1
0
Fork 0
flightgear/src/AIModel/AIBallistic.cxx

217 lines
6.1 KiB
C++
Raw Normal View History

// FGAIBallistic - FGAIBase-derived class creates a ballistic object
//
// Written by David Culp, started November 2003.
// - davidculp2@comcast.net
//
// This program is free software; you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of the
// License, or (at your option) any later version.
//
// This program is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software
2006-02-21 01:16:04 +00:00
// Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
#ifdef HAVE_CONFIG_H
# include <config.h>
#endif
#include <simgear/math/point3d.hxx>
#include <math.h>
#include "AIBallistic.hxx"
FGAIBallistic::FGAIBallistic() : FGAIBase(otBallistic) {
David Culp: Silly me. I was starting the timer at zero, so the first tracer didn't fly until 0.25 seconds after pulling the trigger. Now the timer starts at the same value as "delay", so the first round comes out immediately. Also, I've added an optional configuration attribute that allows you to change the ballistics of the submodel. This allows parachutes, or anything else that has ballistics different from a bullet. The attribute is called "eda", which is the equivalent drag area. Default value is 0.007, which gives the same ballistics as the current tracers. Increasing this value gives more drag. A value of 2.0 looks good for a parachute. math stuff ######################################################################## The deceleration of the ballictic object is now given by: [ (rho) (Cd) ] / [ (1/2) (m) ] * A * (V * V) where rho is sea-level air density, and Cd and m are fixed, bullet-like values. So the calculation is: 0.0116918 * A * (V * V) The value "A" is what I'm calling the "eda" (equivalent drag area). ######################################################################## A parachute model will have to be built so that the parachutist's feet are in the forward x-direction. Here is the submodel.xml config I use for "parachutes": <submodel> <name>flares</name> <model>Models/Geometry/flare.ac</model> <trigger>systems/submodels/submodel[0]/trigger</trigger> <speed>0.0</speed> <repeat>true</repeat> <delay>0.85</delay> <count>4</count> <x-offset>0.0</x-offset> <y-offset>0.0</y-offset> <z-offset>-4.0</z-offset> <yaw-offset>0.0</yaw-offset> <pitch-offset>0.0</pitch-offset> <eda>2.0</eda> </submodel>
2004-08-26 16:25:54 +00:00
drag_area = 0.007;
life_timer = 0.0;
gravity = 32;
// buoyancy = 64;
no_roll = false;
aero_stabilised = false;
}
FGAIBallistic::~FGAIBallistic() {
}
void FGAIBallistic::readFromScenario(SGPropertyNode* scFileNode) {
if (!scFileNode)
return;
FGAIBase::readFromScenario(scFileNode);
setAzimuth(scFileNode->getDoubleValue("azimuth", 0.0));
setElevation(scFileNode->getDoubleValue("elevation", 0.0));
setDragArea(scFileNode->getDoubleValue("eda", 0.007));
setLife(scFileNode->getDoubleValue("life", 900.0));
setBuoyancy(scFileNode->getDoubleValue("buoyancy", 0));
setWind_from_east(scFileNode->getDoubleValue("wind_from_east", 0));
setWind_from_north(scFileNode->getDoubleValue("wind_from_north", 0));
setWind(scFileNode->getBoolValue("wind", false));
setRoll(scFileNode->getDoubleValue("roll", 0.0));
setCd(scFileNode->getDoubleValue("cd", 0.029));
setMass(scFileNode->getDoubleValue("mass", 0.007));
setStabilisation(scFileNode->getBoolValue("aero_stabilized", false));
}
bool FGAIBallistic::init() {
FGAIBase::init();
hdg = azimuth;
pitch = elevation;
roll = rotation;
Transform();
return true;
}
void FGAIBallistic::bind() {
// FGAIBase::bind();
props->tie("sim/time/elapsed-sec",
SGRawValueMethods<FGAIBallistic,double>(*this,
&FGAIBallistic::_getTime));
}
void FGAIBallistic::unbind() {
// FGAIBase::unbind();
props->untie("sim/time/elapsed-sec");
}
void FGAIBallistic::update(double dt) {
FGAIBase::update(dt);
Run(dt);
Transform();
}
void FGAIBallistic::setAzimuth(double az) {
hdg = azimuth = az;
}
void FGAIBallistic::setElevation(double el) {
pitch = elevation = el;
}
void FGAIBallistic::setRoll(double rl) {
rotation = rl;
}
void FGAIBallistic::setStabilisation(bool val) {
aero_stabilised = val;
}
David Culp: Silly me. I was starting the timer at zero, so the first tracer didn't fly until 0.25 seconds after pulling the trigger. Now the timer starts at the same value as "delay", so the first round comes out immediately. Also, I've added an optional configuration attribute that allows you to change the ballistics of the submodel. This allows parachutes, or anything else that has ballistics different from a bullet. The attribute is called "eda", which is the equivalent drag area. Default value is 0.007, which gives the same ballistics as the current tracers. Increasing this value gives more drag. A value of 2.0 looks good for a parachute. math stuff ######################################################################## The deceleration of the ballictic object is now given by: [ (rho) (Cd) ] / [ (1/2) (m) ] * A * (V * V) where rho is sea-level air density, and Cd and m are fixed, bullet-like values. So the calculation is: 0.0116918 * A * (V * V) The value "A" is what I'm calling the "eda" (equivalent drag area). ######################################################################## A parachute model will have to be built so that the parachutist's feet are in the forward x-direction. Here is the submodel.xml config I use for "parachutes": <submodel> <name>flares</name> <model>Models/Geometry/flare.ac</model> <trigger>systems/submodels/submodel[0]/trigger</trigger> <speed>0.0</speed> <repeat>true</repeat> <delay>0.85</delay> <count>4</count> <x-offset>0.0</x-offset> <y-offset>0.0</y-offset> <z-offset>-4.0</z-offset> <yaw-offset>0.0</yaw-offset> <pitch-offset>0.0</pitch-offset> <eda>2.0</eda> </submodel>
2004-08-26 16:25:54 +00:00
void FGAIBallistic::setDragArea(double a) {
drag_area = a;
}
void FGAIBallistic::setLife(double seconds) {
life = seconds;
}
void FGAIBallistic::setBuoyancy(double fpss) {
buoyancy = fpss;
}
void FGAIBallistic::setWind_from_east(double fps) {
wind_from_east = fps;
}
void FGAIBallistic::setWind_from_north(double fps) {
wind_from_north = fps;
}
void FGAIBallistic::setWind(bool val) {
wind = val;
}
void FGAIBallistic::setCd(double c) {
Cd = c;
}
void FGAIBallistic::setMass(double m) {
mass = m;
}
void FGAIBallistic::Run(double dt) {
life_timer += dt;
// cout << "life timer 1" << life_timer << dt << endl;
if (life_timer > life) setDie(true);
double speed_north_deg_sec;
double speed_east_deg_sec;
double wind_speed_from_north_deg_sec;
double wind_speed_from_east_deg_sec;
double Cdm; // Cd adjusted by Mach Number
// Adjust Cd by Mach number. The equations are based on curves
// for a conventional shell/bullet (no boat-tail).
if ( Mach < 0.7 ) { Cdm = 0.0125 * Mach + Cd; }
else if ( 0.7 < Mach && Mach < 1.2 ) {
Cdm = 0.3742 * pow ( Mach, 2) - 0.252 * Mach + 0.0021 + Cd; }
else { Cdm = 0.2965 * pow ( Mach, -1.1506 ) + Cd; }
// cout << " Mach , " << Mach << " , Cdm , " << Cdm << endl;
// drag = Cd * 0.5 * rho * speed * speed * drag_area;
// rho is adjusted for altitude in void FGAIBase::update,
// using Standard Atmosphere (sealevel temperature 15C)
// acceleration = drag/mass;
// adjust speed by drag
speed -= (Cdm * 0.5 * rho * speed * speed * drag_area/mass) * dt;
// don't let speed become negative
if ( speed < 0.0 ) speed = 0.0;
// calculate vertical and horizontal speed components
vs = sin( pitch * SG_DEGREES_TO_RADIANS ) * speed;
hs = cos( pitch * SG_DEGREES_TO_RADIANS ) * speed;
// convert horizontal speed (fps) to degrees per second
speed_north_deg_sec = cos(hdg / SG_RADIANS_TO_DEGREES) * hs / ft_per_deg_lat;
speed_east_deg_sec = sin(hdg / SG_RADIANS_TO_DEGREES) * hs / ft_per_deg_lon;
// if wind not required, set to zero
if (!wind) {
wind_from_north = 0;
wind_from_east = 0;
}
// convert wind speed (fps) to degrees per second
wind_speed_from_north_deg_sec = wind_from_north / ft_per_deg_lat;
wind_speed_from_east_deg_sec = wind_from_east / ft_per_deg_lon;
// set new position
pos.setlat( pos.lat() + (speed_north_deg_sec - wind_speed_from_north_deg_sec) * dt );
pos.setlon( pos.lon() + (speed_east_deg_sec - wind_speed_from_east_deg_sec) * dt );
// adjust vertical speed for acceleration of gravity and buoyancy
vs -= (gravity - buoyancy) * dt;
// adjust altitude (feet)
altitude += vs * dt;
pos.setelev(altitude * SG_FEET_TO_METER);
// recalculate pitch (velocity vector) if aerostabilized
// cout << "aero_stabilised " << aero_stabilised << endl ;
if (aero_stabilised) pitch = atan2( vs, hs ) * SG_RADIANS_TO_DEGREES;
// recalculate total speed
speed = sqrt( vs * vs + hs * hs);
// set destruction flag if altitude less than sea level -1000
if (altitude < -1000.0) setDie(true);
} // end Run
double FGAIBallistic::_getTime() const {
// cout << "life timer 2" << life_timer << endl;
return life_timer;
}
// end AIBallistic