1
0
Fork 0
flightgear/src/FDM/YASim/RigidBody.hpp

124 lines
4.1 KiB
C++
Raw Normal View History

#ifndef _RIGIDBODY_HPP
#define _RIGIDBODY_HPP
namespace yasim {
//
// A RigidBody object maintains all "internal" state about an object,
// accumulates force and torque information from external sources, and
// calculates the resulting accelerations.
//
//
// Units note: obviously, the choice of mass, time and distance units
// is up to the user. If you provide mass in kilograms, forces in
// newtons, and torques in newton-meters, you'll get your
// accelerations back in m/s^2. The angular units, however, are
// UNIFORMLY radians. Angular velocities are radians per <time unit>,
// the angular acceleration you get back is radians per <time unit>^2,
// and the angular momenta supplied to setGyro must be in radians,
// too. Radians, not degrees. Don't forget.
//
class RigidBody
{
public:
RigidBody();
~RigidBody();
// Adds a point mass to the system. Returns a handle so the gyro
// can be later modified via setMass().
int addMass(float mass, float* pos);
// Modifies a previously-added point mass (fuel tank running dry,
// gear going up, swing wing swinging, pilot bailing out, etc...)
void setMass(int handle, float mass);
void setMass(int handle, float mass, float* pos);
int numMasses();
float getMass(int handle);
void getMassPosition(int handle, float* out);
float getTotalMass();
// The velocity, in local coordinates, of the specified point on a
// body rotating about its c.g. with velocity rot.
void pointVelocity(float* pos, float* rot, float* out);
// Sets the "gyroscope" for the body. This is the total
// "intrinsic" angular momentum of the body; that is, rotations of
// sub-objects, NOT rotation of the whole body within the global
// frame. Because angular momentum is additive in this way, we
// don't need to specify specific gyro objects; just add all their
// momenta together and set it here.
void setGyro(float* angularMomentum);
// When masses are moved or changed, this object needs to
// regenerate its internal tables. This step is expensive, so
// it's exposed to the client who can amortize the call across
// multiple changes.
void recalc();
// Resets the current force/torque parameters to zero.
void reset();
// Applies a force at the specified position.
void addForce(float* pos, float* force);
// Applies a force at the center of gravity.
void addForce(float* force);
// Adds a torque with the specified axis and magnitude
void addTorque(float* torque);
// Sets the rotation rate of the body (about its c.g.) within the
// surrounding environment. This is needed to compute torque on
// the body due to the centripetal forces involved in the
// rotation. NOTE: the rotation vector, like all other
// coordinates used here, is specified IN THE LOCAL COORDINATE
// SYSTEM.
void setBodySpin(float* rotation);
// Returns the center of gravity of the masses, in the body
// coordinate system.
void getCG(float* cgOut);
// Returns the acceleration of the body's c.g. relative to the
// rest of the world, specified in local coordinates.
void getAccel(float* accelOut);
// Returns the acceleration of a specific location in local
// coordinates. If the body is rotating, this will be different
// from the c.g. acceleration due to the centripetal accelerations
// of points not on the rotation axis.
void getAccel(float* pos, float* accelOut);
// Returns the instantaneous rate of change of the angular
// velocity, as a vector in local coordinates.
void getAngularAccel(float* accelOut);
private:
struct Mass { float m; float p[3]; };
// Internal "rotational structure"
Mass* _masses;
int _nMasses;
int _massesAlloced;
float _totalMass;
float _cg[3];
float _gyro[3];
// Inertia tensor, and its inverse. Computed from the above.
float _I[9];
float _invI[9];
// Externally determined quantities
float _force[3];
float _torque[3];
float _spin[3];
};
}; // namespace yasim
#endif // _RIGIDBODY_HPP