1
0
Fork 0
flightgear/utils/fgai/fgai.cxx

609 lines
21 KiB
C++
Raw Normal View History

// Copyright (C) 2009 - 2012 Mathias Froehlich
//
// This program is free software; you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of the
// License, or (at your option) any later version.
//
// This program is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software
// Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif
2013-02-09 08:53:34 +01:00
#include <cstdio>
#include <simgear/misc/sg_path.hxx>
2013-02-09 08:53:34 +01:00
#include <simgear/debug/logstream.hxx>
#include "AIObject.hxx"
#include "AIManager.hxx"
#include "HLAMPAircraft.hxx"
#include "HLAMPAircraftClass.hxx"
#include "AIPhysics.hxx"
namespace fgai {
#if 0
class AIVehiclePhysics : public AIPhysics {
public:
AIVehiclePhysics(const SGLocationd& location, const SGVec3d& linearBodyVelocity = SGVec3d::zeros(),
const SGVec3d& angularBodyVelocity = SGVec3d::zeros()) :
AIPhysics(location, linearBodyVelocity, angularBodyVelocity)
{
setMass(1);
setInertia(1, 1, 1);
}
virtual ~AIVehiclePhysics()
{ }
double getMass() const
{ return _mass; }
void setMass(double mass)
{ _mass = mass; }
void setInertia(double ixx, double iyy, double izz, double ixy = 0, double ixz = 0, double iyz = 0)
{
_inertia = SGMatrixd(ixx, ixy, ixz, 0,
ixy, iyy, iyz, 0,
ixz, iyz, izz, 0,
0, 0, 0, 1);
invert(_inertiaInverse, _inertia);
}
protected:
void advanceByBodyForce(const double& dt,
const SGVec3d& force,
const SGVec3d& torque)
{
SGVec3d linearVelocity = getLinearBodyVelocity();
SGVec3d angularVelocity = getAngularBodyVelocity();
SGVec3d linearAcceleration = (1/_mass)*(force - cross(angularVelocity, linearVelocity));
SGVec3d angularAcceleration = _inertiaInverse.xformVec(torque - cross(angularVelocity, _inertia.xformVec(angularVelocity)));
advanceByBodyAcceleration(dt, linearAcceleration, angularAcceleration);
}
SGVec3d getGravityAcceleration() const
{
return SGQuatd::fromLonLat(getGeodPosition()).backTransform(SGVec3d(0, 0, 9.81));
}
private:
// unsimulated motion, hide this for this kind of class here
using AIPhysics::advanceByBodyAcceleration;
using AIPhysics::advanceByBodyVelocity;
using AIPhysics::advanceToCartPosition;
double _mass;
// FIXME this is a symmetric 3x3 matrix ...
SGMatrixd _inertia;
SGMatrixd _inertiaInverse;
};
// FIXME Totally unfinished simple aerodynamics model for an ai aircraft
// also just here for a sketch of an idea
class AIAircraftPhysics : public AIVehiclePhysics {
public:
AIAircraftPhysics(const SGLocationd& location, const SGVec3d& linearBodyVelocity = SGVec3d::zeros(),
const SGVec3d& angularBodyVelocity = SGVec3d::zeros()) :
AIVehiclePhysics(location, linearBodyVelocity, angularBodyVelocity)
{ }
virtual ~AIAircraftPhysics()
{ }
double getElevatorPosition() const
{ return _elevatorPosition; }
void setElevatorPosition(double elevatorPosition)
{ _elevatorPosition = elevatorPosition; }
double getAileronPosition() const
{ return _aileronPosition; }
void setAileronPosition(double aileronPosition)
{ _aileronPosition = aileronPosition; }
double getRudderPosition() const
{ return _rudderPosition; }
void setRudderPosition(double rudderPosition)
{ _rudderPosition = rudderPosition; }
// double getFlapsPosition() const
// { return _flapsPosition; }
// void setFlapsPosition(double flapsPosition)
// { _flapsPosition = flapsPosition; }
double getThrust() const
{ return _thrust; }
void setThrust(double thrust)
{ _thrust = thrust; }
virtual void update(AIObject& object, const SGTimeStamp& dt)
{
// const AIEnvironment& environment = object.getEnvironment();
const AIEnvironment environment;
/// Compute the forces on the aircraft. This is a very simple fdm.
// The velocity of the aircraft wrt the surrounding fluid
SGVec3d windVelocity = getLinearBodyVelocity();
windVelocity -= getOrientation().transform(environment.getWindVelocity());
// The true airspeed of the bird
double airSpeed = norm(windVelocity);
// simple density with(out FIXME) altitude
double density = environment.getDensity();
// The dynaimc pressure - most important value in aerodynamics
double dynamicPressure = 0.5*density*airSpeed*airSpeed;
// The angle of attack and sideslip angle
double alpha = 0, beta = 0;
if (1e-3 < SGMiscd::max(fabs(windVelocity[0]), fabs(windVelocity[2])))
alpha = atan2(windVelocity[2], windVelocity[0]);
double uw = sqrt(windVelocity[0]*windVelocity[0] + windVelocity[2]*windVelocity[2]);
if (1e-3 < SGMiscd::max(fabs(windVelocity[1]), fabs(uw)))
beta = atan2(windVelocity[1], uw);
// Transform from the stability axis to body axis
SGQuatd stabilityToBody = SGQuatd::fromEulerRad(beta, alpha, 0);
// We assume a simple angular dependency for the
// lift, drag and side force coefficients.
// lift for alpha = 0
double _Cl0 = 0.5;
// lift at stall angle of attack
double _ClStall = 2;
// stall angle of attack
double _alphaStall = 18;
// Drag for alpha = 0
double _Cd0 = 0.05;
// Drag for alpha = 90
double _Cd90 = 1.05;
// Side force coefficient for maximum side angle
double _Cs90 = 1.05;
/// FIXME
double _area = 1;
SGVec3d _aerodynamicReferencePoint(0, 0, 0);
SGVec3d _centerOfGravity(0, 0, 0);
// So compute the lift drag and side force coefficient for the
// current stream conditions.
double Cl = _Cl0 + (_ClStall - _Cl0)*sin(SGMiscd::clip(90/_alphaStall*alpha, -0.5*SGMiscd::pi(), SGMiscd::pi()));
double Cd = _Cd0 + (_Cd90 - _Cd0)*(0.5 - 0.5*cos(2*alpha));
double Cs = _Cs90*sin(beta);
// Forces in the stability axes
double lift = Cl*dynamicPressure*_area;
double drag = Cd*dynamicPressure*_area;
double side = Cs*dynamicPressure*_area;
// Torque in body axes
double p = 0;
double q = 0;
double r = 0;
// Compute the force in stability coordinates ...
SGVec3d stabilityForce(-drag, side, -lift);
// ... and torque in body coordinates
SGVec3d torque(p, q, r);
SGVec3d force = stabilityToBody.transform(stabilityForce);
torque += cross(force, _aerodynamicReferencePoint);
std::pair<SGVec3d, SGVec3d> velocity;
for (_GearVector::iterator i = _gearVector.begin(); i != _gearVector.end(); ++i) {
std::pair<SGVec3d, SGVec3d> torqueForce;
torqueForce = i->force(getLocation(), velocity, object);
torque += torqueForce.first;
force += torqueForce.second;
}
// Transform the torque back to the center of gravity
torque -= cross(force, _centerOfGravity);
// Advance the equations of motion.
advanceByBodyForce(dt.toSecs(), force, torque);
}
/// The normalized elevator position
double _elevatorPosition;
/// The normalized aileron position
double _aileronPosition;
/// The normalized rudder position
double _rudderPosition;
// /// The normalized flaps position
// double _flapsPosition;
/// Normalized thrust
double _thrust;
struct _Gear {
SGVec3d _position;
SGVec3d _direction;
double _spring;
double _damping;
std::pair<SGVec3d, SGVec3d>
force(const SGLocationd& location, const std::pair<SGVec3d, SGVec3d>& velocity, AIObject& object)
{
SGVec3d start = location.getAbsolutePosition(_position - _direction);
SGVec3d end = location.getAbsolutePosition(_position);
SGLineSegmentd lineSegment(start, end);
SGVec3d point;
SGVec3d normal;
// if (!object.getGroundIntersection(point, normal, lineSegment))
// return std::pair<SGVec3d, SGVec3d>(SGVec3d(0, 0, 0), SGVec3d(0, 0, 0));
// FIXME just now only the spring force ...
// The compression length
double compressLength = norm(point - start);
SGVec3d springForce = -_spring*compressLength*_direction;
SGVec3d dampingForce(0, 0, 0);
SGVec3d force = springForce + dampingForce;
SGVec3d torque(0, 0, 0);
return std::pair<SGVec3d, SGVec3d>(torque, force);
}
};
typedef std::vector<_Gear> _GearVector;
_GearVector _gearVector;
/// The total mass of the bird in kg. No fluel is burned.
/// Some sensible inertia values are derived from the mass.
// double _mass;
/// The thrust to mass ratio which tells us someting about
/// the possible accelerations.
// double _thrustMassRatio;
/// The stall speed
// double _stallSpeed;
// double _maximumSpeed;
// // double _approachSpeed;
// // double _takeoffSpeed;
// // double _cruiseSpeed;
/// The maximum density altitude this aircraft can fly
// double _densityAltitudeLimit;
/// statistical evaluation shows:
/// wingarea = C*wingspan^2, C in [0.1, 0.4], say 0.2
/// ixx = C*wingarea*mass, C in [1e-3, 1e-2]
/// iyy = C*wingarea*mass, C in [1e-2, 0.02]
/// izz = C*wingarea*mass, C in [1e-2, 0.02]
/// Hmm, let's say, weight relates to wingarea?
/// probably, since lift is linear dependent on wingarea
/// So, define a 'size' in meters.
/// the derive
/// wingspan = size
/// wingarea = 0.2*size*size
/// mass = C*wingarea
/// ixx = 0.005*wingarea*mass
/// iyy = 0.05*wingarea*mass
/// izz = 0.05*wingarea*mass
/// an other idea:
/// define a bird of some weight class. That means mass given.
/// Then derive
/// i* ??? must be mass^2 accodring to the thoughts above
/// Then do Cl, Cd, Cs.
/// according to approach speed at sea level with 5 deg aoa and 2,5 deg glideslope and 25 % thrust.
/// according to cruise altitude and cruise speed at 75% thrust compute this at altitude
/// interpolate between these two sets of C*'s based on altitude.
};
#endif
/// An automated lego aircraft, constant linear and angular speed
class AIOgel : public AIObject {
public:
AIOgel(const SGGeod& geod) :
_geod(geod),
_radius(500),
_turnaroundTime(3*60),
_velocity(10)
{ }
virtual ~AIOgel()
{ }
virtual void init(AIManager& manager)
{
AIObject::init(manager);
SGLocationd location(SGVec3d::fromGeod(_geod), SGQuatd::fromLonLat(_geod));
SGVec3d linearVelocity(_velocity, 0, 0);
SGVec3d angularVelocity(0, 0, SGMiscd::twopi()/_turnaroundTime);
setPhysics(new AIPhysics(location, linearVelocity, angularVelocity));
HLAMPAircraftClass* objectClass = dynamic_cast<HLAMPAircraftClass*>(manager.getObjectClass("MPAircraft"));
if (!objectClass)
return;
_objectInstance = new HLAMPAircraft(objectClass);
if (!_objectInstance.valid())
return;
_objectInstance->registerInstance();
_objectInstance->setModelPath("Aircraft/ogel/Models/SinglePiston.xml");
manager.schedule(*this, getSimTime() + SGTimeStamp::fromSecMSec(0, 1));
}
virtual void update(AIManager& manager, const SGTimeStamp& simTime)
{
SGTimeStamp dt = simTime - getSimTime();
setGroundCache(getPhysics(), manager.getPager(), dt);
getEnvironment().update(*this, dt);
getSubsystemGroup().update(*this, dt);
getPhysics().update(*this, dt);
AIObject::update(manager, simTime);
if (!_objectInstance.valid())
return;
_objectInstance->setLocation(getPhysics());
_objectInstance->setSimTime(getSimTime().toSecs());
_objectInstance->updateAttributeValues(getSimTime(), simgear::RTIData("update"));
manager.schedule(*this, getSimTime() + SGTimeStamp::fromSecMSec(0, 100));
}
virtual void shutdown(AIManager& manager)
{
if (_objectInstance.valid())
_objectInstance->removeInstance(simgear::RTIData("shutdown"));
_objectInstance = 0;
AIObject::shutdown(manager);
}
private:
SGGeod _geod;
double _radius;
double _turnaroundTime;
double _velocity;
SGSharedPtr<HLAMPAircraft> _objectInstance;
};
/// an ogle in a traffic circuit at lowi
class AIOgelInTrafficCircuit : public AIObject {
public:
/// Also nothing to really use for a long time, but to demonstrate how it basically works
class Physics : public AIPhysics {
public:
Physics(const SGLocationd& location, const SGVec3d& linearBodyVelocity = SGVec3d::zeros(),
const SGVec3d& angularBodyVelocity = SGVec3d::zeros()) :
AIPhysics(location, linearBodyVelocity, angularBodyVelocity),
_targetVelocity(30),
_gearOffset(2.5)
{ }
virtual ~Physics()
{ }
2016-07-01 04:54:29 -05:00
virtual void update(AIObject& object, const SGTimeStamp& dt)
{
SGVec3d down = getHorizontalLocalOrientation().backTransform(SGVec3d(0, 0, 1));
SGVec3d distToAimingPoint = getAimingPoint() - getPosition();
if (norm(distToAimingPoint - down*dot(down, distToAimingPoint)) <= 10*dt.toSecs()*norm(getLinearVelocity()))
rotateAimingPoint();
2016-07-01 04:54:29 -05:00
SGVec3d aimingVector = normalize(getAimingPoint() - getPosition());
SGVec3d bodyAimingVector = getLocation().getOrientation().transform(aimingVector);
SGVec3d angularVelocity = 0.2*cross(SGVec3d(1, 0, 0), bodyAimingVector);
SGVec3d bodyDownVector = getLocation().getOrientation().transform(down);
// keep an upward orientation
angularVelocity += cross(SGVec3d(0, 0, 1), SGVec3d(0, bodyDownVector[1], bodyDownVector[2]));
SGVec3d linearVelocity(_targetVelocity, 0, 0);
SGVec3d gearPosition = getPosition() + _gearOffset*down;
SGLineSegmentd lineSegment(gearPosition - 10*down, gearPosition + 10*down);
SGVec3d point, normal;
if (object.getGroundIntersection(point, normal, lineSegment)) {
double agl = dot(down, point - gearPosition);
if (agl < 0)
linearVelocity -= down*(0.5*agl/dt.toSecs());
}
advanceByBodyVelocity(dt.toSecs(), linearVelocity, angularVelocity);
}
const SGVec3d& getAimingPoint() const
{ return _waypoints.front(); }
void rotateAimingPoint()
{ _waypoints.splice(_waypoints.end(), _waypoints, _waypoints.begin()); }
2016-07-01 04:54:29 -05:00
std::list<SGVec3d> _waypoints;
double _targetVelocity;
double _gearOffset;
};
2016-07-01 04:54:29 -05:00
AIOgelInTrafficCircuit()
{ }
virtual ~AIOgelInTrafficCircuit()
{ }
virtual void init(AIManager& manager)
{
AIObject::init(manager);
/// Put together somw waypoints
/// This needs to be replaced by something generic
SGGeod rwyStart = SGGeod::fromDegM(11.35203755, 47.26109606, 574);
SGGeod rwyEnd = SGGeod::fromDegM(11.33741688, 47.25951967, 576);
SGQuatd hl = SGQuatd::fromLonLat(rwyStart);
SGVec3d down = hl.backTransform(SGVec3d(0, 0, 1));
SGVec3d cartRwyStart = SGVec3d::fromGeod(rwyStart);
SGVec3d cartRwyEnd = SGVec3d::fromGeod(rwyEnd);
SGVec3d centerline = normalize(cartRwyEnd - cartRwyStart);
SGVec3d left = normalize(cross(centerline, down));
SGGeod endClimb = SGGeod::fromGeodM(SGGeod::fromCart(cartRwyEnd + 500*centerline), 700);
SGGeod startDescend = SGGeod::fromGeodM(SGGeod::fromCart(cartRwyStart - 500*centerline + 150*left), 650);
SGGeod startDownwind = SGGeod::fromGeodM(SGGeod::fromCart(cartRwyEnd + 500*centerline + 800*left), 750);
SGGeod endDownwind = SGGeod::fromGeodM(SGGeod::fromCart(cartRwyStart - 500*centerline + 800*left), 750);
SGLocationd location(SGVec3d::fromGeod(rwyStart), SGQuatd::fromLonLat(rwyStart)*SGQuatd::fromEulerDeg(-100, 0, 0));
Physics* physics = new Physics(location, SGVec3d(0, 0, 0), SGVec3d(0, 0, 0));
physics->_waypoints.push_back(SGVec3d::fromGeod(rwyStart));
physics->_waypoints.push_back(SGVec3d::fromGeod(rwyEnd));
physics->_waypoints.push_back(SGVec3d::fromGeod(endClimb));
physics->_waypoints.push_back(SGVec3d::fromGeod(startDownwind));
physics->_waypoints.push_back(SGVec3d::fromGeod(endDownwind));
physics->_waypoints.push_back(SGVec3d::fromGeod(startDescend));
setPhysics(physics);
/// Ok, this is part of the official sketch
HLAMPAircraftClass* objectClass = dynamic_cast<HLAMPAircraftClass*>(manager.getObjectClass("MPAircraft"));
if (!objectClass)
return;
_objectInstance = new HLAMPAircraft(objectClass);
if (!_objectInstance.valid())
return;
_objectInstance->registerInstance();
_objectInstance->setModelPath("Aircraft/ogel/Models/SinglePiston.xml");
/// Need to schedule something else we get deleted
manager.schedule(*this, getSimTime() + SGTimeStamp::fromSecMSec(0, 100));
}
virtual void update(AIManager& manager, const SGTimeStamp& simTime)
{
SGTimeStamp dt = simTime - getSimTime();
setGroundCache(getPhysics(), manager.getPager(), dt);
getEnvironment().update(*this, dt);
getSubsystemGroup().update(*this, dt);
getPhysics().update(*this, dt);
AIObject::update(manager, simTime);
if (!_objectInstance.valid())
return;
_objectInstance->setLocation(getPhysics());
_objectInstance->setSimTime(getSimTime().toSecs());
_objectInstance->updateAttributeValues(getSimTime(), simgear::RTIData("update"));
/// Need to schedule something else we get deleted
manager.schedule(*this, getSimTime() + SGTimeStamp::fromSecMSec(0, 100));
}
virtual void shutdown(AIManager& manager)
{
if (_objectInstance.valid())
_objectInstance->removeInstance(simgear::RTIData("shutdown"));
_objectInstance = 0;
AIObject::shutdown(manager);
}
private:
SGSharedPtr<HLAMPAircraft> _objectInstance;
};
} // namespace fgai
// getopt
#include <unistd.h>
int
main(int argc, char* argv[])
{
SGSharedPtr<fgai::AIManager> manager = new fgai::AIManager;
/// FIXME include some argument parsing stuff
std::string fg_root;
std::string fg_scenery;
int c;
while ((c = getopt(argc, argv, "cCf:F:n:O:p:RsS")) != EOF) {
switch (c) {
case 'c':
manager->setCreateFederationExecution(true);
break;
case 'C':
manager->setTimeConstrained(true);
break;
case 'f':
manager->setFederateType(optarg);
break;
case 'F':
manager->setFederationExecutionName(optarg);
break;
case 'O':
manager->setFederationObjectModel(optarg);
break;
case 'p':
2013-02-09 08:53:34 +01:00
sglog().set_log_classes(SG_ALL);
sglog().set_log_priority(sgDebugPriority(atoi(optarg)));
break;
case 'R':
manager->setTimeRegulating(true);
break;
case 's':
manager->setTimeConstrainedByLocalClock(false);
break;
case 'S':
manager->setTimeConstrainedByLocalClock(true);
break;
case 'r':
fg_root = optarg;
break;
case 'y':
fg_scenery = optarg;
break;
}
}
if (fg_root.empty()) {
if (const char *fg_root_env = std::getenv("FG_ROOT")) {
fg_root = fg_root_env;
} else {
fg_root = PKGLIBDIR;
}
}
if (fg_scenery.empty()) {
if (const char *fg_scenery_env = std::getenv("FG_SCENERY")) {
fg_scenery = fg_scenery_env;
} else if (!fg_root.empty()) {
SGPath path(fg_root);
path.append("Scenery");
fg_scenery = path.str();
}
}
manager->getPager().setScenery(fg_root, fg_scenery);
if (manager->getFederationObjectModel().empty()) {
SGPath path(fg_root);
path.append("HLA");
path.append("fg-local-fom.xml");
2016-07-01 04:54:29 -05:00
manager->setFederationObjectModel(path.local8BitStr());
}
/// EDDS
manager->insert(new fgai::AIOgel(SGGeod::fromDegFt(9.19298, 48.6895, 2000)));
/// LOWI
manager->insert(new fgai::AIOgel(SGGeod::fromDegFt(11.344, 47.260, 2500)));
/// LOWI traffic circuit
manager->insert(new fgai::AIOgelInTrafficCircuit);
return manager->exec();
}