1
0
Fork 0
flightgear/src/FDM/YASim/FGFDM.cpp

459 lines
13 KiB
C++
Raw Normal View History

#include <stdio.h>
#include <stdlib.h>
#include <Main/fg_props.hxx>
#include "Jet.hpp"
#include "Gear.hpp"
#include "Atmosphere.hpp"
#include "PropEngine.hpp"
#include "Propeller.hpp"
#include "PistonEngine.hpp"
#include "FGFDM.hpp"
namespace yasim {
// Some conversion factors
static const float KTS2MPS = 0.514444444444;
static const float FT2M = 0.3048;
static const float DEG2RAD = 0.0174532925199;
static const float RPM2RAD = 0.10471975512;
static const float LBS2N = 4.44822;
static const float LBS2KG = 0.45359237;
static const float CM2GALS = 264.172037284;
static const float HP2W = 745.700;
// Stubs, so that this can be compiled without the FlightGear
// binary. What's the best way to handle this?
// float fgGetFloat(char* name, float def) { return 0; }
// void fgSetFloat(char* name, float val) {}
FGFDM::FGFDM()
{
_nextEngine = 0;
}
FGFDM::~FGFDM()
{
for(int i=0; i<_axes.size(); i++) {
AxisRec* a = (AxisRec*)_axes.get(i);
delete[] a->name;
delete a;
}
for(int i=0; i<_pistons.size(); i++) {
EngRec* er = (EngRec*)_pistons.get(i);
delete[] er->prefix;
delete (PropEngine*)er->eng;
delete er;
}
for(int i=0; i<_jets.size(); i++) {
EngRec* er = (EngRec*)_pistons.get(i);
delete[] er->prefix;
delete (Jet*)er->eng;
delete er;
}
for(int i=0; i<_weights.size(); i++) {
WeightRec* wr = (WeightRec*)_weights.get(i);
delete[] wr->prop;
delete wr;
}
}
void FGFDM::iterate(float dt)
{
getExternalInput(dt);
_airplane.iterate(dt);
setOutputProperties();
}
Airplane* FGFDM::getAirplane()
{
return &_airplane;
}
void FGFDM::init()
{
// We don't want to use these ties (we set the values ourselves,
// and this works only for the first piston engine anyway).
fgUntie("/engines/engine[0]/rpm");
fgUntie("/engines/engine[0]/egt-degf");
fgUntie("/engines/engine[0]/cht-degf");
fgUntie("/engines/engine[0]/oil-temperature-degf");
fgUntie("/engines/engine[0]/mp-osi");
fgUntie("/engines/engine[0]/fuel-flow-gph");
fgUntie("/engines/engine[0]/running");
fgUntie("/engines/engine[0]/cranking");
fgUntie("/consumables/fuel/tank[0]/level-gal_us");
fgUntie("/consumables/fuel/tank[1]/level-gal_us");
// Set these to sane values. We don't support engine start yet.
fgSetBool("/engines/engine[0]/running", true);
fgSetBool("/engines/engine[0]/cranking", false);
// Allows the user to start with something other than full fuel
_airplane.setFuelFraction(fgGetFloat("/yasim/fuel-fraction", 1));
// This has a nasty habit of being false at startup. That's not
// good.
fgSetBool("/controls/gear-down", true);
}
// Not the worlds safest parser. But it's short & sweet.
void FGFDM::startElement(const char* name, const XMLAttributes &atts)
{
XMLAttributes* a = (XMLAttributes*)&atts;
float v[3];
char buf[64];
if(eq(name, "airplane")) {
_airplane.setWeight(attrf(a, "mass") * LBS2KG);
} else if(eq(name, "approach")) {
float spd = attrf(a, "speed") * KTS2MPS;
float alt = attrf(a, "alt", 0) * FT2M;
float aoa = attrf(a, "aoa", 0) * DEG2RAD;
_airplane.setApproach(spd, alt, aoa);
_cruiseCurr = false;
} else if(eq(name, "cruise")) {
float spd = attrf(a, "speed") * KTS2MPS;
float alt = attrf(a, "alt") * FT2M;
_airplane.setCruise(spd, alt);
_cruiseCurr = true;
} else if(eq(name, "cockpit")) {
v[0] = attrf(a, "x");
v[1] = attrf(a, "y");
v[2] = attrf(a, "z");
_airplane.setPilotPos(v);
} else if(eq(name, "wing")) {
_airplane.setWing(parseWing(a, name));
} else if(eq(name, "hstab")) {
_airplane.setTail(parseWing(a, name));
} else if(eq(name, "vstab")) {
_airplane.addVStab(parseWing(a, name));
} else if(eq(name, "propeller")) {
parsePropeller(a);
} else if(eq(name, "jet")) {
Jet* j = new Jet();
_currObj = j;
v[0] = attrf(a, "x");
v[1] = attrf(a, "y");
v[2] = attrf(a, "z");
float mass = attrf(a, "mass") * LBS2KG;
j->setDryThrust(attrf(a, "thrust") * LBS2N);
j->setPosition(v);
_airplane.addThruster(j, mass, v);
sprintf(buf, "/engines/engine[%d]", _nextEngine++);
EngRec* er = new EngRec();
er->eng = j;
er->prefix = dup(buf);
_jets.add(er);
} else if(eq(name, "gear")) {
Gear* g = new Gear();
_currObj = g;
v[0] = attrf(a, "x");
v[1] = attrf(a, "y");
v[2] = attrf(a, "z");
g->setPosition(v);
v[0] = 0;
v[1] = 0;
v[2] = attrf(a, "compression", 1);
g->setCompression(v);
g->setStaticFriction(attrf(a, "sfric", 0.8));
g->setDynamicFriction(attrf(a, "dfric", 0.7));
float transitionTime = attrf(a, "retract-time", 0);
_airplane.addGear(g, transitionTime);
} else if(eq(name, "fuselage")) {
float b[3];
v[0] = attrf(a, "ax");
v[1] = attrf(a, "ay");
v[2] = attrf(a, "az");
b[0] = attrf(a, "bx");
b[1] = attrf(a, "by");
b[2] = attrf(a, "bz");
_airplane.addFuselage(v, b, attrf(a, "width"));
} else if(eq(name, "tank")) {
v[0] = attrf(a, "x");
v[1] = attrf(a, "y");
v[2] = attrf(a, "z");
float density = 6.0; // gasoline, in lbs/gal
if(a->hasAttribute("jet")) density = 6.72;
density *= LBS2KG/CM2GALS;
_airplane.addTank(v, attrf(a, "capacity") * LBS2KG, density);
} else if(eq(name, "ballast")) {
v[0] = attrf(a, "x");
v[1] = attrf(a, "y");
v[2] = attrf(a, "z");
_airplane.addBallast(v, attrf(a, "mass") * LBS2KG);
} else if(eq(name, "weight")) {
parseWeight(a);
} else if(eq(name, "stall")) {
Wing* w = (Wing*)_currObj;
w->setStall(attrf(a, "aoa") * DEG2RAD);
w->setStallWidth(attrf(a, "width", 2) * DEG2RAD);
w->setStallPeak(attrf(a, "peak", 1.5));
} else if(eq(name, "flap0")) {
((Wing*)_currObj)->setFlap0(attrf(a, "start"), attrf(a, "end"),
attrf(a, "lift"), attrf(a, "drag"));
} else if(eq(name, "flap1")) {
((Wing*)_currObj)->setFlap1(attrf(a, "start"), attrf(a, "end"),
attrf(a, "lift"), attrf(a, "drag"));
} else if(eq(name, "slat")) {
((Wing*)_currObj)->setSlat(attrf(a, "start"), attrf(a, "end"),
attrf(a, "aoa"), attrf(a, "drag"));
} else if(eq(name, "spoiler")) {
((Wing*)_currObj)->setSpoiler(attrf(a, "start"), attrf(a, "end"),
attrf(a, "lift"), attrf(a, "drag"));
} else if(eq(name, "actionpt")) {
v[0] = attrf(a, "x");
v[1] = attrf(a, "y");
v[2] = attrf(a, "z");
((Thruster*)_currObj)->setPosition(v);
} else if(eq(name, "dir")) {
v[0] = attrf(a, "x");
v[1] = attrf(a, "y");
v[2] = attrf(a, "z");
((Thruster*)_currObj)->setDirection(v);
} else if(eq(name, "control")) {
const char* axis = a->getValue("axis");
if(a->hasAttribute("output")) {
// assert: output type must match _currObj type!
const char* output = a->getValue("output");
int opt = 0;
opt |= a->hasAttribute("split") ? ControlMap::OPT_SPLIT : 0;
opt |= a->hasAttribute("invert") ? ControlMap::OPT_INVERT : 0;
opt |= a->hasAttribute("square") ? ControlMap::OPT_SQUARE : 0;
_airplane.getControlMap()->addMapping(parseAxis(axis),
parseOutput(output),
_currObj,
opt);
} else {
// assert: must be under a "cruise" or "approach" tag
float value = attrf(a, "value", 0);
if(_cruiseCurr)
_airplane.addCruiseControl(parseAxis(axis), value);
else
_airplane.addApproachControl(parseAxis(axis), value);
}
} else {
*(int*)0=0; // unexpected tag, boom
}
}
void FGFDM::getExternalInput(float dt)
{
// The control axes
ControlMap* cm = _airplane.getControlMap();
cm->reset();
for(int i=0; i<_axes.size(); i++) {
AxisRec* a = (AxisRec*)_axes.get(i);
float val = fgGetFloat(a->name, 0);
cm->setInput(a->handle, val);
}
cm->applyControls();
// Weights
for(int i=0; i<_weights.size(); i++) {
WeightRec* wr = (WeightRec*)_weights.get(i);
_airplane.setWeight(wr->handle, fgGetFloat(wr->prop));
}
// Gear state
_airplane.setGearState(fgGetBool("/controls/gear-down"), dt);
}
void FGFDM::setOutputProperties()
{
char buf[256];
for(int i=0; i<_airplane.numTanks(); i++) {
sprintf(buf, "/consumables/fuel/tank[%d]/level-gal_us", i);
fgSetFloat(buf,
CM2GALS*_airplane.getFuel(i)/_airplane.getFuelDensity(i));
}
for(int i=0; i<_pistons.size(); i++) {
EngRec* er = (EngRec*)_pistons.get(i);
PropEngine* p = (PropEngine*)er->eng;
sprintf(buf, "%s/rpm", er->prefix);
fgSetFloat(buf, p->getOmega() * (30/3.15149265358979));
sprintf(buf, "%s/fuel-flow-gph", er->prefix);
fgSetFloat(buf, p->getFuelFlow() * (3600*2.2/5)); // FIXME, wrong
}
for(int i=0; i<_jets.size(); i++) {
EngRec* er = (EngRec*)_jets.get(i);
Jet* j = (Jet*)er->eng;
sprintf(buf, "%s/fuel-flow-gph", er->prefix);
fgSetFloat(buf, j->getFuelFlow() * (3600*2.2/6)); // FIXME, wrong
}
}
Wing* FGFDM::parseWing(XMLAttributes* a, const char* type)
{
Wing* w = new Wing();
float defDihed = 0;
if(eq(type, "vstab"))
defDihed = 90;
else
w->setMirror(true);
float pos[3];
pos[0] = attrf(a, "x");
pos[1] = attrf(a, "y");
pos[2] = attrf(a, "z");
w->setBase(pos);
w->setLength(attrf(a, "length"));
w->setChord(attrf(a, "chord"));
w->setSweep(attrf(a, "sweep", 0) * DEG2RAD);
w->setTaper(attrf(a, "taper", 1));
w->setDihedral(attrf(a, "dihedral", defDihed) * DEG2RAD);
w->setCamber(attrf(a, "camber", 0));
w->setIncidence(attrf(a, "incidence", 0) * DEG2RAD);
float effect = attrf(a, "effectiveness", 1);
w->setDragScale(w->getDragScale()*effect);
_currObj = w;
return w;
}
void FGFDM::parsePropeller(XMLAttributes* a)
{
float cg[3];
cg[0] = attrf(a, "x");
cg[1] = attrf(a, "y");
cg[2] = attrf(a, "z");
float mass = attrf(a, "mass") * LBS2KG;
float moment = attrf(a, "moment");
float radius = attrf(a, "radius");
float speed = attrf(a, "cruise-speed") * KTS2MPS;
float omega = attrf(a, "cruise-rpm") * RPM2RAD;
float rho = Atmosphere::getStdDensity(attrf(a, "alt") * FT2M);
float power = attrf(a, "takeoff-power") * HP2W;
float omega0 = attrf(a, "takeoff-rpm") * RPM2RAD;
// FIXME: this is a hack. Find a better way to ask the engine how
// much power it can produce under cruise conditions.
float cruisePower = (power * (rho/Atmosphere::getStdDensity(0))
* (omega/omega0));
Propeller* prop = new Propeller(radius, speed, omega, rho, cruisePower,
omega0, power);
PistonEngine* eng = new PistonEngine(power, omega0);
PropEngine* thruster = new PropEngine(prop, eng, moment);
_airplane.addThruster(thruster, mass, cg);
char buf[64];
sprintf(buf, "/engines/engine[%d]", _nextEngine++);
EngRec* er = new EngRec();
er->eng = thruster;
er->prefix = dup(buf);
_pistons.add(er);
_currObj = thruster;
}
// Turns a string axis name into an integer for use by the
// ControlMap. Creates a new axis if this one hasn't been defined
// yet.
int FGFDM::parseAxis(const char* name)
{
for(int i=0; i<_axes.size(); i++) {
AxisRec* a = (AxisRec*)_axes.get(i);
if(eq(a->name, name))
return a->handle;
}
// Not there, make a new one.
AxisRec* a = new AxisRec();
a->name = dup(name);
a->handle = _airplane.getControlMap()->newInput();
_axes.add(a);
return a->handle;
}
int FGFDM::parseOutput(const char* name)
{
if(eq(name, "THROTTLE")) return ControlMap::THROTTLE;
if(eq(name, "MIXTURE")) return ControlMap::MIXTURE;
if(eq(name, "REHEAT")) return ControlMap::REHEAT;
if(eq(name, "PROP")) return ControlMap::PROP;
if(eq(name, "BRAKE")) return ControlMap::BRAKE;
if(eq(name, "STEER")) return ControlMap::STEER;
if(eq(name, "EXTEND")) return ControlMap::EXTEND;
if(eq(name, "INCIDENCE")) return ControlMap::INCIDENCE;
if(eq(name, "FLAP0")) return ControlMap::FLAP0;
if(eq(name, "FLAP1")) return ControlMap::FLAP1;
if(eq(name, "SLAT")) return ControlMap::SLAT;
if(eq(name, "SPOILER")) return ControlMap::SPOILER;
// error here...
return -1;
}
void FGFDM::parseWeight(XMLAttributes* a)
{
WeightRec* wr = new WeightRec();
float v[3];
v[0] = attrf(a, "x");
v[1] = attrf(a, "y");
v[2] = attrf(a, "z");
wr->prop = dup(a->getValue("mass-prop"));
wr->size = attrf(a, "size", 0);
wr->handle = _airplane.addWeight(v, wr->size);
_weights.add(wr);
}
bool FGFDM::eq(const char* a, const char* b)
{
// Figure it out for yourself. :)
while(*a && *b && *a++ == *b++);
return !(*a || *b);
}
char* FGFDM::dup(const char* s)
{
int len=0;
while(s[len++]);
char* s2 = new char[len+1];
char* p = s2;
while((*p++ = *s++));
s2[len] = 0;
return s2;
}
int FGFDM::attri(XMLAttributes* atts, char* attr)
{
if(!atts->hasAttribute(attr)) *(int*)0=0; // boom
return attri(atts, attr, 0);
}
int FGFDM::attri(XMLAttributes* atts, char* attr, int def)
{
const char* val = atts->getValue(attr);
if(val == 0) return def;
else return atol(val);
}
float FGFDM::attrf(XMLAttributes* atts, char* attr)
{
if(!atts->hasAttribute(attr)) *(int*)0=0; // boom
return attrf(atts, attr, 0);
}
float FGFDM::attrf(XMLAttributes* atts, char* attr, float def)
{
const char* val = atts->getValue(attr);
if(val == 0) return def;
else return (float)atof(val);
}
}; // namespace yasim