|
|
|
|
// non-turbocharged engines.
|
|
|
|
_compression = 8;
|
|
|
|
_displacement = power * (2*CIN2CM/HP2W);
|
2001-12-06 18:13:24 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
void PistonEngine::setTurboParams(float turbo, float maxMP)
|
|
|
|
{
|
|
|
|
_turbo = turbo;
|
|
|
|
_maxMP = maxMP;
|
|
|
|
|
|
|
|
// This changes the "sea level" manifold air density
|
|
|
|
float P0 = Atmosphere::getStdPressure(0);
|
2001-12-24 13:54:03 +00:00
|
|
|
float P = P0 * (1 + _boost * (_turbo - 1));
|
2001-12-06 18:13:24 +00:00
|
|
|
if(P > _maxMP) P = _maxMP;
|
|
|
|
float T = Atmosphere::getStdTemperature(0) * Math::pow(P/P0, 2./7.);
|
|
|
|
_rho0 = P / (287.1 * T);
|
|
|
|
}
|
|
|
|
|
2001-12-24 13:54:03 +00:00
|
|
|
void PistonEngine::setDisplacement(float d)
|
|
|
|
{
|
|
|
|
_displacement = d;
|
|
|
|
}
|
|
|
|
|
|
|
|
void PistonEngine::setCompression(float c)
|
|
|
|
{
|
|
|
|
_compression = c;
|
|
|
|
}
|
|
|
|
|
|
|
|
float PistonEngine::getMaxPower()
|
2001-12-06 18:13:24 +00:00
|
|
|
{
|
2001-12-07 20:00:59 +00:00
|
|
|
return _power0;
|
2001-12-01 06:22:24 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
void PistonEngine::setThrottle(float t)
|
|
|
|
{
|
|
|
|
_throttle = t;
|
|
|
|
}
|
|
|
|
|
2002-02-20 04:27:22 +00:00
|
|
|
void PistonEngine::setStarter(bool s)
|
|
|
|
{
|
|
|
|
_starter = s;
|
|
|
|
}
|
|
|
|
|
|
|
|
void PistonEngine::setMagnetos(int m)
|
|
|
|
{
|
|
|
|
_magnetos = m;
|
|
|
|
}
|
|
|
|
|
2001-12-01 06:22:24 +00:00
|
|
|
void PistonEngine::setMixture(float m)
|
|
|
|
{
|
|
|
|
_mixture = m;
|
|
|
|
}
|
|
|
|
|
2001-12-24 13:54:03 +00:00
|
|
|
void PistonEngine::setBoost(float boost)
|
|
|
|
{
|
|
|
|
_boost = boost;
|
|
|
|
}
|
|
|
|
|
2002-02-20 04:27:22 +00:00
|
|
|
bool PistonEngine::isRunning()
|
|
|
|
{
|
|
|
|
return _running;
|
|
|
|
}
|
|
|
|
|
|
|
|
bool PistonEngine::isCranking()
|
|
|
|
{
|
|
|
|
return _cranking;
|
|
|
|
}
|
|
|
|
|
2001-12-24 13:54:03 +00:00
|
|
|
float PistonEngine::getTorque()
|
2001-12-01 06:22:24 +00:00
|
|
|
{
|
2001-12-24 13:54:03 +00:00
|
|
|
return _torque;
|
|
|
|
}
|
|
|
|
|
|
|
|
float PistonEngine::getFuelFlow()
|
|
|
|
{
|
|
|
|
return _fuelFlow;
|
|
|
|
}
|
|
|
|
|
|
|
|
float PistonEngine::getMP()
|
|
|
|
{
|
|
|
|
return _mp;
|
|
|
|
}
|
|
|
|
|
|
|
|
float PistonEngine::getEGT()
|
|
|
|
{
|
|
|
|
return _egt;
|
|
|
|
}
|
|
|
|
|
|
|
|
void PistonEngine::calc(float pressure, float temp, float speed)
|
|
|
|
{
|
2002-02-20 04:27:22 +00:00
|
|
|
if (_magnetos == 0) {
|
|
|
|
_running = false;
|
|
|
|
_mp = _rho0;
|
|
|
|
_torque = 0;
|
|
|
|
_fuelFlow = 0;
|
|
|
|
_egt = 80; // FIXME: totally made-up
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
_running = true;
|
|
|
|
_cranking = false;
|
|
|
|
|
|
|
|
// TODO: degrade performance on single magneto
|
|
|
|
|
2001-12-24 13:54:03 +00:00
|
|
|
// Calculate manifold pressure as ambient pressure modified for
|
|
|
|
// turbocharging and reduced by the throttle setting. According
|
|
|
|
// to Dave Luff, minimum throttle at sea level corresponds to 6"
|
|
|
|
// manifold pressure. Assume that this means that minimum MP is
|
2002-02-20 07:10:58 +00:00
|
|
|
// always 20% of ambient pressure. But we need to produce _zero_
|
|
|
|
// thrust at that setting, so hold onto the "output" value
|
|
|
|
// separately. Ick.
|
2001-12-24 13:54:03 +00:00
|
|
|
_mp = pressure * (1 + _boost*(_turbo-1)); // turbocharger
|
2002-02-20 07:10:58 +00:00
|
|
|
float mp = _mp * (0.2 + 0.8 * _throttle); // throttle
|
|
|
|
_mp *= _throttle;
|
|
|
|
if(mp > _maxMP) mp = _maxMP; // wastegate
|
2001-12-24 13:54:03 +00:00
|
|
|
|
|
|
|
// Air entering the manifold does so rapidly, and thus the
|
|
|
|
// pressure change can be assumed to be adiabatic. Calculate a
|
|
|
|
// temperature change, and use that to get the density.
|
2002-02-20 07:10:58 +00:00
|
|
|
float T = temp * Math::pow(mp/pressure, 2.0/7.0);
|
|
|
|
float rho = mp / (287.1 * T);
|
2001-12-24 13:54:03 +00:00
|
|
|
|
|
|
|
// The actual fuel flow is determined only by engine RPM and the
|
|
|
|
// mixture setting. Not all of this will burn with the same
|
|
|
|
// efficiency.
|
|
|
|
_fuelFlow = _mixture * speed * _mixCoeff;
|
2001-12-01 06:22:24 +00:00
|
|
|
|
|
|
|
// How much fuel could be burned with ideal (i.e. uncorrected!)
|
|
|
|
// combustion.
|
|
|
|
float burnable = _f0 * (rho/_rho0) * (speed/_omega0);
|
|
|
|
|
|
|
|
// Calculate the fuel that actually burns to produce work. The
|
|
|
|
// idea is that less than 5/8 of ideal, we get complete
|
|
|
|
// combustion. We use up all the oxygen at 1 3/8 of ideal (that
|
|
|
|
// is, you need to waste fuel to use all your O2). In between,
|
|
|
|
// interpolate. This vaguely matches a curve I copied out of a
|
|
|
|
// book for a single engine. Shrug.
|
|
|
|
float burned;
|
2001-12-24 13:54:03 +00:00
|
|
|
float r = _fuelFlow/burnable;
|
2001-12-01 06:22:24 +00:00
|
|
|
if (burnable == 0) burned = 0;
|
2001-12-24 13:54:03 +00:00
|
|
|
else if(r < .625) burned = _fuelFlow;
|
2001-12-01 06:22:24 +00:00
|
|
|
else if(r > 1.375) burned = burnable;
|
2001-12-24 13:54:03 +00:00
|
|
|
else
|
|
|
|
burned = _fuelFlow + (burnable-_fuelFlow)*(r-.625)*(4.0/3.0);
|
2001-12-01 06:22:24 +00:00
|
|
|
|
|
|
|
// And finally the power is just the reference power scaled by the
|
2001-12-24 13:54:03 +00:00
|
|
|
// amount of fuel burned, and torque is that divided by RPM.
|
2001-12-07 20:00:59 +00:00
|
|
|
float power = _power0 * burned/_f0;
|
2001-12-24 13:54:03 +00:00
|
|
|
_torque = power/speed;
|
|
|
|
|
|
|
|
// Now EGT. This one gets a little goofy. We can calculate the
|
|
|
|
// work done by an isentropically expanding exhaust gas as the
|
|
|
|
// mass of the gas times the specific heat times the change in
|
|
|
|
// temperature. The mass is just the engine displacement times
|
|
|
|
// the manifold density, plus the mass of the fuel, which we know.
|
|
|
|
// The change in temperature can be calculated adiabatically as a
|
|
|
|
// function of the exhaust gas temperature and the compression
|
|
|
|
// ratio (which we know). So just rearrange the equation to get
|
|
|
|
// EGT as a function of engine power. Cool. I'm using a value of
|
|
|
|
// 1300 J/(kg*K) for the exhaust gas specific heat. I found this
|
|
|
|
// on a web page somewhere; no idea if it's accurate. Also,
|
|
|
|
// remember that four stroke engines do one combustion cycle every
|
|
|
|
// TWO revolutions, so the displacement per revolution is half of
|
|
|
|
// what we'd expect. And diddle the work done by the gas a bit to
|
|
|
|
// account for non-thermodynamic losses like internal friction;
|
|
|
|
// 10% should do it.
|
|
|
|
|
|
|
|
float massFlow = _fuelFlow + (rho * 0.5 * _displacement * speed);
|
|
|
|
float specHeat = 1300;
|
|
|
|
float corr = 1.0/(Math::pow(_compression, 0.4) - 1);
|
|
|
|
_egt = corr * (power * 1.1) / (massFlow * specHeat);
|
2001-12-01 06:22:24 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
}; // namespace yasim
|