1
0
Fork 0
flightgear/src/Instrumentation/newnavradio.cxx

994 lines
32 KiB
C++
Raw Normal View History

// navradio.cxx -- class to manage a nav radio instance
//
// Written by Curtis Olson, started April 2000.
// Rewritten by Torsten Dreyer, August 2011
//
// Copyright (C) 2000 - 2011 Curtis L. Olson - http://www.flightgear.org/~curt
//
// This program is free software; you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of the
// License, or (at your option) any later version.
//
// This program is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software
// Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
//
#ifdef HAVE_CONFIG_H
# include <config.h>
#endif
#include "newnavradio.hxx"
#include <assert.h>
#include <boost/foreach.hpp>
#include <simgear/math/SGMath.hxx>
#include <simgear/math/interpolater.hxx>
#include <simgear/sg_inlines.h>
#include <simgear/props/propertyObject.hxx>
#include <simgear/misc/strutils.hxx>
#include <Main/fg_props.hxx>
#include <Navaids/navlist.hxx>
#include <Sound/audioident.hxx>
#include "navradio.hxx"
namespace Instrumentation {
using simgear::PropertyObject;
/* --------------The Navigation Indicator ----------------------------- */
class NavIndicator {
public:
NavIndicator( SGPropertyNode * rootNode ) :
_cdi( rootNode->getNode("heading-needle-deflection", true ) ),
_cdiNorm( rootNode->getNode("heading-needle-deflection-norm", true ) ),
_course( rootNode->getNode("radials/selected-deg", true ) ),
_toFlag( rootNode->getNode("to-flag", true ) ),
_fromFlag( rootNode->getNode("from-flag", true ) ),
_signalQuality( rootNode->getNode("signal-quality-norm", true ) ),
_hasGS( rootNode->getNode("has-gs", true ) ),
_gsDeflection(rootNode->getNode("gs-needle-deflection", true )),
_gsDeflectionDeg(rootNode->getNode("gs-needle-deflection-deg", true )),
_gsDeflectionNorm(rootNode->getNode("gs-needle-deflection-norm", true ))
{
}
virtual ~NavIndicator() {}
/**
* set the normalized CDI deflection
* @param norm the cdi deflection normalized [-1..1]
*/
void setCDI( double norm )
{
_cdi = norm * 10.0;
_cdiNorm = norm;
}
/**
* set the normalized GS deflection
* @param norm the gs deflection normalized to [-1..1]
*/
void setGS( double norm )
{
_gsDeflectionNorm = norm;
_gsDeflectionDeg = norm * 0.7;
_gsDeflection = norm * 3.5;
}
void setGS( bool enabled )
{
_hasGS = enabled;
if( !enabled ) {
setGS( 0.0 );
}
}
void showFrom( bool on )
{
_fromFlag = on;
}
void showTo( bool on )
{
_toFlag = on;
}
void setSelectedCourse( double course )
{
_course = course;
}
double getSelectedCourse() const
{
return SGMiscd::normalizePeriodic(0.0, 360.0, _course );
}
void setSignalQuality( double signalQuality )
{
_signalQuality = signalQuality;
}
private:
PropertyObject<double> _cdi;
PropertyObject<double> _cdiNorm;
PropertyObject<double> _course;
PropertyObject<double> _toFlag;
PropertyObject<double> _fromFlag;
PropertyObject<double> _signalQuality;
PropertyObject<double> _hasGS;
PropertyObject<double> _gsDeflection;
PropertyObject<double> _gsDeflectionDeg;
PropertyObject<double> _gsDeflectionNorm;
};
/* ---------------------------------------------------------------- */
class NavRadioComponent {
public:
NavRadioComponent( const std::string & name, SGPropertyNode_ptr rootNode );
virtual ~NavRadioComponent();
virtual void update( double dt, const SGGeod & aircraftPosition );
virtual void search( double frequency, const SGGeod & aircraftPosition );
virtual double getRange_nm( const SGGeod & aircraftPosition );
virtual void display( NavIndicator & navIndicator ) = 0;
virtual bool valid() const { return NULL != _navRecord && true == _serviceable; }
virtual const std::string getIdent() const { return _ident; }
protected:
virtual double computeSignalQuality_norm( const SGGeod & aircraftPosition );
virtual FGNavList * getNavaidList() = 0;
// General-purpose sawtooth function. Graph looks like this:
// /\ .
// \/
// Odd symmetry, inversion symmetry about the origin.
// Unit slope at the origin.
// Max 1, min -1, period 4.
// Two zero-crossings per period, one with + slope, one with - slope.
// Useful for false localizer courses.
static double sawtooth(double xx)
{
return 4.0 * fabs(xx/4.0 + 0.25 - floor(xx/4.0 + 0.75)) - 1.0;
}
SGPropertyNode_ptr _rootNode;
const std::string _name;
FGNavRecord * _navRecord;
PropertyObject<bool> _serviceable;
PropertyObject<double> _signalQuality_norm;
PropertyObject<double> _trueBearingTo_deg;
PropertyObject<double> _trueBearingFrom_deg;
PropertyObject<double> _trackDistance_m;
PropertyObject<double> _slantDistance_m;
PropertyObject<double> _heightAboveStation_ft;
PropertyObject<string> _ident;
PropertyObject<bool> _inRange;
PropertyObject<double> _range_nm;
};
class NavRadioComponentWithIdent : public NavRadioComponent {
public:
NavRadioComponentWithIdent( const std::string & name, SGPropertyNode_ptr rootNode, AudioIdent * audioIdent );
virtual ~NavRadioComponentWithIdent();
void update( double dt, const SGGeod & aircraftPosition );
protected:
static std::string getIdentString( const std::string & name, int index );
private:
AudioIdent * _audioIdent;
PropertyObject<double> _identVolume;
PropertyObject<bool> _identEnabled;
};
std::string NavRadioComponentWithIdent::getIdentString( const std::string & name, int index )
{
std::ostringstream temp;
temp << name << "-ident-" << index;
return temp.str();
}
NavRadioComponentWithIdent::NavRadioComponentWithIdent( const std::string & name, SGPropertyNode_ptr rootNode, AudioIdent * audioIdent ) :
NavRadioComponent( name, rootNode ),
_audioIdent( audioIdent ),
_identVolume( rootNode->getNode(name,true)->getNode("ident-volume",true) ),
_identEnabled( rootNode->getNode(name,true)->getNode("ident-enabled",true) )
{
_audioIdent->init();
}
NavRadioComponentWithIdent::~NavRadioComponentWithIdent()
{
delete _audioIdent;
}
void NavRadioComponentWithIdent::update( double dt, const SGGeod & aircraftPosition )
{
NavRadioComponent::update( dt, aircraftPosition );
_audioIdent->update( dt );
if( false == ( valid() && _identEnabled && _signalQuality_norm > 0.1 ) ) {
_audioIdent->setIdent("", 0.0 );
return;
}
_audioIdent->setIdent( _ident, SGMiscd::clip(_identVolume, 0.0, 1.0) );
}
NavRadioComponent::NavRadioComponent( const std::string & name, SGPropertyNode_ptr rootNode ) :
_rootNode(rootNode),
_name(name),
_navRecord(NULL),
_serviceable( rootNode->getNode(name,true)->getNode("serviceable",true) ),
_signalQuality_norm( rootNode->getNode(name,true)->getNode("signal-quality-norm",true) ),
_trueBearingTo_deg( rootNode->getNode(name,true)->getNode("true-bearing-to-deg",true) ),
_trueBearingFrom_deg( rootNode->getNode(name,true)->getNode("true-bearing-from-deg",true) ),
_trackDistance_m( rootNode->getNode(name,true)->getNode("track-distance-m",true) ),
_slantDistance_m( rootNode->getNode(name,true)->getNode("slant-distance-m",true) ),
_heightAboveStation_ft( rootNode->getNode(name,true)->getNode("height-above-station-ft",true) ),
_ident( rootNode->getNode(name,true)->getNode("ident",true) ),
_inRange( rootNode->getNode(name,true)->getNode("in-range",true) ),
_range_nm( rootNode->getNode(_name,true)->getNode("range-nm",true) )
{
simgear::props::Type typ = _serviceable.node()->getType();
if ((typ == simgear::props::NONE) || (typ == simgear::props::UNSPECIFIED))
_serviceable = true;
}
NavRadioComponent::~NavRadioComponent()
{
}
double NavRadioComponent::getRange_nm( const SGGeod & aircraftPosition )
{
if( _navRecord == NULL ) return 0.0; // no station: no range
double d = _navRecord->get_range();
if( d <= SGLimitsd::min() ) return 25.0; // no configured range: arbitrary number
return d; // configured range
}
void NavRadioComponent::search( double frequency, const SGGeod & aircraftPosition )
{
if( NULL == (_navRecord = getNavaidList()->findByFreq(frequency, aircraftPosition )) ) {
SG_LOG(SG_INSTR,SG_ALERT, "No " << _name << " available at " << frequency );
_ident = "";
return;
}
SG_LOG(SG_INSTR,SG_ALERT, "Using " << _name << "'" << _navRecord->get_ident() << "' for " << frequency );
_ident = _navRecord->ident();
}
double NavRadioComponent::computeSignalQuality_norm( const SGGeod & aircraftPosition )
{
if( false == valid() ) return 0.0;
double distance_nm = _slantDistance_m * SG_METER_TO_NM;
double range_nm = _range_nm;
// assume signal quality is 100% up to the published range and
// decay with the distance squared further out
if ( distance_nm <= range_nm ) return 1.0;
return range_nm*range_nm/(distance_nm*distance_nm);
}
void NavRadioComponent::update( double dt, const SGGeod & aircraftPosition )
{
if( false == valid() ) {
_signalQuality_norm = 0.0;
_trueBearingTo_deg = 0.0;
_trueBearingFrom_deg = 0.0;
_trackDistance_m = 0.0;
_slantDistance_m = 0.0;
return;
}
_slantDistance_m = dist(_navRecord->cart(), SGVec3d::fromGeod(aircraftPosition));
double az1 = 0.0, az2 = 0.0, dist = 0.0;
SGGeodesy::inverse(aircraftPosition, _navRecord->geod(), az1, az2, dist );
_trueBearingTo_deg = az1; _trueBearingFrom_deg = az2; _trackDistance_m = dist;
_heightAboveStation_ft = SGMiscd::max(0.0, aircraftPosition.getElevationFt() - _navRecord->get_elev_ft());
_range_nm = getRange_nm(aircraftPosition);
_signalQuality_norm = computeSignalQuality_norm( aircraftPosition );
_inRange = _signalQuality_norm > 0.2;
}
/* ---------------------------------------------------------------- */
static std::string VORTablePath( const char * name )
{
SGPath path( globals->get_fg_root() );
path.append( "Navaids" );
path.append(name);
return path.str();
}
class VOR : public NavRadioComponentWithIdent {
public:
VOR( SGPropertyNode_ptr rootNode);
virtual ~VOR();
virtual void update( double dt, const SGGeod & aircraftPosition );
virtual void display( NavIndicator & navIndicator );
virtual double getRange_nm(const SGGeod & aircraftPosition);
protected:
virtual double computeSignalQuality_norm( const SGGeod & aircraftPosition );
virtual FGNavList * getNavaidList();
private:
double _totalTime;
class ServiceVolume {
public:
ServiceVolume() :
term_tbl(VORTablePath("range.term")),
low_tbl(VORTablePath("range.low")),
high_tbl(VORTablePath("range.high")) {
}
double adjustRange( double height_ft, double nominalRange_nm );
private:
SGInterpTable term_tbl;
SGInterpTable low_tbl;
SGInterpTable high_tbl;
} _serviceVolume;
PropertyObject<double> _radial;
PropertyObject<double> _radialInbound;
};
// model standard VOR/DME/TACAN service volumes as per AIM 1-1-8
double VOR::ServiceVolume::adjustRange( double height_ft, double nominalRange_nm )
{
if (nominalRange_nm < SGLimitsd::min() )
nominalRange_nm = FG_NAV_DEFAULT_RANGE;
// extend out actual usable range to be 1.3x the published safe range
const double usability_factor = 1.3;
// assumptions we model the standard service volume, plus
// ... rather than specifying a cylinder, we model a cone that
// contains the cylinder. Then we put an upside down cone on top
// to model diminishing returns at too-high altitudes.
if ( nominalRange_nm < 25.0 + SG_EPSILON ) {
// Standard Terminal Service Volume
return term_tbl.interpolate( height_ft ) * usability_factor;
} else if ( nominalRange_nm < 50.0 + SG_EPSILON ) {
// Standard Low Altitude Service Volume
// table is based on range of 40, scale to actual range
return low_tbl.interpolate( height_ft ) * nominalRange_nm / 40.0
* usability_factor;
} else {
// Standard High Altitude Service Volume
// table is based on range of 130, scale to actual range
return high_tbl.interpolate( height_ft ) * nominalRange_nm / 130.0
* usability_factor;
}
}
VOR::VOR( SGPropertyNode_ptr rootNode) :
NavRadioComponentWithIdent("vor", rootNode, new VORAudioIdent(getIdentString(string("vor"), rootNode->getIndex()))),
_totalTime(0.0),
_radial( rootNode->getNode(_name,true)->getNode("radial",true) ),
_radialInbound( rootNode->getNode(_name,true)->getNode("radial-inbound",true) )
{
}
VOR::~VOR()
{
}
double VOR::getRange_nm( const SGGeod & aircraftPosition )
{
return _serviceVolume.adjustRange( _heightAboveStation_ft, _navRecord->get_range() );
}
FGNavList * VOR::getNavaidList()
{
return globals->get_navlist();
}
double VOR::computeSignalQuality_norm( const SGGeod & aircraftPosition )
{
// apply cone of confusion. Some sources say it's opening angle is 53deg, others estimate
// a diameter of 1NM per 6000ft (approx. 45deg). ICAO Annex 10 says minimum 40deg.
// We use 1NM@6000ft and a distance-squared
// function to make signal-quality=100% 0.5NM@6000ft from the center and zero overhead
double cone_of_confusion_width = 0.5 * _heightAboveStation_ft / 6000.0 * SG_NM_TO_METER;
if( _trackDistance_m < cone_of_confusion_width ) {
double d = cone_of_confusion_width <= SGLimitsd::min() ? 1 :
(1 - _trackDistance_m/cone_of_confusion_width);
return 1-d*d;
}
// use default decay function outside the cone of confusion
return NavRadioComponentWithIdent::computeSignalQuality_norm( aircraftPosition );
}
void VOR::update( double dt, const SGGeod & aircraftPosition )
{
_totalTime += dt;
NavRadioComponentWithIdent::update( dt, aircraftPosition );
if( false == valid() ) {
_radial = 0.0;
return;
}
// an arbitrary error function
double error = 0.5*(sin(_totalTime/11.0) + sin(_totalTime/23.0));
// add 1% error at 100% signal-quality
// add 50% error at 0% signal-quality
// of full deflection (+/-10deg)
double e = 10.0 * ( 0.01 + (1-_signalQuality_norm) * 0.49 ) * error;
// compute magnetic bearing from the station (aka current radial)
double r = SGMiscd::normalizePeriodic(0.0, 360.0, _trueBearingFrom_deg - _navRecord->get_multiuse() + e );
_radial = r;
_radialInbound = SGMiscd::normalizePeriodic(0.0,360.0, 180.0 + _radial);
}
void VOR::display( NavIndicator & navIndicator )
{
if( false == valid() ) return;
double offset = SGMiscd::normalizePeriodic(-180.0,180.0,_radial - navIndicator.getSelectedCourse());
bool to = fabs(offset) >= 90.0;
if( to ) offset = -offset + copysign(180.0,offset);
navIndicator.showTo( to );
navIndicator.showFrom( !to );
// normalize to +/- 1.0 for +/- 10deg, decrease deflection with decreasing signal
navIndicator.setCDI( SGMiscd::clip( -offset/10.0, -1.0, 1.0 ) * _signalQuality_norm );
navIndicator.setSignalQuality( _signalQuality_norm );
}
/* ---------------------------------------------------------------- */
class LOC : public NavRadioComponentWithIdent {
public:
LOC( SGPropertyNode_ptr rootNode );
virtual ~LOC();
virtual void update( double dt, const SGGeod & aircraftPosition );
virtual void search( double frequency, const SGGeod & aircraftPosition );
virtual void display( NavIndicator & navIndicator );
virtual double getRange_nm(const SGGeod & aircraftPosition);
protected:
virtual double computeSignalQuality_norm( const SGGeod & aircraftPosition );
virtual FGNavList * getNavaidList();
private:
class ServiceVolume {
public:
ServiceVolume();
double adjustRange( double azimuthAngle_deg, double elevationAngle_deg );
private:
SGInterpTable _azimuthTable;
SGInterpTable _elevationTable;
} _serviceVolume;
PropertyObject<double> _localizerOffset_norm;
PropertyObject<double> _localizerWidth_deg;
};
LOC::ServiceVolume::ServiceVolume()
{
// maybe this: http://www.tpub.com/content/aviation2/P-1244/P-12440125.htm
// ICAO Annex 10 - 3.1.3.2.2: The emission from the localizer
// shall be horizontally polarized
// very rough abstraction of a 5-element yagi antenna's
// E-plane radiation diagram
_azimuthTable.addEntry( 0.0, 1.0 );
_azimuthTable.addEntry( 10.0, 1.0 );
_azimuthTable.addEntry( 30.0, 0.75 );
_azimuthTable.addEntry( 40.0, 0.50 );
_azimuthTable.addEntry( 50.0, 0.20 );
_azimuthTable.addEntry( 60.0, 0.10 );
_azimuthTable.addEntry( 70.0, 0.20 );
_azimuthTable.addEntry( 80.0, 0.10 );
_azimuthTable.addEntry( 90.0, 0.05 );
_azimuthTable.addEntry( 105.0, 0.10 );
_azimuthTable.addEntry( 130.0, 0.05 );
_azimuthTable.addEntry( 150.0, 0.30 );
_azimuthTable.addEntry( 160.0, 0.40 );
_azimuthTable.addEntry( 170.0, 0.50 );
_azimuthTable.addEntry( 180.0, 0.50 );
_elevationTable.addEntry( 0.0, 0.1 );
_elevationTable.addEntry( 1.05, 1.0 );
_elevationTable.addEntry( 7.00, 1.0 );
_elevationTable.addEntry( 45.0, 0.3 );
_elevationTable.addEntry( 90.0, 0.1 );
_elevationTable.addEntry( 180.0, 0.01 );
}
double LOC::ServiceVolume::adjustRange( double azimuthAngle_deg, double elevationAngle_deg )
{
return _azimuthTable.interpolate( fabs(azimuthAngle_deg) ) *
_elevationTable.interpolate( fabs(elevationAngle_deg) );
}
LOC::LOC( SGPropertyNode_ptr rootNode) :
NavRadioComponentWithIdent("loc", rootNode, new LOCAudioIdent(getIdentString(string("loc"), rootNode->getIndex()))),
_serviceVolume(),
_localizerOffset_norm( rootNode->getNode(_name,true)->getNode("offset-norm",true) ),
_localizerWidth_deg( rootNode->getNode(_name,true)->getNode("width-deg",true) )
{
}
LOC::~LOC()
{
}
FGNavList * LOC::getNavaidList()
{
return globals->get_loclist();
}
void LOC::search( double frequency, const SGGeod & aircraftPosition )
{
NavRadioComponentWithIdent::search( frequency, aircraftPosition );
if( false == valid() ) {
_localizerWidth_deg = 0.0;
return;
}
// cache slightly expensive value,
// sanitized in FGNavRecord::localizerWidth() to never become zero
_localizerWidth_deg = _navRecord->localizerWidth();
}
/* Localizer coverage (ICAO Annex 10 Volume I 3.1.3.3
25NM within +/-10 deg from the front course line
17NM between 10 and 35deg from the front course line
10NM outside of +/- 35deg if coverage is provided
at and above a height of 2000ft above threshold or
1000ft above the highest point within intermediate
and final approach areas. Upper limit is a surface
extending outward from the localizer and inclined at
7 degrees above the horizontal
*/
double LOC::getRange_nm(const SGGeod & aircraftPosition)
{
double elevationAngle = ::atan2(_heightAboveStation_ft*SG_FEET_TO_METER, _trackDistance_m)*SG_RADIANS_TO_DEGREES;
double azimuthAngle = SGMiscd::normalizePeriodic( -180.0, 180.0, _trueBearingFrom_deg + 180.0 - _navRecord->get_multiuse() );
// looks like our navrecord declared range is based on 10NM?
return _navRecord->get_range() * _serviceVolume.adjustRange( azimuthAngle, elevationAngle );
}
double LOC::computeSignalQuality_norm( const SGGeod & aircraftPosition )
{
return NavRadioComponentWithIdent::computeSignalQuality_norm( aircraftPosition );
}
void LOC::update( double dt, const SGGeod & aircraftPosition )
{
NavRadioComponentWithIdent::update( dt, aircraftPosition );
if( false == valid() ) {
_localizerOffset_norm = 0.0;
return;
}
double offset = SGMiscd::normalizePeriodic( -180.0, 180.0, _trueBearingFrom_deg + 180.0 - _navRecord->get_multiuse() );
// The factor of 30.0 gives a period of 120 which gives us 3 cycles and six
// zeros i.e. six courses: one front course, one back course, and four
// false courses. Three of the six are reverse sensing.
offset = 30.0 * sawtooth(offset / 30.0);
// normalize offset to the localizer width, scale and clip to [-1..1]
offset = SGMiscd::clip( 2.0 * offset / _localizerWidth_deg, -1.0, 1.0 );
_localizerOffset_norm = offset;
}
void LOC::display( NavIndicator & navIndicator )
{
if( false == valid() )
return;
navIndicator.showTo( true );
navIndicator.showFrom( false );
navIndicator.setCDI( _localizerOffset_norm * _signalQuality_norm );
navIndicator.setSignalQuality( _signalQuality_norm );
}
class GS : public NavRadioComponent {
public:
GS( SGPropertyNode_ptr rootNode);
virtual ~GS();
virtual void update( double dt, const SGGeod & aircraftPosition );
virtual void search( double frequency, const SGGeod & aircraftPosition );
virtual void display( NavIndicator & navIndicator );
virtual double getRange_nm(const SGGeod & aircraftPosition);
protected:
virtual FGNavList * getNavaidList();
private:
class ServiceVolume {
public:
ServiceVolume();
double adjustRange( double azimuthAngle_deg, double elevationAngle_deg );
private:
SGInterpTable _azimuthTable;
SGInterpTable _elevationTable;
} _serviceVolume;
static SGVec3d tangentVector(const SGGeod& midpoint, const double heading);
PropertyObject<double> _targetGlideslope_deg;
PropertyObject<double> _glideslopeOffset_norm;
SGVec3d _gsAxis;
SGVec3d _gsVertical;
};
GS::ServiceVolume::ServiceVolume()
{
// maybe this: http://www.tpub.com/content/aviation2/P-1244/P-12440125.htm
// ICAO Annex 10 - 3.1.5.2.2: The emission from the glide path equipment
// shall be horizontally polarized
// very rough abstraction of a 5-element yagi antenna's
// E-plane radiation diagram
_azimuthTable.addEntry( 0.0, 1.0 );
_azimuthTable.addEntry( 10.0, 1.0 );
_azimuthTable.addEntry( 30.0, 0.75 );
_azimuthTable.addEntry( 40.0, 0.50 );
_azimuthTable.addEntry( 50.0, 0.20 );
_azimuthTable.addEntry( 60.0, 0.10 );
_azimuthTable.addEntry( 70.0, 0.20 );
_azimuthTable.addEntry( 80.0, 0.10 );
_azimuthTable.addEntry( 90.0, 0.05 );
_azimuthTable.addEntry( 105.0, 0.10 );
_azimuthTable.addEntry( 130.0, 0.05 );
_azimuthTable.addEntry( 150.0, 0.30 );
_azimuthTable.addEntry( 160.0, 0.40 );
_azimuthTable.addEntry( 170.0, 0.50 );
_azimuthTable.addEntry( 180.0, 0.50 );
_elevationTable.addEntry( 0.0, 0.1 );
_elevationTable.addEntry( 1.05, 1.0 );
_elevationTable.addEntry( 7.00, 1.0 );
_elevationTable.addEntry( 45.0, 0.3 );
_elevationTable.addEntry( 90.0, 0.1 );
_elevationTable.addEntry( 180.0, 0.01 );
}
double GS::ServiceVolume::adjustRange( double azimuthAngle_deg, double elevationAngle_deg )
{
return _azimuthTable.interpolate( fabs(azimuthAngle_deg) ) *
_elevationTable.interpolate( fabs(elevationAngle_deg) );
}
GS::GS( SGPropertyNode_ptr rootNode) :
NavRadioComponent("gs", rootNode ),
_targetGlideslope_deg( rootNode->getNode(_name,true)->getNode("slope",true) ),
_glideslopeOffset_norm( rootNode->getNode(_name,true)->getNode("offset-norm",true) ),
_gsAxis(SGVec3d::zeros()),
_gsVertical(SGVec3d::zeros())
{
}
GS::~GS()
{
}
FGNavList * GS::getNavaidList()
{
return globals->get_gslist();
}
double GS::getRange_nm(const SGGeod & aircraftPosition)
{
double elevationAngle = ::atan2(_heightAboveStation_ft*SG_FEET_TO_METER, _trackDistance_m)*SG_RADIANS_TO_DEGREES;
double azimuthAngle = SGMiscd::normalizePeriodic( -180.0, 180.0, _trueBearingFrom_deg + 180.0 - fmod(_navRecord->get_multiuse(), 1000.0) );
return _navRecord->get_range() * _serviceVolume.adjustRange( azimuthAngle, elevationAngle );
}
// Calculate a Cartesian unit vector in the
// local horizontal plane, i.e. tangent to the
// surface of the earth at the local ground zero.
// The tangent vector passes through the given <midpoint>
// and points forward along the given <heading>.
// The <heading> is given in degrees.
SGVec3d GS::tangentVector(const SGGeod& midpoint, const double heading)
{
// move 100m away from the midpoint - arbitrary number
const double delta(100.0);
SGGeod head, tail;
double az2; // ignored
SGGeodesy::direct(midpoint, heading, delta, head, az2);
SGGeodesy::direct(midpoint, 180+heading, delta, tail, az2);
head.setElevationM(midpoint.getElevationM());
tail.setElevationM(midpoint.getElevationM());
SGVec3d head_xyz = SGVec3d::fromGeod(head);
SGVec3d tail_xyz = SGVec3d::fromGeod(tail);
// Awkward formula here, needed because vector-by-scalar
// multiplication is defined, but not vector-by-scalar division.
return (head_xyz - tail_xyz) * (0.5/delta);
}
void GS::search( double frequency, const SGGeod & aircraftPosition )
{
NavRadioComponent::search( frequency, aircraftPosition );
if( false == valid() ) {
_gsAxis = SGVec3d::zeros();
_gsVertical = SGVec3d::zeros();
_targetGlideslope_deg = 3.0;
return;
}
double gs_radial = SGMiscd::normalizePeriodic(0.0, 360.0, fmod(_navRecord->get_multiuse(), 1000.0) );
_gsAxis = tangentVector(_navRecord->geod(), gs_radial);
SGVec3d gsBaseline = tangentVector(_navRecord->geod(), gs_radial + 90.0);
_gsVertical = cross(gsBaseline, _gsAxis);
int tmp = (int)(_navRecord->get_multiuse() / 1000.0);
// catch unconfigured glideslopes here, they will cause nan later
_targetGlideslope_deg = SGMiscd::max( 1.0, (double)tmp / 100.0 );
}
void GS::update( double dt, const SGGeod & aircraftPosition )
{
NavRadioComponent::update( dt, aircraftPosition );
if( false == valid() ) {
_glideslopeOffset_norm = 0.0;
return;
}
SGVec3d pos = SGVec3d::fromGeod(aircraftPosition) - _navRecord->cart(); // relative vector from gs antenna to aircraft
// The positive GS axis points along the runway in the landing direction,
// toward the far end, not toward the approach area, so we need a - sign here:
double comp_h = -dot(pos, _gsAxis); // component in horiz direction
double comp_v = dot(pos, _gsVertical); // component in vertical direction
//double comp_b = dot(pos, _gsBaseline); // component in baseline direction
//if (comp_b) {} // ... (useful for debugging)
// _gsDirect represents the angle of elevation of the aircraft
// as seen by the GS transmitter.
double gsDirect = atan2(comp_v, comp_h) * SGD_RADIANS_TO_DEGREES;
// At this point, if the aircraft is centered on the glide slope,
// _gsDirect will be a small positive number, e.g. 3.0 degrees
// Aim the branch cut straight down
// into the ground below the GS transmitter:
if (gsDirect < -90.0) gsDirect += 360.0;
double offset = _targetGlideslope_deg - gsDirect;
if( offset < 0.0 )
offset = _targetGlideslope_deg/2 * sawtooth(2.0*offset/_targetGlideslope_deg);
assert( false == isnan(offset) );
// GS is documented to be 1.4 degrees thick,
// i.e. plus or minus 0.7 degrees from the midline:
_glideslopeOffset_norm = SGMiscd::clip(offset/0.7, -1.0, 1.0);
}
void GS::display( NavIndicator & navIndicator )
{
if( false == valid() ) {
navIndicator.setGS( false );
return;
}
navIndicator.setGS( true );
navIndicator.setGS( _glideslopeOffset_norm );
}
/* ------------- A NAV/COMM Frequency formatter ---------------------- */
class FrequencyFormatter : public SGPropertyChangeListener {
public:
FrequencyFormatter( SGPropertyNode_ptr freqNode, SGPropertyNode_ptr fmtFreqNode, double channelSpacing ) :
_freqNode( freqNode ),
_fmtFreqNode( fmtFreqNode ),
_channelSpacing(channelSpacing)
{
_freqNode->addChangeListener( this );
valueChanged(_freqNode);
}
~FrequencyFormatter()
{
_freqNode->removeChangeListener( this );
}
void valueChanged (SGPropertyNode * prop)
{
// format as fixed decimal "nnn.nn"
ostringstream buf;
buf << std::fixed
<< std::setw(5)
<< std::setfill('0')
<< std::setprecision(2)
<< getFrequency();
_fmtFreqNode->setStringValue( buf.str() );
}
double getFrequency() const
{
double d = SGMiscd::roundToInt(_freqNode->getDoubleValue() / _channelSpacing) * _channelSpacing;
// strip last digit, do not round
return ((int)(d*100))/100.0;
}
private:
SGPropertyNode_ptr _freqNode;
SGPropertyNode_ptr _fmtFreqNode;
double _channelSpacing;
};
/* ------------- The NavRadio implementation ---------------------- */
class NavRadioImpl : public NavRadio {
public:
NavRadioImpl( SGPropertyNode_ptr node );
virtual ~NavRadioImpl();
virtual void update( double dt );
virtual void init();
private:
void search();
class Legacy {
public:
Legacy( NavRadioImpl * navRadioImpl ) : _navRadioImpl( navRadioImpl ) {}
void init();
void update( double dt );
private:
NavRadioImpl * _navRadioImpl;
SGPropertyNode_ptr is_valid_node;
SGPropertyNode_ptr nav_serviceable_node;
SGPropertyNode_ptr nav_id_node;
SGPropertyNode_ptr id_c1_node;
SGPropertyNode_ptr id_c2_node;
SGPropertyNode_ptr id_c3_node;
SGPropertyNode_ptr id_c4_node;
} _legacy;
const static int VOR_COMPONENT = 0;
const static int LOC_COMPONENT = 1;
const static int GS_COMPONENT = 2;
std::string _name;
int _num;
SGPropertyNode_ptr _rootNode;
FrequencyFormatter _useFrequencyFormatter;
FrequencyFormatter _stbyFrequencyFormatter;
std::vector<NavRadioComponent*> _components;
NavIndicator _navIndicator;
double _stationTTL;
double _frequency;
PropertyObject<bool> _cdiDisconnected;
};
NavRadioImpl::NavRadioImpl( SGPropertyNode_ptr node ) :
_legacy( this ),
_name(node->getStringValue("name", "nav")),
_num(node->getIntValue("number", 0)),
_rootNode(fgGetNode( string("/instrumentation/") + _name, _num, true)),
_useFrequencyFormatter( _rootNode->getNode("frequencies/selected-mhz",true), _rootNode->getNode("frequencies/selected-mhz-fmt",true), 0.05 ),
_stbyFrequencyFormatter( _rootNode->getNode("frequencies/standby-mhz",true), _rootNode->getNode("frequencies/standby-mhz-fmt",true), 0.05 ),
_navIndicator(_rootNode),
_stationTTL(0.0),
_frequency(-1.0),
_cdiDisconnected(_rootNode->getNode("cdi-disconnected",true))
{
}
NavRadioImpl::~NavRadioImpl()
{
BOOST_FOREACH( NavRadioComponent * p, _components ) {
delete p;
}
}
void NavRadioImpl::init()
{
if( 0 < _components.size() )
return;
_components.push_back( new VOR(_rootNode) );
_components.push_back( new LOC(_rootNode) );
_components.push_back( new GS(_rootNode) );
_legacy.init();
}
void NavRadioImpl::search()
{
}
void NavRadioImpl::update( double dt )
{
if( dt < SGLimitsd::min() ) return;
SGGeod position;
try {
position = globals->get_aircraft_position();
}
catch( exception & ) {
return;
}
_stationTTL -= dt;
if( _frequency != _useFrequencyFormatter.getFrequency() ) {
_frequency = _useFrequencyFormatter.getFrequency();
_stationTTL = 0.0;
}
BOOST_FOREACH( NavRadioComponent * p, _components ) {
if( _stationTTL <= 0.0 )
p->search( _frequency, position );
p->update( dt, position );
if( false == _cdiDisconnected )
p->display( _navIndicator );
}
if( _stationTTL <= 0.0 )
_stationTTL = 30.0;
_legacy.update( dt );
}
void NavRadioImpl::Legacy::init()
{
is_valid_node = _navRadioImpl->_rootNode->getChild("data-is-valid", 0, true);
nav_serviceable_node = _navRadioImpl->_rootNode->getChild("serviceable", 0, true);
nav_id_node = _navRadioImpl->_rootNode->getChild("nav-id", 0, true );
id_c1_node = _navRadioImpl->_rootNode->getChild("nav-id_asc1", 0, true );
id_c2_node = _navRadioImpl->_rootNode->getChild("nav-id_asc2", 0, true );
id_c3_node = _navRadioImpl->_rootNode->getChild("nav-id_asc3", 0, true );
id_c4_node = _navRadioImpl->_rootNode->getChild("nav-id_asc4", 0, true );
}
void NavRadioImpl::Legacy::update( double dt )
{
is_valid_node->setBoolValue(
_navRadioImpl->_components[VOR_COMPONENT]->valid() || _navRadioImpl->_components[LOC_COMPONENT]->valid()
);
string ident = _navRadioImpl->_components[VOR_COMPONENT]->getIdent();
if( ident.empty() )
ident = _navRadioImpl->_components[LOC_COMPONENT]->getIdent();
nav_id_node->setStringValue( ident );
ident = simgear::strutils::rpad( ident, 4, ' ' );
id_c1_node->setIntValue( (int)ident[0] );
id_c2_node->setIntValue( (int)ident[1] );
id_c3_node->setIntValue( (int)ident[2] );
id_c4_node->setIntValue( (int)ident[3] );
}
SGSubsystem * NavRadio::createInstance( SGPropertyNode_ptr rootNode )
{
// use old navradio code by default
if( fgGetBool( "/instrumentation/use-new-navradio", false ) )
return new NavRadioImpl( rootNode );
return new FGNavRadio( rootNode );
}
} // namespace Instrumentation