1
0
Fork 0
fgdata/Nasal/local_weather/local_weather.nas
2012-03-08 23:22:27 +01:00

4793 lines
134 KiB
Text

########################################################
# routines to set up, transform and manage local weather
# Thorsten Renk, June 2011
# thermal model by Patrice Poly, April 2010
########################################################
# function purpose
#
# calc_geo to compute the latitude to meter conversion
# calc_d_sq to compute a distance square in local Cartesian approximation
# effect_volume_loop to check if the aircraft has entered an effect volume
# assemble_effect_array to store the size of the effect volume array
# add_vectors to add two vectors in polar coordinates
# wind_altitude_interpolation to interpolate aloft winds in altitude
# wind_interpolation to interpolate aloft winds in altitude and position
# get_slowdown_fraction to compute the effect of boundary layer wind slowdown
# interpolation_loop to continuously interpolate weather parameters between stations
# thermal_lift_start to start the detailed thermal model
# thermal_lift_loop to manage the detailed thermal lift model
# thermal_lift_stop to end the detailed thermal lift model
# wave_lift_start to start the detailed wave lift model
# wave_lift_loop to manage the detailed wave lift model
# wave_lift_stop to end the detailed wave lift model
# effect_volume_start to manage parameters when an effect volume is entered
# effect_volume_stop to manage parameters when an effect volume is left
# ts_factor (helper function for thermal lift model)
# tl_factor (helper function for thermal lift model)
# calcLift_max to calculate the maximal available thermal lift for given altitude
# calcLift to calculate the thermal lift at aircraft position
# calcWaveLift to calculate wave lift at aircraft position
# create_cloud_vec to place a single cloud into an array to be written later
# clear_all to remove all clouds, effect volumes and weather stations and stop loops
# create_detailed_cumulus_cloud to place multiple cloudlets into a box based on a size parameter
# create_cumulonimbus_cloud to place multiple cloudlets into a box
# create_cumulonimbus_cloud_rain to place multiple cloudlets into a box and add a rain layer beneath
# create_cumosys wrapper to place a convective cloud system based on terrain coverage
# cumulus_loop to place 25 Cumulus clouds each frame
# create_cumulus to place a convective cloud system based on terrain coverage
# recreate_cumulus to respawn convective clouds as part of the convective dynamics algorithm
# cumulus_exclusion_layer to create a layer with 'holes' left for thunderstorm placement
# create_rise_clouds to create a barrier cloud system
# create_streak to create a cloud streak
# create_undulatus to create an undulating cloud pattern
# create_layer to create a cloud layer with optional precipitation
# create_hollow_layer to create a cloud layer in a hollow cylinder (better for performance)
# create_cloudbox to create a sophisticated cumulus cloud with different textures (experimental)
# terrain_presampling_start to initialize terrain presampling
# terrain_presampling_loop to sample 25 terrain points per frame
# terrain_presampling to sample terrain elevation at a random point within specified area
# terrain_presampling_analysis to analyze terrain presampling results
# wave_detection_loop to detect if and where wave lift should be placed (currently unfinished)
# get_convective_altitude to determine the altitude at which a Cumulus cloud is placed
# manage presampling to take proper action when a presampling call has been finished
# set_wind_model_flag to convert the wind model string into an integer flag
# set_texture_mix to determine the texture mix between smooth and rough cloud appearance
# create_effect_volume to create an effect volume
# set_weather_station to specify a weather station for interpolation
# set_atmosphere_ipoint to specify an interpolation point for visibility, haze and shading in the atmosphere
# set_wind_ipoint to set an aloft wind interpolation point
# set_wind_ipoint_metar to set a wind interpolation point from available ground METAR info where aloft is modelled
# showDialog to pop up a dialog window
# readFlags to read configuration flags from the property tree into Nasal variables at startup
# streak_wrapper wrapper to execute streak from menu
# convection wrapper wrapper to execute convective clouds from menu
# barrier wrapper wrapper to execute barrier clouds from menu
# single_cloud_wrapper wrapper to create single cloud from menu
# layer wrapper wrapper to create layer from menu
# box wrapper wrapper to create a cloudbox (experimental)
# set_aloft wrapper wrapper to create aloft winds from menu
# set_tile to call a weather tile creation from menu
# startup to prepare the package at startup
# test to serve as a testbed for new functions
# object purpose
# weatherStation to store info about weather conditions
# atmopshereIpoint to store info about haze and light propagation in the atmosphere
# windIpoint to store an interpolation point of the windfield
# effectVolume to store effect volume info and provide methods to move and time-evolve effect volumes
# thermalLift to store thermal info and provide methods to move and time-evolve a thermal
# waveLift to store wave info
###################################
# geospatial helper functions
###################################
var calc_geo = func(clat) {
lon_to_m = math.cos(clat*math.pi/180.0) * lat_to_m;
m_to_lon = 1.0/lon_to_m;
weather_dynamics.lon_to_m = lon_to_m;
weather_dynamics.m_to_lon = m_to_lon;
}
var calc_d_sq = func (lat1, lon1, lat2, lon2) {
var x = (lat1 - lat2) * lat_to_m;
var y = (lon1 - lon2) * lon_to_m;
return (x*x + y*y);
}
###################################
# effect volume management loop
###################################
var effect_volume_loop = func (index, n_active) {
if (local_weather_running_flag == 0) {return;}
var n = 25;
var esize = n_effectVolumeArray;
var viewpos = geo.aircraft_position();
var active_counter = n_active;
var i_max = index + n;
if (i_max > esize) {i_max = esize;}
for (var i = index; i < i_max; i = i+1)
{
var e = effectVolumeArray[i];
var flag = 0; # default assumption is that we're not in the volume
var ealt_min = e.alt_low * ft_to_m;
var ealt_max = e.alt_high * ft_to_m;
if ((viewpos.alt() > ealt_min) and (viewpos.alt() < ealt_max)) # we are in the correct alt range
{
# so we load geometry next
var geometry = e.geometry;
var elat = e.lat;
var elon = e.lon;
var rx = e.r1;
if (geometry == 1) # we have a cylinder
{
var d_sq = calc_d_sq(viewpos.lat(), viewpos.lon(), elat, elon);
if (d_sq < (rx*rx)) {flag =1;}
}
else if (geometry == 2) # we have an elliptic shape
{
# get orientation
var ry = e.r2;
var phi = e.phi;
phi = phi * math.pi/180.0;
# first get unrotated coordinates
var xx = (viewpos.lon() - elon) * lon_to_m;
var yy = (viewpos.lat() - elat) * lat_to_m;
# then rotate to align with the shape
var x = xx * math.cos(phi) - yy * math.sin(phi);
var y = yy * math.cos(phi) + xx * math.sin(phi);
# then check elliptic condition
if ((x*x)/(rx*rx) + (y*y)/(ry*ry) <1) {flag = 1;}
}
else if (geometry == 3) # we have a rectangular shape
{
# get orientation
var ry = e.r2;
var phi = e.phi;
phi = phi * math.pi/180.0;
# first get unrotated coordinates
var xx = (viewpos.lon() - elon) * lon_to_m;
var yy = (viewpos.lat() - elat) * lat_to_m;
# then rotate to align with the shape
var x = xx * math.cos(phi) - yy * math.sin(phi);
var y = yy * math.cos(phi) + xx * math.sin(phi);
# then check rectangle condition
if ((x>-rx) and (x<rx) and (y>-ry) and (y<ry)) {flag = 1;}
}
} # end if altitude
# if flag ==1 at this point, we are inside the effect volume
# but we only need to take action on entering and leaving, so we check also active_flag
# if (flag==1) {print("Inside volume");}
var active_flag = e.active_flag;
if ((flag==1) and (active_flag ==0)) # we just entered the node
{
#print("Entered volume");
e.active_flag = 1;
effect_volume_start(e);
}
else if ((flag==0) and (active_flag ==1)) # we left an active node
{
#print("Left volume!");
e.active_flag = 0;
effect_volume_stop(e);
}
if (flag==1) {active_counter = active_counter + 1;} # we still count the active volumes
} # end foreach
# at this point, all active effect counters should have been set to zero if we're outside all volumes
# however there seem to be rare configurations of overlapping volumes for which this doesn't happen
# therefore we zero them for redundancy here so that the interpolation loop can take over
# and set the properties correctly for outside
if (i == esize) # we check the number of actives and reset all counters
{
if (active_counter == 0)
{
var vNode = props.globals.getNode("local-weather/effect-volumes", 1);
vNode.getChild("number-active-vis").setValue(0);
vNode.getChild("number-active-snow").setValue(0);
vNode.getChild("number-active-rain").setValue(0);
vNode.getChild("number-active-lift").setValue(0);
vNode.getChild("number-active-turb").setValue(0);
vNode.getChild("number-active-sat").setValue(0);
}
#print("n_active: ", active_counter);
active_counter = 0; i = 0;
}
# and we repeat the loop as long as the control flag is set
if (getprop(lw~"effect-loop-flag") ==1) {settimer( func {effect_volume_loop(i, active_counter); },0);}
}
###################################
# assemble effect volume array
###################################
var assemble_effect_array = func {
n_effectVolumeArray = size(effectVolumeArray);
}
###################################
# vector addition
###################################
var add_vectors = func (phi1, r1, phi2, r2) {
phi1 = phi1 * math.pi/180.0;
phi2 = phi2 * math.pi/180.0;
var x1 = r1 * math.sin(phi1);
var x2 = r2 * math.sin(phi2);
var y1 = r1 * math.cos(phi1);
var y2 = r2 * math.cos(phi2);
var x = x1+x2;
var y = y1+y2;
var phi = math.atan2(x,y) * 180.0/math.pi;
var r = math.sqrt(x*x + y*y);
var vec = [];
append(vec, phi);
append(vec,r);
return vec;
}
###################################
# windfield altitude interpolation
###################################
var wind_altitude_interpolation = func (altitude, w) {
if (altitude < wind_altitude_array[0]) {var alt_wind = wind_altitude_array[0];}
else if (altitude > wind_altitude_array[8]) {var alt_wind = 0.99* wind_altitude_array[8];}
else {var alt_wind = altitude;}
for (var i = 0; i<9; i=i+1)
{if (alt_wind < wind_altitude_array[i]) {break;}}
#var altNodeMin = w.getChild("altitude",i-1);
#var altNodeMax = w.getChild("altitude",i);
#var vmin = altNodeMin.getNode("windspeed-kt").getValue();
#var vmax = altNodeMax.getNode("windspeed-kt").getValue();
var vmin = w.alt[i-1].v;
var vmax = w.alt[i].v;
#var dir_min = altNodeMin.getNode("wind-from-heading-deg").getValue();
#var dir_max = altNodeMax.getNode("wind-from-heading-deg").getValue();
var dir_min = w.alt[i-1].d;
var dir_max = w.alt[i].d;
var f = (alt_wind - wind_altitude_array[i-1])/(wind_altitude_array[i] - wind_altitude_array[i-1]);
var res = add_vectors(dir_min, (1-f) * vmin, dir_max, f * vmax);
return res;
}
###################################
# windfield spatial interpolation
###################################
var wind_interpolation = func (lat, lon, alt) {
var sum_norm = 0;
var sum_wind = [0,0];
var wsize = size(windIpointArray);
for (var i = 0; i < wsize; i=i+1) {
var w = windIpointArray[i];
var wpos = geo.Coord.new();
wpos.set_latlon(w.lat,w.lon,1000.0);
var ppos = geo.Coord.new();
ppos.set_latlon(lat,lon,1000.0);
var d = ppos.distance_to(wpos);
if (d <100.0) {d = 100.0;} # to prevent singularity at zero
sum_norm = sum_norm + (1./d) * w.weight;
var res = wind_altitude_interpolation(alt,w);
sum_wind = add_vectors(sum_wind[0], sum_wind[1], res[0], (res[1]/d) * w.weight);
# gradually fade in the interpolation weight of newly added points to
# avoid sudden jumps
if (w.weight < 1.0) {w.weight = w.weight + 0.02;}
}
sum_wind[1] = sum_wind[1] /sum_norm;
return sum_wind;
}
###################################
# boundary layer computations
###################################
var get_slowdown_fraction = func {
var tile_index = getprop(lw~"tiles/tile[4]/tile-index");
var altitude_agl = getprop("/position/altitude-agl-ft");
var altitude = getprop("/position/altitude-ft");
if (presampling_flag == 0)
{
var base_layer_thickness = 600.0;
var f_slow = 1.0/3.0;
}
else
{
var alt_median = alt_50_array[tile_index - 1];
var alt_difference = alt_median - (altitude - altitude_agl);
var base_layer_thickness = 150.0;
# get the boundary layer size dependent on terrain altitude above terrain median
if (alt_difference > 0.0) # we're low and the boundary layer grows
{var boundary_alt = base_layer_thickness + 0.3 * alt_difference;}
else # the boundary layer shrinks
{var boundary_alt = base_layer_thickness + 0.1 * alt_difference;}
if (boundary_alt < 50.0){boundary_alt = 50.0;}
if (boundary_alt > 3000.0) {boundary_alt = 3000.0;}
# get the boundary effect as a function of bounday layer size
var f_slow = 1.0 - (0.2 + 0.17 * math.ln(boundary_alt/base_layer_thickness));
}
if (debug_output_flag == 1)
{
#print("Boundary layer thickness: ",base_layer_thickness);
#print("Boundary layer slowdown: ", f_slow);
}
return f_slow;
}
###################################
# interpolation management loop
###################################
var interpolation_loop = func {
if (local_weather_running_flag == 0) {return;}
var viewpos = geo.aircraft_position();
var vis_before = getprop(lwi~"visibility-m");
# if applicable, do some work for fps sampling
if (fps_control_flag == 1)
{
fps_samples = fps_samples +1;
fps_sum = fps_sum + getprop("/sim/frame-rate");
}
# determine at which distance we no longer keep an interpolation point, needs to be larger for METAR since points are more scarce
if (metar_flag == 1)
{var distance_to_unload = 250000.0;}
else
{var distance_to_unload = 120000.0;}
# if we can set environment without a reset, the loop can run a bit faster for smoother interpolation
# so determine the suitable timing
if (compat_layer.features.can_disable_environment == 1)
{var interpolation_loop_time = 0.2; var vlimit = 1.01;}
else
{var interpolation_loop_time = 1.0; var vlimit = 1.05;}
# get an inverse distance weighted average from all defined weather stations
var sum_alt = 0.0;
var sum_vis = 0.0;
var sum_T = 0.0;
var sum_p = 0.0;
var sum_D = 0.0;
var sum_norm = 0.0;
var n_stations = size(weatherStationArray);
for (var i = 0; i < n_stations; i=i+1) {
s = weatherStationArray[i];
var stpos = geo.Coord.new();
stpos.set_latlon(s.lat,s.lon,0.0);
var d = viewpos.distance_to(stpos);
if (d <100.0) {d = 100.0;} # to prevent singularity at zero
sum_norm = sum_norm + 1./d * s.weight;
sum_alt = sum_alt + (s.alt/d) * s.weight;
sum_vis = sum_vis + (s.vis/d) * s.weight;
sum_T = sum_T + (s.T/d) * s.weight;
sum_D = sum_D + (s.D/d) * s.weight;
sum_p = sum_p + (s.p/d) * s.weight;
# gradually fade in the interpolation weight of newly added stations to
# avoid sudden jumps
if (s.weight < 1.0) {s.weight = s.weight + 0.02;}
# automatically delete stations out of range
# take care not to unload if weird values appear for a moment
# never unload if only one station left
if ((d > distance_to_unload) and (d < (distance_to_unload + 20000.0)) and (n_stations > 1))
{
if (debug_output_flag == 1)
{print("Distance to weather station ", d, " m, unloading ...", i);}
weatherStationArray = weather_tile_management.delete_from_vector(weatherStationArray,i);
i = i-1; n_stations = n_stations -1;
}
}
setprop(lwi~"station-number", i+1);
var ialt = sum_alt/sum_norm;
var vis = sum_vis/sum_norm;
var p = sum_p/sum_norm;
var D = sum_D/sum_norm + temperature_offset;
var T = sum_T/sum_norm + temperature_offset;
# get an inverse distance weighted average from all defined atmospheric condition points
sum_norm = 0.0;
var sum_vis_aloft = 0.0;
var sum_vis_alt1 = 0.0;
var sum_vis_ovcst = 0.0;
var sum_ovcst = 0.0;
var sum_ovcst_alt_low = 0.0;
var sum_ovcst_alt_high = 0.0;
var sum_scatt = 0.0;
var sum_scatt_alt_low = 0.0;
var sum_scatt_alt_high = 0.0;
var n_iPoints = size(atmosphereIpointArray);
for (var i = 0; i < n_iPoints; i=i+1) {
a = atmosphereIpointArray[i];
var apos = geo.Coord.new();
apos.set_latlon(a.lat,a.lon,0.0);
var d = viewpos.distance_to(apos);
if (d <100.0) {d = 100.0;} # to prevent singularity at zero
sum_norm = sum_norm + 1./d * a.weight;
sum_vis_aloft = sum_vis_aloft + (a.vis_aloft/d) * a.weight;
sum_vis_alt1 = sum_vis_alt1 + (a.vis_alt1/d) * a.weight;
sum_vis_ovcst = sum_vis_ovcst + (a.vis_ovcst/d) * a.weight;
sum_ovcst = sum_ovcst + (a.ovcst/d) * a.weight;
sum_ovcst_alt_low = sum_ovcst_alt_low + (a.ovcst_alt_low/d) * a.weight;
sum_ovcst_alt_high = sum_ovcst_alt_high + (a.ovcst_alt_high/d) * a.weight;
sum_scatt = sum_scatt + (a.scatt/d) * a.weight;
sum_scatt_alt_low = sum_scatt_alt_low + (a.scatt_alt_low/d) * a.weight;
sum_scatt_alt_high = sum_scatt_alt_high + (a.scatt_alt_high/d) * a.weight;
# gradually fade in the interpolation weight of newly added stations to
# avoid sudden jumps
if (a.weight < 1.0) {a.weight = a.weight + 0.02;}
# automatically delete stations out of range
# take care not to unload if weird values appear for a moment
# never unload if only one station left
if ((d > distance_to_unload) and (d < (distance_to_unload + 20000.0)) and (n_iPoints > 1))
{
if (debug_output_flag == 1)
{print("Distance to atmosphere interpolation point ", d, " m, unloading ...", i);}
atmosphereIpointArray = weather_tile_management.delete_from_vector(atmosphereIpointArray,i);
i = i-1; n_iPoints = n_iPoints -1;
}
}
setprop(lwi~"atmosphere-ipoint-number", i+1);
var vis_aloft = sum_vis_aloft/sum_norm;
var vis_alt1 = sum_vis_alt1/sum_norm;
var vis_ovcst = sum_vis_ovcst/sum_norm;
var ovcst_max = sum_ovcst/sum_norm;
var ovcst_alt_low = sum_ovcst_alt_low/sum_norm;
var ovcst_alt_high = sum_ovcst_alt_high/sum_norm;
var scatt_max = sum_scatt/sum_norm;
var scatt_alt_low = sum_scatt_alt_low/sum_norm;
var scatt_alt_high = sum_scatt_alt_high/sum_norm;
# altitude model for visibility - increase above the lowest inversion layer to simulate ground haze
vis = vis * ground_haze_factor;
var altitude = getprop("position/altitude-ft");
current_mean_terrain_elevation = ialt;
var alt1 = vis_alt1;
var alt2 = alt1 + 1500.0;
setprop("/environment/ground-visibility-m",vis);
setprop("/environment/ground-haze-thickness-m",alt2 * ft_to_m);
# compute the visibility gradients
if (realistic_visibility_flag == 1)
{
vis_aloft = vis_aloft * 2.0;
vis_ovcst = vis_ovcst * 3.0;
}
var inc1 = 0.1 * (vis_aloft - vis)/(vis_alt1 - ialt);
var inc2 = 0.9 * (vis_aloft - vis)/1500.0;
var inc3 = (vis_ovcst - vis_aloft)/(ovcst_alt_high - vis_alt1+1500);
var inc4 = 0.5;
if (realistic_visibility_flag == 1)
{inc4 = inc4 * 3.0;}
# compute the visibility
if (altitude < alt1)
{vis = vis + inc1 * altitude;}
else if (altitude < alt2)
{
vis = vis + inc1 * alt1 + inc2 * (altitude - alt1);
}
else if (altitude < ovcst_alt_high)
{
vis = vis + inc1 * alt1 + inc2 * (alt2-alt1) + inc3 * (altitude - alt2);
}
else if (altitude > ovcst_alt_high)
{
vis = vis + inc1 * alt1 + inc2 * (alt2-alt1) + inc3 * (ovcst_alt_high - alt2) + inc4 * (altitude - ovcst_alt_high);
}
# limit visibility (otherwise memory consumption may be very bad...)
if (vis > max_vis_range)
{vis = max_vis_range;}
# determine scattering shader parameters if scattering shader is on
if (scattering_shader_flag == 1)
{
var rayleigh = 0.0003 ;
var mie = 0.003;
var density = 0.3;
if (altitude < 30000.0)
{
rayleigh = 0.0004 - altitude/30000.0 * 0.0001;
mie = 0.004 - altitude/30000.0 * 0.001;
}
else if (altitude < 60000.0)
{
rayleigh = 0.0003 - (altitude-30000.0)/30000.0 * 0.0001;
mie = 0.003 - (altitude-30000.0)/30000.0 * 0.001;
}
else if (altitude < 85000.0)
{
rayleigh = 0.0002 - (altitude-60000.0)/25000.0 * 0.0001;
mie = 0.002;
}
else
{rayleigh = 0.0001; mie = 0.002;}
}
# otherwise compute normal skydome shader parameters
# compute the horizon shading
if (altitude < scatt_alt_low)
{
var scatt = scatt_max;
}
else if (altitude < scatt_alt_high)
{
var scatt = scatt_max + (0.95 - scatt_max) * (altitude - scatt_alt_low)/(scatt_alt_high-scatt_alt_low);
}
else
{var scatt = 0.95;}
# compute the overcast haze
if (altitude < ovcst_alt_low)
{
var ovcst = ovcst_max;
}
else if (altitude < ovcst_alt_high)
{
var ovcst = ovcst_max - ovcst_max * (altitude - ovcst_alt_low)/(ovcst_alt_high-ovcst_alt_low);
}
else
{var ovcst = 0.0;}
# limit relative changes of the visibility, will make for gradual transitions
if (vis/vis_before > vlimit)
{vis = vlimit * vis_before;}
else if (vis/vis_before < (2.0-vlimit))
{vis = (2.0-vlimit) * vis_before;}
# write all properties into the weather interpolation record in the property tree
setprop(lwi~"mean-terrain-altitude-ft",ialt);
if (vis > 0.0) {setprop(lwi~"visibility-m",vis);} # a redundancy check
setprop(lwi~"temperature-degc",T);
setprop(lwi~"dewpoint-degc",D);
if (p > 10.0) {setprop(lwi~"pressure-sea-level-inhg",p);}
setprop(lwi~"turbulence",0.0);
if (scattering_shader_flag == 1)
{
local_weather.setSkydomeShader(rayleigh, mie, density);
}
local_weather.setScattering(scatt);
local_weather.setOvercast(ovcst);
# now check if an effect volume writes the property and set only if not
flag = getprop("local-weather/effect-volumes/number-active-vis");
if ((flag ==0) and (vis > 0.0) and (getprop(lw~"lift-loop-flag") == 0) and (compat_layer.smooth_visibility_loop_flag == 0))
{
setprop(lw~"current/visibility-m",vis);
compat_layer.setVisibility(vis);
}
flag = getprop("local-weather/effect-volumes/number-active-turb");
if ((flag ==0))
{
setprop(lw~"current/turbulence",0.0);
compat_layer.setTurbulence(0.0);
}
flag = getprop("local-weather/effect-volumes/number-active-lift");
if (flag ==0)
{
setprop(lw~"current/thermal-lift",0.0);
}
# no need to check for these, as they are not modelled in effect volumes
setprop(lw~"current/temperature-degc",T);
compat_layer.setTemperature(T);
setprop(lw~"current/dewpoint-degc", D);
compat_layer.setDewpoint(D);
if (p>0.0)
{
setprop(lw~"current/pressure-sea-level-inhg",p);
compat_layer.setPressure(p);
}
# now determine the local wind
var tile_index = getprop(lw~"tiles/tile[4]/tile-index");
if (wind_model_flag ==1) # constant
{
var winddir = weather_dynamics.tile_wind_direction[0];
var windspeed = weather_dynamics.tile_wind_speed[0];
wind.cloudlayer = [winddir,windspeed];
}
else if (wind_model_flag ==2) # constant in tile
{
var winddir = weather_dynamics.tile_wind_direction[tile_index-1];
var windspeed = weather_dynamics.tile_wind_speed[tile_index-1];
wind.cloudlayer = [winddir, windspeed];
}
else if (wind_model_flag ==3) # aloft interpolated, constant in tiles
{
var w = windIpointArray[0];
var res = wind_altitude_interpolation(altitude,w);
var winddir = res[0];
var windspeed = res[1];
wind.cloudlayer = wind_altitude_interpolation(0.0,w);
}
else if (wind_model_flag == 5) # aloft waypoint interpolated
{
var res = wind_interpolation(viewpos.lat(), viewpos.lon(), altitude);
var winddir = res[0];
var windspeed = res[1];
wind.cloudlayer = wind_interpolation(viewpos.lat(), viewpos.lon(), 0.0);
}
wind.surface = [wind.cloudlayer[0], wind.cloudlayer[1] * get_slowdown_fraction()];
# now do the boundary layer computations
var altitude_agl = getprop("/position/altitude-agl-ft");
if (presampling_flag == 0)
{
var boundary_alt = 600.0;
var windspeed_ground = windspeed/3.0;
var f_min = 2.0/3.0;
if (altitude_agl < boundary_alt)
{var windspeed_current = windspeed_ground + 2.0 * windspeed_ground * (altitude_agl/boundary_alt);}
else
{var windspeed_current = windspeed;}
}
else
{
var alt_median = alt_50_array[tile_index - 1];
var alt_difference = alt_median - (altitude - altitude_agl);
var base_layer_thickness = 150.0;
# get the boundary layer size dependent on terrain altitude above terrain median
if (alt_difference > 0.0) # we're low and the boundary layer grows
{var boundary_alt = base_layer_thickness + 0.3 * alt_difference;}
else # the boundary layer shrinks
{var boundary_alt = base_layer_thickness + 0.1 * alt_difference;}
if (boundary_alt < 50.0){boundary_alt = 50.0;}
if (boundary_alt > 3000.0) {boundary_alt = 3000.0;}
# get the boundary effect as a function of bounday layer size
var f_min = 0.2 + 0.17 * math.ln(boundary_alt/base_layer_thickness);
if (altitude_agl < boundary_alt)
{
var windspeed_current = (1-f_min) * windspeed + f_min * windspeed * (altitude_agl/boundary_alt);
}
else
{var windspeed_current = windspeed;}
}
var windspeed_ground = (1.0-f_min) * windspeed;
# set the wind hash before gusts, it represents mean wind
wind.current = [winddir,windspeed_current];
# determine gusts and turbulence in the bounday layer
var gust_frequency = getprop(lw~"tmp/gust-frequency-hz");
if (gust_frequency > 0.0)
{
var gust_relative_strength = getprop(lw~"tmp/gust-relative-strength");
var gust_angvar = getprop(lw~"tmp/gust-angular-variation-deg");
var winddir_last = getprop(lwi~"wind-from-heading-deg");
var alt_scaling_factor = 1.2 * windspeed / 10.0;
if (alt_scaling_factor < 1.0) {alt_scaling_factor = 1.0;}
# expected mean number of gusts in time interval (should be < 1)
var p_gust = gust_frequency * interpolation_loop_time;
winddir_change = 0.0;
if (rand() < p_gust) # we change the offsets for windspeed and direction
{
var alt_fact = 1.0 - altitude_agl/(boundary_alt * alt_scaling_factor);
if (alt_fact < 0.0) {alt_fact = 0.0};
windspeed_multiplier = (1.0 + ((rand()) * gust_relative_strength * alt_fact));
winddir_change = alt_fact * (1.0 - 2.0 * rand()) * gust_angvar;
winddir_change = winddir_change * 0.2; # Markov chain parameter, max. change per frame is 1/5
# if the Markov chain reaches the boundary, reflect
#print("Winddir: ", winddir, " winddir_last: ", winddir_last, " winddir_change: ", winddir_change);
if (weather_tile_management.relangle(winddir_last + winddir_change, winddir) > gust_angvar)
{winddir_change = -winddir_change;}
}
windspeed_current = windspeed_current * windspeed_multiplier;
winddir = winddir_last + winddir_change;
}
compat_layer.setWindSmoothly(winddir, windspeed_current);
setprop(lwi~"wind-from-heading-deg", winddir);
setprop(lwi~"wind-speed-kt",windspeed_current);
setprop(lw~"current/wind-from-heading-deg",winddir);
setprop(lw~"current/wind-speed-kt",windspeed_current);
# hack to get access to the water shader
setprop("/environment/config/boundary/entry[0]/wind-from-heading-deg",winddir);
setprop("/environment/config/boundary/entry[0]/wind-speed-kt",windspeed_ground);
#setprop("/environment/sea/surface/wind-from-east-fps",windspeed_ground * math.sin(winddir * math.pi/180.0));
#setprop("/environment/sea/surface/wind-from-east-fps",windspeed_ground * math.cos(winddir * math.pi/180.0));
# end hack
if (getprop(lw~"interpolation-loop-flag") ==1) {settimer(interpolation_loop, interpolation_loop_time);}
}
###################################
# thermal lift loop startup
###################################
var thermal_lift_start = func (ev) {
# if another lift loop is already running, do nothing
if (getprop(lw~"lift-loop-flag") == 1) {return;}
# copy the properties from effect volume to the lift object
l = thermalLift.new(ev.lat, ev.lon, ev.radius, ev.height, ev.cn, ev.sh, ev.max_lift, ev.f_lift_radius);
l.index = ev.index;
if (dynamics_flag == 1)
{
l.timestamp = weather_dynamics.time_lw;
if (dynamical_convection_flag == 1)
{
l.flt = ev.flt;
l.evolution_timestamp = ev.evolution_timestamp;
}
}
thermal = l;
if (debug_output_flag == 1)
{
print("Entering thermal lift...");
print("strength: ", thermal.max_lift, " radius: ", thermal.radius);
if (dynamical_convection_flag ==1)
{print("fractional lifetime: ", thermal.flt);}
}
# and start the lift loop, unless another one is already running
# so we block overlapping calls
setprop(lw~"lift-loop-flag",1);
settimer(thermal_lift_loop,0);
}
###################################
# thermal lift loop
###################################
var thermal_lift_loop = func {
if (local_weather_running_flag == 0) {return;}
var apos = geo.aircraft_position();
var tlat = thermal.lat;
var tlon = thermal.lon;
var tpos = geo.Coord.new();
tpos.set_latlon(tlat,tlon,0.0);
var d = apos.distance_to(tpos);
var alt = getprop("position/altitude-ft");
if (dynamical_convection_flag == 1)
{var flt = thermal.flt;}
else
{var flt = 0.5;}
var lift = calcLift(d, alt, thermal.radius, thermal.height, thermal.cn, thermal.sh, thermal.max_lift, thermal.f_lift_radius, flt);
if (getprop(lw~"wave-loop-flag") ==1)
{
lift = lift + getprop(lw~"current/wave-lift");
}
# compute a reduction in visibility when entering the cloudbase
var vis = getprop(lw~"interpolation/visibility-m");
if (alt > 0.9 * thermal.height)
{
var visibility_reduction = math.pow((alt - 0.9 * thermal.height)/(0.2 * thermal.height),0.1);
visibility_reduction = visibility_reduction * (1.0 - math.pow(d/(0.8*thermal.radius),14));
if (visibility_reduction > 1.0) {visibility_reduction = 1.0;} # this shouldn't ever happen
if (visibility_reduction < 0.0) {visibility_reduction = 0.0;}
vis = vis * (1.0 - 0.98 * visibility_reduction);
}
setprop(lw~"current/visibility-m",vis);
compat_layer.setVisibility(vis);
setprop(lw~"current/thermal-lift",lift);
compat_layer.setLift(lift);
# if dynamics is on, move the thermal and occasionally compute altitude and age
if (dynamics_flag == 1)
{
thermal.move();
if ((rand() < 0.01) and (presampling_flag == 1)) # check every 100 frames
{
if (dynamical_convection_flag == 1)
{
thermal.correct_altitude_and_age();
if (thermal.flt > 1.1)
{thermal_lift_stop();}
}
else
{
thermal.correct_altitude();
}
}
}
if (getprop(lw~"lift-loop-flag") ==1) {settimer(thermal_lift_loop, 0);}
}
###################################
# thermal lift loop stop
###################################
var thermal_lift_stop = func {
setprop(lw~"lift-loop-flag",0);
setprop(lw~"current/thermal-lift",0.0);
compat_layer.setLift(0.0);
if (debug_output_flag == 1)
{
print("Leaving thermal lift...");
}
}
###################################
# wave lift loop startup
###################################
var wave_lift_start = func (ev) {
# copy the properties from effect volume to the wave object
w = waveLift.new (ev.lat, ev.lon, ev.r1, ev.r2, ev.phi, ev.height, ev.max_lift);
w.index = ev.index;
wave = w;
# and start the lift loop, unless another one is already running
# so we block overlapping calls
if (getprop(lw~"wave-loop-flag") == 0)
{setprop(lw~"wave-loop-flag",1); settimer(wave_lift_loop,0);}
}
###################################
# wave lift loop
###################################
var wave_lift_loop = func {
if (local_weather_running_flag == 0) {return;}
var lat = getprop("position/latitude-deg");
var lon = getprop("position/longitude-deg");
var alt = getprop("position/altitude-ft");
var phi = wave.phi * math.pi/180.0;
var xx = (lon - wave.lon) * lon_to_m;
var yy = (lat - wave.lat) * lat_to_m;
var x = xx * math.cos(phi) - yy * math.sin(phi);
var y = yy * math.cos(phi) + xx * math.sin(phi);
var lift = calcWaveLift(x,y,alt);
# check if we are in a thermal, if so set wave lift and let the thermal lift loop add that
if (getprop(lw~"lift-loop-flag") ==1)
{
setprop(lw~"current/wave-lift",lift);
}
else
{
setprop(lw~"current/thermal-lift",lift);
}
if (getprop(lw~"wave-loop-flag") ==1) {settimer(wave_lift_loop, 0);}
}
###################################
# wave lift loop stop
###################################
var wave_lift_stop = func {
setprop(lw~"wave-loop-flag",0);
setprop(lw~"current/thermal-lift",0.0);
}
####################################
# action taken when in effect volume
####################################
var effect_volume_start = func (ev) {
var cNode = props.globals.getNode(lw~"current");
if (ev.vis_flag ==1)
{
# first store the current setting in case we need to restore on leaving
var vis = ev.vis;
ev.vis_r = cNode.getNode("visibility-m").getValue();
# then set the new value in current and execute change
cNode.getNode("visibility-m").setValue(vis);
#compat_layer.setVisibility(vis);
compat_layer.setVisibilitySmoothly(vis);
# then count the number of active volumes on entry (we need that to determine
# what to do on exit)
ev.n_entry_vis = getprop(lw~"effect-volumes/number-active-vis");
# and add to the counter
setprop(lw~"effect-volumes/number-active-vis",getprop(lw~"effect-volumes/number-active-vis")+1);
}
if (ev.rain_flag == 1)
{
var rain = ev.rain;
ev.rain_r = cNode.getNode("rain-norm").getValue();
cNode.getNode("rain-norm").setValue(rain);
compat_layer.setRain(rain);
ev.n_entry_rain = getprop(lw~"effect-volumes/number-active-rain");
setprop(lw~"effect-volumes/number-active-rain",getprop(lw~"effect-volumes/number-active-rain")+1);
}
if (ev.snow_flag == 1)
{
var snow = ev.snow;
ev.snow_r = cNode.getNode("snow-norm").getValue();
cNode.getNode("snow-norm").setValue(snow);
compat_layer.setSnow(snow);
ev.n_entry_snow = getprop(lw~"effect-volumes/number-active-snow");
setprop(lw~"effect-volumes/number-active-snow",getprop(lw~"effect-volumes/number-active-snow")+1);
}
if (ev.turb_flag == 1)
{
var turbulence = ev.turb;
ev.turb_r = cNode.getNode("turbulence").getValue();
cNode.getNode("turbulence").setValue(turbulence);
compat_layer.setTurbulence(turbulence);
ev.n_entry_turb = getprop(lw~"effect-volumes/number-active-turb");
setprop(lw~"effect-volumes/number-active-turb",getprop(lw~"effect-volumes/number-active-turb")+1);
}
if (ev.sat_flag == 1)
{
var saturation = ev.sat;
ev.sat_r = getprop("/rendering/scene/saturation");
compat_layer.setLightSmoothly(saturation);
ev.n_entry_sat = getprop(lw~"effect-volumes/number-active-sat");
setprop(lw~"effect-volumes/number-active-sat",getprop(lw~"effect-volumes/number-active-sat")+1);
}
if (ev.lift_flag == 1)
{
var lift = ev.lift;
ev.lift_r = cNode.getNode("thermal-lift").getValue();
cNode.getNode("thermal-lift").setValue(lift);
compat_layer.setLift(lift);
ev.n_entry_lift = getprop(lw~"effect-volumes/number-active-lift");
setprop(lw~"effect-volumes/number-active-lift",getprop(lw~"effect-volumes/number-active-lift")+1);
}
else if (ev.lift_flag == 2)
{
ev.lift_r = cNode.getNode("thermal-lift").getValue();
ev.n_entry_lift = getprop(lw~"effect-volumes/number-active-lift");
setprop(lw~"effect-volumes/number-active-lift",getprop(lw~"effect-volumes/number-active-lift")+1);
thermal_lift_start(ev);
}
else if (ev.lift_flag == 3)
{
ev.lift_r = cNode.getNode("thermal-lift").getValue();
ev.n_entry_lift = getprop(lw~"effect-volumes/number-active-lift");
setprop(lw~"effect-volumes/number-active-lift",getprop(lw~"effect-volumes/number-active-lift")+1);
wave_lift_start(ev);
}
}
var effect_volume_stop = func (ev) {
var cNode = props.globals.getNode(lw~"current");
if (ev.vis_flag == 1)
{
var n_active = getprop(lw~"effect-volumes/number-active-vis");
var n_entry = ev.n_entry_vis;
# if no other nodes affecting property are active, restore to outside
# else restore settings as they have been when entering the volume when the number
# of active volumes is the same as on entry (i.e. volumes are nested), otherwise
# leave property at current because new definitions are already active and should not
# be cancelled
if (n_active ==1){var vis = props.globals.getNode(lw~"interpolation/visibility-m").getValue();}
else if ((n_active -1) == n_entry) #{var vis = ev.getNode("restore/visibility-m").getValue();}
{var vis = ev.vis_r;}
else {var vis = cNode.getNode("visibility-m").getValue();}
cNode.getNode("visibility-m").setValue(vis);
#compat_layer.setVisibility(vis);
compat_layer.setVisibilitySmoothly(vis);
# and subtract from the counter
setprop(lw~"effect-volumes/number-active-vis",getprop(lw~"effect-volumes/number-active-vis")-1);
}
if (ev.rain_flag == 1)
{
var n_active = getprop(lw~"effect-volumes/number-active-rain");
var n_entry = ev.n_entry_rain;
if (n_active ==1){var rain = props.globals.getNode(lw~"interpolation/rain-norm").getValue();}
else if ((n_active -1) == n_entry)# {var rain = ev.getNode("restore/rain-norm").getValue();}
{var rain = ev.rain_r;}
else {var rain = cNode.getNode("rain-norm").getValue();}
cNode.getNode("rain-norm").setValue(rain);
compat_layer.setRain(rain);
setprop(lw~"effect-volumes/number-active-rain",getprop(lw~"effect-volumes/number-active-rain")-1);
}
if (ev.snow_flag == 1)
{
var n_active = getprop(lw~"effect-volumes/number-active-snow");
var n_entry = ev.n_entry_snow;
if (n_active ==1){var snow = props.globals.getNode(lw~"interpolation/snow-norm").getValue();}
else if ((n_active -1) == n_entry)
{var snow = ev.snow_r;}
else {var snow = cNode.getNode("snow-norm").getValue();}
cNode.getNode("snow-norm").setValue(snow);
compat_layer.setSnow(snow);
setprop(lw~"effect-volumes/number-active-snow",getprop(lw~"effect-volumes/number-active-snow")-1);
}
if (ev.turb_flag == 1)
{
var n_active = getprop(lw~"effect-volumes/number-active-turb");
var n_entry = ev.n_entry_turb;
if (n_active ==1){var turbulence = props.globals.getNode(lw~"interpolation/turbulence").getValue();}
else if ((n_active -1) == n_entry)
{var turbulence = ev.turb_r;}
else {var turbulence = cNode.getNode("turbulence").getValue();}
cNode.getNode("turbulence").setValue(turbulence);
compat_layer.setTurbulence(turbulence);
setprop(lw~"effect-volumes/number-active-turb",getprop(lw~"effect-volumes/number-active-turb")-1);
}
if (ev.sat_flag == 1)
{
var n_active = getprop(lw~"effect-volumes/number-active-sat");
var n_entry = ev.n_entry_sat;
if (n_active ==1){var saturation = 1.0;}
else if ((n_active -1) == n_entry)
{var saturation = ev.sat_r;}
else {var saturation = getprop("/rendering/scene/saturation");}
compat_layer.setLightSmoothly(saturation);
setprop(lw~"effect-volumes/number-active-sat",getprop(lw~"effect-volumes/number-active-sat")-1);
}
if (ev.lift_flag == 1)
{
var n_active = getprop(lw~"effect-volumes/number-active-lift");
var n_entry = ev.n_entry_lift;
if (n_active ==1){var lift = props.globals.getNode(lw~"interpolation/thermal-lift").getValue();}
else if ((n_active -1) == n_entry)
{var lift = ev.lift_r;}
else {var lift = cNode.getNode("thermal-lift").getValue();}
cNode.getNode("thermal-lift").setValue(lift);
compat_layer.setLift(lift);
setprop(lw~"effect-volumes/number-active-lift",getprop(lw~"effect-volumes/number-active-lift")-1);
}
else if (ev.lift_flag == 2)
{
thermal_lift_stop();
setprop(lw~"effect-volumes/number-active-lift",getprop(lw~"effect-volumes/number-active-lift")-1);
}
else if (ev.lift_flag == 3)
{
wave_lift_stop();
setprop(lw~"effect-volumes/number-active-lift",getprop(lw~"effect-volumes/number-active-lift")-1);
}
}
#########################################
# compute thermal lift in detailed model
#########################################
var ts_factor = func (t, alt, height) {
var t1 = 0.1; # fractional time at which lift is fully developed
var t2 = 0.9; # fractional time at which lift starts to decay
var t3 = 1.0; # fractional time at which lift is gone
# no time dependence modelled yet
# return 1.0;
var t_a = t - (alt/height) * t1 - t1;
if (t_a<0) {return 0.0;}
else if (t_a<t1) {return 0.5 + 0.5 * math.cos((1.0-t_a/t1)* math.pi);}
else if (t_a < t2) {return 1.0;}
else {return 0.5 - 0.5 * math.cos((1.0-(t2-t_a)/(t3-t2))*math.pi);}
}
var tl_factor = func (t, alt, height) {
var t1 = 0.1; # fractional time at which lift is fully developed
var t2 = 0.9; # fractional time at which lift starts to decay
var t3 = 1.0; # fractional time at which lift is gone
# no time dependence modelled yet
# return 1.0;
var t_a = t - (alt/height) * t1;
if (t_a<0) {return 0.0;}
else if (t_a<t1) {return 0.5 + 0.5 * math.cos((1.0-t_a/t1)* math.pi);}
else if (t_a < t2) {return 1.0;}
else {return 0.5 - 0.5 * math.cos((1.0-(t2-t_a)/(t3-t2))*math.pi);}
}
var calcLift_max = func (alt, max_lift, height) {
alt_agl = getprop("/position/altitude-agl-ft");
# no lift below ground
if (alt_agl < 0.0) {return 0.0;}
# lift ramps up to full within 200 m
else if (alt_agl < 200.0*m_to_ft)
{return max_lift * 0.5 * (1.0 + math.cos((1.0-alt_agl/(200.0*m_to_ft))*math.pi));}
# constant max. lift in main body
else if ((alt_agl > 200.0*m_to_ft) and (alt < height))
{return max_lift;}
# decreasing lift from cloudbase to 10% above base
else if ((alt > height ) and (alt < height*1.1))
{return max_lift * 0.5 * (1.0 - math.cos((1.0-10.0*(alt-height)/height)*math.pi));}
# no lift available above
else {return 0.0;}
}
var calcLift = func (d, alt, R, height, cn, sh, max_lift, f_lift_radius, t) {
# radius of slice at given altitude
var r_total = (cn + alt/height*(1.0-cn)) * (R - R * (1.0- sh ) * (1.0 - ((2.0*alt/height)-1.0)*((2.0*alt/height)-1.0)));
# print("r_total: ", r_total, "d: ",d);
# print("alt: ", alt, "height: ",height);
# no lift if we're outside the radius or above the thermal
if ((d > r_total) or (alt > 1.1*height)) { return 0.0; }
# fraction of radius providing lift
var r_lift = f_lift_radius * r_total;
# print("r_lift: ", r_lift);
# if we are in the sink portion, get the max. sink for this time and altitude and adjust for actual position
if ((d < r_total ) and (d > r_lift))
{
var s_max = 0.5 * calcLift_max(alt, max_lift, height) * ts_factor(t, alt, height);
# print("s_max: ", s_max);
return s_max * math.sin(math.pi * (1.0 + (d-r_lift) * (1.0/(r_total - r_lift))));
}
# else we are in the lift portion, get the max. lift for this time and altitude and adjust for actual position
else
{
var l_max = calcLift_max(alt, max_lift, height) * tl_factor(t, alt, height);
# print("l_max: ", l_max);
return l_max * math.cos(math.pi * (d/(2.0 * r_lift)));
}
}
#########################################
# compute wave lift in detailed model
#########################################
var calcWaveLift = func (x,y, alt) {
var lift = wave.max_lift * math.cos((y/wave.y) * 1.5 * math.pi);
if (abs(x)/wave.x > 0.9)
{
lift = lift * (abs(x) - 0.9 * wave.x)/(0.1 * wave.x);
}
lift = lift * 2.71828 * math.exp(-alt/wave.height) * alt/wave.height;
var alt_agl = getprop("/position/altitude-agl-ft");
if (alt_agl < 1000.0)
{
lift = lift * (alt_agl/1000.0) * (alt_agl/1000.0);
}
return lift;
}
###########################################################
# place a single cloud into a vector to be processed
# separately
###########################################################
var create_cloud_vec = func(path, lat, long, alt, heading) {
if (path == "new") # we have to switch to new cloud generating routines
{
local_weather.cloudAssembly.lat = lat;
local_weather.cloudAssembly.lon = long;
local_weather.cloudAssembly.alt = alt;
#print(lat," ",long, " ", alt);
if (dynamics_flag == 1)
{
local_weather.cloudAssembly.mean_alt = cloud_mean_altitude;
local_weather.cloudAssembly.flt = cloud_fractional_lifetime;
local_weather.cloudAssembly.evolution_timestamp = cloud_evolution_timestamp;
local_weather.cloudAssembly.rel_alt = cloudAssembly.alt - cloud_mean_altitude;
}
#compat_layer.create_cloud_new(local_weather.cloudAssembly);
append(cloudAssemblyArray,cloudAssembly);
return;
}
append(clouds_path,path);
append(clouds_lat,lat);
append(clouds_lon,long);
append(clouds_alt,alt);
append(clouds_orientation,heading);
# globals (needed for Cumulus clouds) should be set if needed by the main cloud generating call
if (dynamics_flag ==1)
{
append(clouds_mean_alt, cloud_mean_altitude);
append(clouds_flt, cloud_fractional_lifetime);
append(clouds_evolution_timestamp,cloud_evolution_timestamp);
}
}
###########################################################
# clear all clouds and effects
###########################################################
var clear_all = func {
# clear the clouds and models
var cloudNode = props.globals.getNode(lw~"clouds", 1);
cloudNode.removeChildren("tile");
var modelNode = props.globals.getNode("models", 1).getChildren("model");
foreach (var m; modelNode)
{
var l = m.getNode("tile-index",1).getValue();
if (l != nil)
{
m.remove();
}
}
# remove the hard-coded clouds
foreach (c; weather_tile_management.cloudArray)
{
c.remove();
}
setsize(weather_tile_management.cloudArray,0);
# reset pressure continuity
weather_tiles.last_pressure = 0.0;
# stop all loops
setprop(lw~"effect-loop-flag",0);
setprop(lw~"interpolation-loop-flag",0);
setprop(lw~"tile-loop-flag",0);
setprop(lw~"lift-loop-flag",0);
setprop(lw~"wave-loop-flag",0);
setprop(lw~"dynamics-loop-flag",0);
setprop(lw~"timing-loop-flag",0);
setprop(lw~"buffer-loop-flag",0);
setprop(lw~"housekeeping-loop-flag",0);
setprop(lw~"convective-loop-flag",0);
weather_dynamics.convective_loop_kill_flag = 1; # long-running loop needs a different scheme to end
# also remove rain, snow, haze and light effects
compat_layer.setRain(0.0);
compat_layer.setSnow(0.0);
compat_layer.setLight(1.0);
# set placement indices to zero
setprop(lw~"clouds/placement-index",0);
setprop(lw~"clouds/model-placement-index",0);
setprop(lw~"effect-volumes/effect-placement-index",0);
setprop(lw~"effect-volumes/number",0);
setprop(lw~"tiles/tile-counter",0);
# remove any quadtrees and arrays
settimer ( func { setsize(weather_dynamics.cloudQuadtrees,0);},0.1); # to avoid error generation in this frame
setsize(effectVolumeArray,0);
n_effectVolumeArray = 0;
# clear any wxradar echos
if (wxradar_support_flag ==1)
{props.globals.getNode("/instrumentation/wxradar", 1).removeChildren("storm");}
# if we have used METAR, we may no longer want to do so
metar_flag = 0;
settimer ( func {
setsize(weather_tile_management.modelArrays,0);
setsize(weather_dynamics.tile_wind_direction,0);
setsize(weather_dynamics.tile_wind_speed,0);
setsize(weather_tile_management.cloudBufferArray,0);
setsize(weather_tile_management.cloudSceneryArray,0);
setsize(alt_20_array,0);
setsize(alt_50_array,0);
setsize(alt_min_array,0);
setsize(alt_mean_array,0);
setsize(weather_dynamics.tile_convective_altitude,0);
setsize(weather_dynamics.tile_convective_strength,0);
setsize(weatherStationArray,0);
setsize(windIpointArray,0);
setsize(atmosphereIpointArray,0);
setprop(lw~"clouds/buffer-count",0);
setprop(lw~"clouds/cloud-scenery-count",0);
weather_tile_management.n_cloudSceneryArray = 0;
compat_layer.setScattering(0.8);
compat_layer.setOvercast(0.0);
setprop(lwi~"ipoint-number",0);
setprop(lwi~"atmosphere-ipoint-number", 0);
},0.1);
setprop(lw~"tmp/presampling-status", "idle");
# reset the random store
weather_tiles.rnd_store = rand();
# default 3d clouds layer wrapping back on, just in case
setprop("/sim/rendering/clouds3d-wrap",1);
# indicate that we are no longer running
local_weather_running_flag = 0;
}
###########################################################
# detailed Cumulus clouds created from multiple cloudlets
###########################################################
var create_detailed_cumulus_cloud = func (lat, lon, alt, size) {
var edge_bias = convective_texture_mix;
size = size + convective_size_bias;
if (hardcoded_clouds_flag == 0)
{
if (size > 2.0)
{
if (rand() > (size - 2.0))
{create_cumulonimbus_cloud(lat, lon, alt, size); }
else
{create_cumulonimbus_cloud_rain(lat, lon, alt, size, 0.1 + 0.2* rand());}
return;
}
else if (size>1.5)
{
var type = "Congestus";
var btype = "Congestus bottom";
var height = 400;
var n = 8;
var n_b = 4;
var x = 1000.0;
var y = 300.0;
var edge = 0.3;
}
else if (size>1.1)
{
var type = "Cumulus (cloudlet)";
var btype = "Cumulus bottom";
var height = 200;
var n = 8;
var n_b = 1;
var x = 400.0;
var y = 200.0;
var edge = 0.3;
}
else if (size>0.8)
{
var type = "Cumulus (cloudlet)";
var btype = "Cumulus bottom";
var height = 150;
var n = 6;
var x = 300.0;
var y = 200.0;
var edge = 0.3;
}
else if (size>0.4)
{
var type = "Cumulus (cloudlet)";
var btype = "Cumulus bottom";
var height = 100;
var n = 4;
var x = 200.0;
var y = 200.0;
var edge = 1.0;
}
else
{
var type = "Cumulus (whisp)";
var btype = "Cumulus bottom";
var height = 100;
var n = 1;
var x = 100.0;
var y = 100.0;
var edge = 1.0;
}
var alpha = rand() * 180.0;
edge = edge + edge_bias;
create_streak(type,lat,lon, alt+ 0.5* (height +cloud_vertical_size_map["Cumulus"] * ft_to_m), height,n,0.0,edge,x,1,0.0,0.0,y,alpha,1.0);
# for large clouds, add a bottom
if ((size > 1.1) and (edge < 0.4))
{
create_streak(btype,lat,lon, alt, 100.0,n_b,0.0,edge,0.3*x,1,0.0,0.0,0.3*y,alpha,1.0);
}
}
else
{
if (size > 2.0)
{
if (rand() > (size - 2.0))
{create_cumulonimbus_cloud(lat, lon, alt, size); }
else
{create_cumulonimbus_cloud_rain(lat, lon, alt, size, 0.1 + 0.2* rand());}
return;
}
else if (size>1.5)
{
var type = "Congestus";
var height = 400;
var n = 3;
var x = 700.0;
var y = 200.0;
var edge = 0.2;
var alpha = rand() * 180.0;
edge = edge + edge_bias;
create_streak(type,lat,lon, alt+ 0.3* (height )-offset_map["Congestus"], height,n,0.0,edge,x,1,0.0,0.0,y,alpha,1.0);
var type = "Cu (volume)";
var height = 400;
var n = 10;
var x = 1400.0;
var y = 400.0;
var edge = 0.2;
edge = edge + edge_bias;
create_streak(type,lat,lon, alt+ 0.3* (height )-offset_map["Congestus"], height,n,0.0,edge,x,1,0.0,0.0,y,alpha,1.0);
var btype = "Congestus bottom";
var n_b = 6;
create_streak(btype,lat,lon, alt -offset_map["Congestus"] -200.0, 100.0,n_b,0.0,edge,0.3*x,1,0.0,0.0,0.3*y,alpha,1.0);
}
else if (size>1.1)
{
var type = "Cumulus (cloudlet)";
var btype = "Cumulus bottom";
var height = 200;
var n = 6;
var n_b = 2;
var x = 900.0;
var y = 200.0;
var edge = 0.2;
var alpha = rand() * 180.0;
edge = edge + edge_bias;
create_streak(type,lat,lon, alt+ 0.3* (height )-offset_map["Cumulus"], height,n,0.0,edge,x,1,0.0,0.0,y,alpha,1.0);
create_streak(btype,lat,lon, alt -offset_map["Cumulus"] - 200.0, 100.0,n_b,0.0,edge,0.3*x,1,0.0,0.0,0.3*y,alpha,1.0);
}
else if (size>0.8)
{
var type = "Cumulus (cloudlet)";
var height = 150;
var n = 4;
var x = 300.0;
var y = 300.0;
var edge = 0.3;
var alpha = rand() * 180.0;
edge = edge + edge_bias;
create_streak(type,lat,lon, alt+ 0.3* (height )-offset_map["Cumulus"], height,n,0.0,edge,x,1,0.0,0.0,y,alpha,1.0);
n = 2;
x = 700.0;
y = 200.0;
edge = 1.0;
create_streak(type,lat,lon, alt+ 0.3* (height )-offset_map["Cumulus"], height,n,0.0,edge,x,1,0.0,0.0,y,alpha,1.0);
}
else if (size>0.4)
{
var type = "Cumulus (cloudlet)";
var height = 100;
var n = 2;
var x = 600.0;
var y = 100.0;
var edge = 1.0;
var alpha = rand() * 180.0;
edge = edge + edge_bias;
create_streak(type,lat,lon, alt+ 0.3* (height)-offset_map["Cumulus"], height,n,0.0,edge,x,1,0.0,0.0,y,alpha,1.0);
}
else
{
var type = "Cumulus (whisp)";
var height = 100;
var n = 1;
var x = 100.0;
var y = 100.0;
var edge = 1.0;
var alpha = rand() * 180.0;
edge = edge + edge_bias;
create_streak(type,lat,lon, alt+ 0.3* (height )-offset_map["Cumulus"], height,n,0.0,edge,x,1,0.0,0.0,y,alpha,1.0);
}
}
}
###########################################################
# detailed small Cumulonimbus clouds created from multiple cloudlets
###########################################################
var create_cumulonimbus_cloud = func(lat, lon, alt, size) {
if (hardcoded_clouds_flag == 1)
{create_cloudbox("Cb_box", lat, lon, alt, 2500.0,2000.0, 1000.0,14, 0.2, 0.1, 3.4, 8, 0.8, 0.1, 8);}
else
{create_cloudbox("Cb_box", lat, lon, alt, 2500.0,2000.0, 1000.0,14, 0.2, 0.1, 1.4, 4, 0.9, 0.2, 8);}
}
###########################################################
# detailed small Cumulonimbus and rain created from multiple cloudlets
###########################################################
var create_cumulonimbus_cloud_rain = func(lat, lon, alt, size, rain) {
if (hardcoded_clouds_flag == 1)
{create_cloudbox("Cb_box", lat, lon, alt, 2500.0,2000.0, 1000.0,14, 0.2, 0.1, 3.4, 8, 0.8, 0.1, 8);}
else
{create_cloudbox("Cb_box", lat, lon, alt, 2500.0,2000.0, 1000.0,14, 0.2, 0.1, 1.4, 4, 0.9, 0.2, 8);}
# place a rain texture
var path = "Models/Weather/rain2.xml";
if (thread_flag == 1)
{create_cloud_vec(path, lat, lon, alt, 0.0);}
else
{compat_layer.create_cloud(path, lat, lon, alt, 0.0);}
# and some rain underneath
create_effect_volume(1, lat, lon, 2000.0, 2000.0, 0.0, 0.0, alt+1000.0, 8000.0 + 8000.0 * rand(), rain, -1, -1, -1 ,1,-1 );
}
###########################################################
# wrappers for convective cloud system to distribute
# call across several frames if needed
###########################################################
var create_cumosys = func (blat, blon, balt, nc, size) {
# realistic Cumulus has somewhat larger models, so compensate to get the same coverage
if (detailed_clouds_flag == 1)
{nc = int(0.7 * nc);}
nc = int(nc / cumulus_efficiency_factor);
if (thread_flag == 1)
{setprop(lw~"tmp/convective-status", "computing");
cumulus_loop(blat, blon, balt, nc, size);}
else
{create_cumulus(blat, blon, balt, nc, size);
if (debug_output_flag == 1)
{print("Convective system done!");}
}
}
var cumulus_loop = func (blat, blon, balt, nc, size) {
if (local_weather_running_flag == 0) {return;}
if (local_weather.features.fast_geodinfo == 0)
{var n = int(25/cumulus_efficiency_factor);}
else
{var n = int(200/cumulus_efficiency_factor);}
if (nc < 0)
{
if (debug_output_flag == 1)
{print("Convective system done!");}
setprop(lw~"tmp/convective-status", "idle");
assemble_effect_array();
convective_size_bias = 0.0;
return;
}
create_cumulus(blat, blon, balt, n, size);
settimer( func {cumulus_loop(blat, blon, balt, nc-n, size) },0);
}
###########################################################
# place a convective cloud system
###########################################################
var create_cumulus = func (blat, blon, balt, nc, size) {
var path = "Models/Weather/blank.ac";
var i = 0;
var p = 0.0;
var rn = 0.0;
var place_lift_flag = 0;
var strength = 0.0;
var detail_flag = detailed_clouds_flag;
var alpha = getprop(lw~"tmp/tile-orientation-deg") * math.pi/180.0; # the tile orientation
var tile_index = getprop(lw~"tiles/tile-counter");
var alt_base = alt_20_array[tile_index -1];
#if (detailed_terrain_interaction_flag == 1)
# {
#var tile_index = getprop(lw~"tiles/tile-counter");
#var alt_min = alt_min_array[tile_index-1];
#var alt_mean = alt_mean_array[tile_index -1];
#var alt_median = alt_50_array[tile_index -1];
#var alt_base = alt_20_array[tile_index -1];
#var alt_min = getprop(lw~"tmp/tile-alt-min-ft");
#var alt_mean = getprop(lw~"tmp/tile-alt-mean-ft");
#var alt_median = getprop(lw~"tmp/tile-alt-median-ft");
#var alt_base = getprop(lw~"tmp/tile-alt-offset-ft");
# }
var sec_to_rad = 2.0 * math.pi/86400; # conversion factor for sinusoidal dependence on daytime
calc_geo(blat);
# get the local time of the day in seconds
var t = getprop("sim/time/utc/day-seconds");
t = t + getprop("sim/time/local-offset");
# print("t is now:", t);
# and make a simple sinusoidal model of thermal strength
# daily variation in number of thermals, peaks at noon
var t_factor1 = 0.5 * (1.0-math.cos((t * sec_to_rad)));
# daily variation in strength of thermals, peaks around 15:30
var t_factor2 = 0.5 * (1.0-math.cos((t * sec_to_rad)-0.9));
# number of possible thermals equals overall strength times daily variation times geographic variation
# this is a proxy for solar thermal energy
nc = t_factor1 * nc * math.cos(blat/180.0*math.pi);
var thermal_conditions = getprop(lw~"config/thermal-properties");
while (i < nc) {
p = 0.0;
place_lift_flag = 0;
strength = 0.0;
# pick a trial position inside the tile and rotate by tile orientation angle
var x = (2.0 * rand() - 1.0) * size;
var y = (2.0 * rand() - 1.0) * size;
var lat = blat + (y * math.cos(alpha) - x * math.sin(alpha)) * m_to_lat;
var lon = blon + (x * math.cos(alpha) + y * math.sin(alpha)) * m_to_lon;
# now check ground cover type on chosen spot
var info = geodinfo(lat, lon);
if (info != nil) {
var elevation = info[0] * m_to_ft;
if (info[1] != nil){
var landcover = info[1].names[0];
if (contains(landcover_map,landcover)) {p = p + landcover_map[landcover];}
else {print(p, " ", info[1].names[0]);}
}}
else {
# to avoid gaps, we create default clouds
p = p + 0.1;
var elevation = alt_base;
# continue;
}
# apply some optional corrections, biases clouds towards higher elevations
var terrain_altitude_factor = 1.0;
var terrain_strength_factor = 1.0;
if (detailed_terrain_interaction_flag == 1)
{
terrain_altitude_factor = get_terrain_altitude_factor(tile_index, balt, elevation);
terrain_strength_factor = get_terrain_strength_factor(terrain_altitude_factor);
}
# then decide if the thermal energy at the spot generates an updraft and a cloud
if (rand() < (p * cumulus_efficiency_factor * terrain_altitude_factor)) # we decide to place a cloud at this spot
{
# check if we have a terrain elevation analysis available and can use a
# detailed placement altitude correction
if (presampling_flag == 1)
{
if (detailed_terrain_interaction_flag == 1)
{
var grad = get_terrain_gradient(lat, lon, elevation, alpha, 1000.0);
}
else
{var grad = 0.0;}
var place_alt = get_convective_altitude(balt, elevation, getprop(lw~"tiles/tile-counter"), grad);
}
else {var place_alt = balt;}
# no cloud placement into the ground
if (place_alt < elevation) {continue;}
# if we're in a lee, we may not want to place the cloud
if (detailed_terrain_interaction_flag == 1)
{
var p_lee_suppression = get_lee_bias(grad);
if (rand() > p_lee_suppression) {continue;}
}
# now decide on the strength of the thermal at the spot and on cloud size
var rn = rand();
strength = (1.5 * rn + (2.0 * p * terrain_strength_factor)) * t_factor2;
if (strength > 1.0)
{
# we place a large cloud, and we generate lift
path = select_cloud_model("Cumulus","large"); place_lift_flag = 1;
}
else {path = select_cloud_model("Cumulus","small");}
# the terrain effect cannot create Cb development, so we have to curb
# the strength if it would not have been Cb otherwise
if (strength > 2.0)
{
if (((1.5 * rn + (2.0 * p)) * t_factor2) < 2.0)
{strength = 1.7 + rand() * 0.2;}
}
cloud_mean_altitude = place_alt;
cloud_fractional_lifetime = rand();
cloud_evolution_timestamp = weather_dynamics.time_lw;
if (generate_thermal_lift_flag != 3) # no clouds if we produce blue thermals
{
if (thread_flag == 1)
{
if (detail_flag == 0){create_cloud_vec(path,lat,lon, place_alt, 0.0);}
else {create_detailed_cumulus_cloud(lat, lon, place_alt, strength);}
}
else
{
if (detail_flag == 0){compat_layer.create_cloud(path, lat, lon, place_alt, 0.0);}
else {create_detailed_cumulus_cloud(lat, lon, place_alt, strength);}
}
}
# now see if we need to create a thermal - first check the flag
if (generate_thermal_lift_flag == 1) # thermal by constant
{
# now check if convection is strong
if (place_lift_flag == 1)
{
var lift = 3.0 + 10.0 * (strength -1.0);
var radius = 500 + 500 * rand();
#print("Lift: ", lift * ft_to_m - 1.0);
create_effect_volume(1, lat, lon, radius, radius, 0.0, 0.0, place_alt+500.0, -1, -1, -1, -1, lift, 1,-1);
} # end if place_lift_flag
} # end if generate-thermal-lift-flag
else if ((generate_thermal_lift_flag == 2) or (generate_thermal_lift_flag == 3)) # thermal by function
{
if (place_lift_flag == 1)
{
var lift = (3.0 + 10.0 * (strength -1.0))/thermal_conditions;
var radius = (500 + 500 * rand())*thermal_conditions;
create_effect_volume(1, lat, lon, 1.1*radius, 1.1*radius, 0.0, 0.0, place_alt*1.15, -1, -1, -1, lift*0.03, lift, -2,-1);
} # end if place_lift_flag
} # end if generate-thermal-lift-flag
} # end if rand < p
i = i + 1;
} # end while
}
#################################################################
# respawn convective clouds to compensate for decay
# the difference being that new clouds get zero fractional
# lifetime and are placed based on terrain with a different weight
##################################################################
var recreate_cumulus = func (blat, blon, balt, alpha, nc, size, tile_index) {
var path = "Models/Weather/blank.ac";
var i = 0;
var p = 0.0;
var rn = 0.0;
var place_lift_flag = 0;
var strength = 0.0;
var detail_flag = detailed_clouds_flag;
alpha = alpha * math.pi/180.0; # the tile orientation
var sec_to_rad = 2.0 * math.pi/86400; # conversion factor for sinusoidal dependence on daytime
# current aircraft position
var alat = getprop("position/latitude-deg");
var alon = getprop("position/longitude-deg");
# get the local time of the day in seconds
var t = getprop("sim/time/utc/day-seconds");
t = t + getprop("sim/time/local-offset");
# and make a simple sinusoidal model of thermal strength
# daily variation in number of thermals, peaks at noon
var t_factor1 = 0.5 * (1.0-math.cos((t * sec_to_rad)));
# daily variation in strength of thermals, peaks around 15:30
var t_factor2 = 0.5 * (1.0-math.cos((t * sec_to_rad)-0.9));
# number of possible thermals equals overall strength times daily variation times geographic variation
# this is a proxy for solar thermal energy
nc = t_factor1 * nc * math.cos(blat/180.0*math.pi);
var thermal_conditions = getprop(lw~"config/thermal-properties");
var alt_base = alt_20_array[tile_index -1];
while (i < nc) {
p = 0.0;
place_lift_flag = 0;
strength = 0.0;
# pick a trial position inside the tile and rotate by tile orientation angle
var x = (2.0 * rand() - 1.0) * size;
var y = (2.0 * rand() - 1.0) * size;
var lat = blat + (y * math.cos(alpha) - x * math.sin(alpha)) * m_to_lat;
var lon = blon + (x * math.cos(alpha) + y * math.sin(alpha)) * m_to_lon;
# check if the cloud would be spawned in visual range, if not don't bother
var d_sq = calc_d_sq(alat, alon, lat, lon);
if (math.sqrt(d_sq) > weather_tile_management.cloud_view_distance)
{i = i+1; continue;}
# now check ground cover type on chosen spot
var info = geodinfo(lat, lon);
if (info != nil) {
var elevation = info[0] * m_to_ft;
if (info[1] != nil){
var landcover = info[1].names[0];
if (contains(landcover_map,landcover)) {p = p + landcover_map[landcover];}
else {print(p, " ", info[1].names[0]);}
}}
else {
# to avoid gaps, we create default clouds
p = p + 0.1;
var elevation = alt_base;
# continue;
}
# apply some optional corrections, biases clouds towards higher elevations
var terrain_altitude_factor = 1.0;
var terrain_strength_factor = 1.0;
if (detailed_terrain_interaction_flag == 1)
{
terrain_altitude_factor = get_terrain_altitude_factor(tile_index, balt, elevation);
terrain_strength_factor = get_terrain_strength_factor(terrain_altitude_factor);
}
# check if to place a cloud with weight sqrt(p), the lifetime gets another sqrt(p) factor
if (rand() > math.sqrt(p * cumulus_efficiency_factor * terrain_altitude_factor))
{i=i+1; continue;}
# then calculate the strength of the updraft
strength = (1.5 * rand() + (2.0 * p * terrain_strength_factor)) * t_factor2; # the strength of thermal activity at the spot
if (strength > 1.0)
{
path = select_cloud_model("Cumulus","large"); place_lift_flag = 1;
}
else {path = select_cloud_model("Cumulus","small");}
if (presampling_flag == 1)
{
var place_alt = get_convective_altitude(balt, elevation, tile_index,0.0);
}
else {var place_alt = balt;}
# no cloud placement into the ground
if (place_alt < elevation) {continue;}
# if we're in a lee, we may not want to place the cloud
if (detailed_terrain_interaction_flag == 1)
{
var p_lee_suppression = get_lee_bias(grad);
if (rand() > math.sqrt(p_lee_suppression)) {continue;}
}
cloud_mean_altitude = place_alt;
cloud_fractional_lifetime = 0.0;
cloud_evolution_timestamp = weather_dynamics.time_lw;
compat_layer.cloud_mean_altitude = place_alt;
compat_layer.cloud_flt = cloud_fractional_lifetime;
compat_layer.cloud_evolution_timestamp = cloud_evolution_timestamp;
if (generate_thermal_lift_flag != 3) # no clouds if we produce blue thermals
{
if (thread_flag == 1)
{
thread_flag = 0; # create clouds immediately
if (detail_flag == 0){compat_layer.create_cloud(path,lat,lon, place_alt, 0.0);}
else {create_detailed_cumulus_cloud(lat, lon, place_alt, strength);}
thread_flag = 1; # and restore threading
}
else
{
if (detail_flag == 0){compat_layer.create_cloud(path, lat, lon, place_alt, 0.0);}
else {create_detailed_cumulus_cloud(lat, lon, place_alt, strength);}
}
}
if (generate_thermal_lift_flag == 1) # thermal by constant
{
if (place_lift_flag == 1)
{
var lift = 3.0 + 10.0 * (strength -1.0);
var radius = 500 + 500 * rand();
create_effect_volume(1, lat, lon, radius, radius, 0.0, 0.0, place_alt+500.0, -1, -1, -1, -1, lift, 1,-1);
} # end if place_lift_flag
} # end if generate-thermal-lift-flag
else if ((generate_thermal_lift_flag == 2) or (generate_thermal_lift_flag == 3)) # thermal by function
{
if (place_lift_flag == 1)
{
var lift = (3.0 + 10.0 * (strength -1.0))/thermal_conditions;
var radius = (500 + 500 * rand())*thermal_conditions;
create_effect_volume(1, lat, lon, 1.1*radius, 1.1*radius, 0.0, 0.0, place_alt*1.15, -1, -1, -1, lift*0.03, lift, -2,-1);
} # end if place_lift_flag
} # end if generate-thermal-lift-flag
i = i + 1;
} # end while
}
###########################################################
# place a Cumulus layer with excluded regions
# to avoid placing cumulus underneath a thunderstorm
###########################################################
var cumulus_exclusion_layer = func (blat, blon, balt, n, size_x, size_y, alpha, s_min, s_max, n_ex, exlat, exlon, exrad) {
var strength = 0;
var flag = 1;
var phi = alpha * math.pi/180.0;
var detail_flag = detailed_clouds_flag;
if (detail_flag == 1) {var i_max = int(0.25*n);} else {var i_max = int(1.0*n);}
for (var i =0; i< i_max; i=i+1)
{
var x = (2.0 * rand() - 1.0) * size_x;
var y = (2.0 * rand() - 1.0) * size_y;
var lat = blat + (y * math.cos(phi) - x * math.sin(phi)) * m_to_lat;
var lon = blon + (x * math.cos(phi) + y * math.sin(phi)) * m_to_lon;
flag = 1;
for (var j=0; j<n_ex; j=j+1)
{
if (calc_d_sq(lat, lon, exlat[j], exlon[j]) < (exrad[j] * exrad[j])) {flag = 0;}
}
if (flag == 1)
{
strength = s_min + rand() * (s_max - s_min);
if (strength > 1.0) {var path = select_cloud_model("Cumulus","large"); }
else {var path = select_cloud_model("Cumulus","small");}
if (thread_flag == 1)
{
if (detail_flag == 0){create_cloud_vec(path,lat,lon, balt, 0.0);}
else {create_detailed_cumulus_cloud(lat, lon, balt, strength);}
}
else
{
if (detail_flag == 0){compat_layer.create_cloud(path, lat, lon, balt, 0.0);}
else {create_detailed_cumulus_cloud(lat, lon, balt, strength);}
}
} # end if flag
} # end for i
}
###########################################################
# place a barrier cloud system
###########################################################
var create_rise_clouds = func (blat, blon, balt, nc, size, winddir, dist) {
var path = "Models/Weather/blank.ac";
var i = 0;
var p = 0.0;
var rn = 0.0;
var nsample = 10;
var counter = 0;
var dir = (winddir + 180.0) * math.pi/180.0;
var step = dist/nsample;
calc_geo(blat);
while (i < nc) {
counter = counter + 1;
p = 0.0;
var x = (2.0 * rand() - 1.0) * size;
var y = (2.0 * rand() - 1.0) * size;
var lat = blat + y * m_to_lat;
var lon = blon + x * m_to_lon;
var elevation = compat_layer.get_elevation(lat, lon);
#print("elevation: ", elevation, "balt: ", balt);
if ((elevation < balt) and (elevation != -1.0))
{
for (var j = 0; j<nsample; j=j+1)
{
d = j * step;
x = d * math.sin(dir);
y = d * math.cos(dir);
var tlat = lat + y * m_to_lat;
var tlon = lon + x * m_to_lon;
#print("x: ", x, "y: ", y);
var elevation1 = compat_layer.get_elevation(tlat,tlon);
#print("elevation1: ", elevation1, "balt: ", balt);
if (elevation1 > balt)
{
p = 1.0 - j * (1.0/nsample);
#p = 1.0;
break;
}
}
}
if (counter > 500) {print("Cannot place clouds - exiting..."); i = nc;}
if (rand() < p)
{
path = select_cloud_model("Stratus (structured)","large");
compat_layer.create_cloud(path, lat, lon, balt, 0.0);
counter = 0;
i = i+1;
}
} # end while
}
###########################################################
# place a cloud streak
###########################################################
var create_streak = func (type, blat, blong, balt, alt_var, nx, xoffset, edgex, x_var, ny, yoffset, edgey, y_var, direction, tri) {
var flag = 0;
var path = "Models/Weather/blank.ac";
calc_geo(blat);
var dir = direction * math.pi/180.0;
var ymin = -0.5 * ny * yoffset;
var xmin = -0.5 * nx * xoffset;
var xinc = xoffset * (tri-1.0) /ny;
var jlow = int(nx*edgex);
var ilow = int(ny*edgey);
for (var i=0; i<ny; i=i+1)
{
var y = ymin + i * yoffset;
for (var j=0; j<nx; j=j+1)
{
var y0 = y + y_var * 2.0 * (rand() -0.5);
var x = xmin + j * (xoffset + i * xinc) + x_var * 2.0 * (rand() -0.5);
var lat = blat + m_to_lat * (y0 * math.cos(dir) - x * math.sin(dir));
var long = blong + m_to_lon * (x * math.cos(dir) + y0 * math.sin(dir));
var alt = balt + alt_var * 2 * (rand() - 0.5);
flag = 0;
var rn = 6.0 * rand();
if (((j<jlow) or (j>(nx-jlow-1))) and ((i<ilow) or (i>(ny-ilow-1)))) # select a small or no cloud
{
if (rn > 2.0) {flag = 1;} else {path = select_cloud_model(type,"small");}
}
if ((j<jlow) or (j>(nx-jlow-1)) or (i<ilow) or (i>(ny-ilow-1)))
{
if (rn > 5.0) {flag = 1;} else {path = select_cloud_model(type,"small");}
}
else { # select a large cloud
if (rn > 5.0) {flag = 1;} else {path = select_cloud_model(type,"large");}
}
if (flag==0){
if (thread_flag == 1)
{create_cloud_vec(path, lat, long, alt, 0.0);}
else
{compat_layer.create_cloud(path, lat, long, alt, 0.0);}
}
}
}
}
###########################################################
# place an undulatus pattern
###########################################################
var create_undulatus = func (type, blat, blong, balt, alt_var, nx, xoffset, edgex, x_var, ny, yoffset, edgey, y_var, und_strength, direction, tri) {
var flag = 0;
var path = "Models/Weather/blank.ac";
calc_geo(blat);
var dir = direction * math.pi/180.0;
var ymin = -0.5 * ny * yoffset;
var xmin = -0.5 * nx * xoffset;
var xinc = xoffset * (tri-1.0) /ny;
var jlow = int(nx*edgex);
var ilow = int(ny*edgey);
var und = 0.0;
var und_array = [];
for (var i=0; i<ny; i=i+1)
{
und = und + 2.0 * (rand() -0.5) * und_strength;
append(und_array,und);
}
for (var i=0; i<ny; i=i+1)
{
var y = ymin + i * yoffset;
for (var j=0; j<nx; j=j+1)
{
var y0 = y + y_var * 2.0 * (rand() -0.5);
var x = xmin + j * (xoffset + i * xinc) + x_var * 2.0 * (rand() -0.5) + und_array[i];
var lat = blat + m_to_lat * (y0 * math.cos(dir) - x * math.sin(dir));
var long = blong + m_to_lon * (x * math.cos(dir) + y0 * math.sin(dir));
var alt = balt + alt_var * 2 * (rand() - 0.5);
flag = 0;
var rn = 6.0 * rand();
if (((j<jlow) or (j>(nx-jlow-1))) and ((i<ilow) or (i>(ny-ilow-1)))) # select a small or no cloud
{
if (rn > 2.0) {flag = 1;} else {path = select_cloud_model(type,"small");}
}
if ((j<jlow) or (j>(nx-jlow-1)) or (i<ilow) or (i>(ny-ilow-1)))
{
if (rn > 5.0) {flag = 1;} else {path = select_cloud_model(type,"small");}
}
else { # select a large cloud
if (rn > 5.0) {flag = 1;} else {path = select_cloud_model(type,"large");}
}
if (flag==0){
if (thread_flag == 1)
{create_cloud_vec(path, lat, long, alt, 0.0);}
else
{compat_layer.create_cloud(path, lat, long, alt, 0.0);}
}
}
}
}
###########################################################
# place a cloud layer
###########################################################
var create_layer = func (type, blat, blon, balt, bthick, rx, ry, phi, density, edge, rainflag, rain_density) {
var i = 0;
var area = math.pi * rx * ry;
var circ = math.pi * (rx + ry); # that's just an approximation
var n = int(area/80000000.0 * 100 * density);
var m = int(circ/63000.0 * 40 * rain_density);
var path = "Models/Weather/blank.ac";
#print("density: ",n);
phi = phi * math.pi/180.0;
if (contains(cloud_vertical_size_map, type))
{var alt_offset = cloud_vertical_size_map[type]/2.0 * m_to_ft;}
else {var alt_offset = 0.0;}
while(i<n)
{
var x = rx * (2.0 * rand() - 1.0);
var y = ry * (2.0 * rand() - 1.0);
var alt = balt + bthick * rand() + 0.8 * alt_offset;
var res = (x*x)/(rx*rx) + (y*y)/(ry*ry);
if (res < 1.0)
{
var lat = blat + m_to_lat * (y * math.cos(phi) - x * math.sin(phi));
var lon = blon + m_to_lon * (x * math.cos(phi) + y * math.sin(phi));
if (res > ((1.0 - edge) * (1.0- edge)))
{
if (rand() > 0.4) {
path = select_cloud_model(type,"small");
if (thread_flag == 1)
{create_cloud_vec(path, lat, lon, alt, 0.0);}
else
{compat_layer.create_cloud(path, lat, lon, alt, 0.0);}
}
}
else {
path = select_cloud_model(type,"large");
if (thread_flag == 1)
{create_cloud_vec(path, lat, lon, alt, 0.0);}
else
{compat_layer.create_cloud(path, lat, lon, alt, 0.0);}
}
i = i + 1;
}
}
i = 0;
if (rainflag ==1){
if (local_weather.hardcoded_clouds_flag == 1) {balt = balt + local_weather.offset_map[type]; }
while(i<m)
{
var alpha = rand() * 2.0 * math.pi;
x = 0.8 * (1.0 - edge) * (1.0-edge) * rx * math.cos(alpha);
y = 0.8 * (1.0 - edge) * (1.0-edge) * ry * math.sin(alpha);
lat = blat + m_to_lat * (y * math.cos(phi) - x * math.sin(phi));
lon = blon + m_to_lon * (x * math.cos(phi) + y * math.sin(phi));
path = "Models/Weather/rain1.xml";
if (contains(cloud_vertical_size_map,type)) {var alt_shift = cloud_vertical_size_map[type];}
else {var alt_shift = 0.0;}
if (thread_flag == 1)
{create_cloud_vec(path, lat, lon,balt +0.5*bthick+ alt_shift, 0.0);}
else
{compat_layer.create_cloud(path, lat, lon, balt + 0.5 * bthick + alt_shift, 0.0);}
i = i + 1;
} # end while
} # end if (rainflag ==1)
}
###########################################################
# place a cloud layer with a gap in the middle
# (useful to reduce cloud count in large thunderstorms)
###########################################################
var create_hollow_layer = func (type, blat, blon, balt, bthick, rx, ry, phi, density, edge, gap_fraction) {
var i = 0;
var area = math.pi * rx * ry;
var n = int(area/80000000.0 * 100 * density);
var path = "Models/Weather/blank.ac";
phi = phi * math.pi/180.0;
if (contains(cloud_vertical_size_map, type))
{var alt_offset = cloud_vertical_size_map[type]/2.0 * m_to_ft;}
else {var alt_offset = 0.0;}
while(i<n)
{
var x = rx * (2.0 * rand() - 1.0);
var y = ry * (2.0 * rand() - 1.0);
var alt = balt + bthick * rand() + 0.8 * alt_offset;
var res = (x*x)/(rx*rx) + (y*y)/(ry*ry);
if ((res < 1.0) and (res > (gap_fraction * gap_fraction)))
{
var lat = blat + m_to_lat * (y * math.cos(phi) - x * math.sin(phi));
var lon = blon + m_to_lon * (x * math.cos(phi) + y * math.sin(phi));
if (res > ((1.0 - edge) * (1.0- edge)))
{
if (rand() > 0.4) {
path = select_cloud_model(type,"small");
compat_layer.create_cloud(path, lat, lon, alt, 0.0);
}
}
else {
path = select_cloud_model(type,"large");
if (thread_flag == 1)
{create_cloud_vec(path, lat, lon, alt, 0.0);}
else
{compat_layer.create_cloud(path, lat, lon, alt, 0.0);}
}
i = i + 1;
}
else # we are in the central gap region
{
i = i + 1;
}
}
i = 0;
}
###########################################################
# place a cloud box
###########################################################
var create_cloudbox = func (type, blat, blon, balt, dx,dy,dz,n, f_core, r_core, h_core, n_core, f_bottom, h_bottom, n_bottom) {
var phi = 0;
# first get core coordinates
var core_dx = dx * f_core;
var core_dy = dy * f_core;
var core_dz = dz * h_core;
var core_x_offset = (1.0 * rand() - 0.5) * ((dx - core_dx) * r_core);
var core_y_offset = (1.0 * rand() - 0.5) * ((dy - core_dy) * r_core);
# get the bottom geometry
var bottom_dx = dx * f_bottom;
var bottom_dy = dy * f_bottom;
var bottom_dz = dz * h_bottom;
var bottom_offset = 400.0; # in practice, need a small shift
# fill the main body of the box
for (var i=0; i<n; i=i+1)
{
var x = 0.5 * dx * (2.0 * rand() - 1.0);
var y = 0.5 * dy * (2.0 * rand() - 1.0);
# veto in core region
if ((x > core_x_offset - 0.5 * core_dx) and (x < core_x_offset + 0.5 * core_dx))
{
if ((y > core_y_offset - 0.5 * core_dy) and (y < core_y_offset + 0.5 * core_dy))
{
i = i -1;
continue;
}
}
var alt = balt + bottom_dz + bottom_offset + dz * rand();
var lat = blat + m_to_lat * (y * math.cos(phi) - x * math.sin(phi));
var lon = blon + m_to_lon * (x * math.cos(phi) + y * math.sin(phi));
var path = select_cloud_model(type,"standard");
create_cloud_vec(path, lat, lon, alt, 0.0);
}
# fill the core region
for (var i=0; i<n_core; i=i+1)
{
var x = 0.5 * core_dx * (2.0 * rand() - 1.0);
var y = 0.5 * core_dy * (2.0 * rand() - 1.0);
var alt = balt + bottom_dz + bottom_offset + core_dz * rand();
var lat = blat + m_to_lat * (y * math.cos(phi) - x * math.sin(phi));
var lon = blon + m_to_lon * (x * math.cos(phi) + y * math.sin(phi));
var path = select_cloud_model(type,"core");
if (thread_flag == 1)
{create_cloud_vec(path, lat, lon, alt, 0.0);}
else
{compat_layer.create_cloud(path, lat, lon, alt, 0.0);}
}
# fill the bottom region
for (var i=0; i<n_bottom; i=i+1)
{
var x = 0.5 * bottom_dx * (2.0 * rand() - 1.0);
var y = 0.5 * bottom_dy * (2.0 * rand() - 1.0);
var alt = balt + bottom_dz * rand();
var lat = blat + m_to_lat * (y * math.cos(phi) - x * math.sin(phi));
var lon = blon + m_to_lon * (x * math.cos(phi) + y * math.sin(phi));
var path = select_cloud_model(type,"bottom");
if (thread_flag == 1)
{create_cloud_vec(path, lat, lon, alt, 0.0);}
else
{compat_layer.create_cloud(path, lat, lon, alt, 0.0);}
}
}
###########################################################
# terrain presampling initialization
###########################################################
var terrain_presampling_start = func (blat, blon, nc, size, alpha) {
# terrain presampling start is always used the first time, and initializes
# the hard-coded routine if that is available since the hard-coded routine cannot
# be yet read out on startup
# initialize the result vector
setsize(terrain_n,40);
for(var j=0;j<40;j=j+1){terrain_n[j]=0;}
if (thread_flag == 1)
{
var status = getprop(lw~"tmp/presampling-status");
if (status != "idle") # we try a second later
{
settimer( func {terrain_presampling_start(blat, blon, nc, size, alpha);},1.00);
return;
}
else
{
setprop(lw~"tmp/presampling-status", "sampling");
terrain_presampling_loop (blat, blon, nc, size, alpha);
}
}
else
{
terrain_presampling(blat, blon, nc, size, alpha);
terrain_presampling_analysis();
setprop(lw~"tmp/presampling-status", "finished");
}
if (compat_layer.features.terrain_presampling == 1)
{
print("Starting hard-coded terrain presampling");
setprop("/environment/terrain/area[0]/enabled",1);
setprop(lw~"tmp/presampling-status", "sampling");
setprop("/environment/terrain/area[0]/enabled", 1 );
setprop("/environment/terrain/area[0]/input/latitude-deg", blat );
setprop("/environment/terrain/area[0]/input/longitude-deg", blon );
setprop("/environment/terrain/area[0]/input/use-aircraft-position",1);
setprop("/environment/terrain/area[0]/input/radius-m",45000.0);
setprop("/environment/terrain/area[0]/output/valid", 0 );
}
}
###########################################################
# terrain presampling loop
###########################################################
var terrain_presampling_loop = func (blat, blon, nc, size, alpha) {
if ((local_weather_running_flag == 0) and (local_weather_startup_flag == 0)) {return;}
if (local_weather.features.fast_geodinfo == 0)
{var n = 25;
var n_out = 25;
# dynamically drop accuracy if framerate is low
var dt = getprop("/sim/time/delta-sec");
if (dt > 0.2) # we have below 20 fps
{n = 5;}
else if (dt > 0.1) # we have below 10 fps
{n = 10;}
else if (dt > 0.05) # we have below 5 fps
{n = 15;}
}
else
{
n = 250; n_out = 250;
}
if (nc <= 0) # we're done and may analyze the result
{
terrain_presampling_analysis();
if (debug_output_flag == 1)
{print("Presampling done!");}
setprop(lw~"tmp/presampling-status", "finished");
return;
}
terrain_presampling(blat, blon, n, size, alpha);
settimer( func {terrain_presampling_loop(blat, blon, nc-n_out, size, alpha) },0);
}
###########################################################
# terrain presampling routine
###########################################################
var terrain_presampling = func (blat, blon, ntries, size, alpha) {
var phi = alpha * math.pi/180.0;
var elevation = 0.0;
var lat_vec = [];
var lon_vec = [];
var lat_lon_vec = [];
for (var i=0; i<ntries; i=i+1)
{
var x = (2.0 * rand() - 1.0) * size;
var y = (2.0 * rand() - 1.0) * size;
append(lat_vec, blat + (y * math.cos(phi) - x * math.sin(phi)) * m_to_lat);
append(lon_vec, blon + (x * math.cos(phi) + y * math.sin(phi)) * m_to_lon);
}
var elevation_vec = compat_layer.get_elevation_array(lat_vec, lon_vec);
for (i=0; i<ntries;i=i+1)
{
for(j=0;j<30;j=j+1)
{
if ((elevation_vec[i] != -1.0) and (elevation_vec[i] < 500.0 * (j+1)))
{terrain_n[j] = terrain_n[j]+1; break;}
}
}
}
###########################################################
# terrain presampling analysis
###########################################################
var terrain_presampling_analysis = func {
if ((compat_layer.features.terrain_presampling_active == 0) or (getprop(lw~"tiles/tile-counter") == 0))
{
var sum = 0;
var alt_mean = 0;
var alt_med = 0;
var alt_20 = 0;
var alt_min = 0;
var alt_low_min = 0;
for (var i=0; i<40;i=i+1)
{sum = sum + terrain_n[i];}
var n_tot = sum;
sum = 0;
for (var i=0; i<40;i=i+1)
{
sum = sum + terrain_n[i];
if (sum > int(0.5 *n_tot)) {alt_med = i * 500.0; break;}
}
sum = 0;
for (var i=0; i<40;i=i+1)
{
sum = sum + terrain_n[i];
if (sum > int(0.3 *n_tot)) {alt_20 = i * 500.0; break;}
}
for (var i=0; i<40;i=i+1) {alt_mean = alt_mean + terrain_n[i] * i * 500.0;}
alt_mean = alt_mean/n_tot;
for (var i=0; i<40;i=i+1) {if (terrain_n[i] > 0) {alt_min = i * 500.0; break;}}
var n_max = 0;
sum = 0;
for (var i=0; i<39;i=i+1)
{
sum = sum + terrain_n[i];
if (terrain_n[i] > n_max) {n_max = terrain_n[i];}
if ((n_max > terrain_n[i+1]) and (sum > int(0.3*n_tot)))
{alt_low_min = i * 500; break;}
}
}
else
{
#print("Hard-coded sampling...");
var n_tot = getprop("/environment/terrain/area[0]/input/max-samples");
var alt_mean = getprop("/environment/terrain/area[0]/output/alt-mean-ft");
var alt_med = getprop("/environment/terrain/area[0]/output/alt-median-ft");
var alt_min = getprop("/environment/terrain/area[0]/output/alt-min-ft");
var alt_20 = getprop("/environment/terrain/area[0]/output/alt-offset-ft");
}
if (debug_output_flag == 1)
{print("Terrain presampling analysis results:");
print("total: ",n_tot," mean: ",alt_mean," median: ",alt_med," min: ",alt_min, " alt_20: ", alt_20);}
setprop(lw~"tmp/tile-alt-offset-ft",alt_20);
setprop(lw~"tmp/tile-alt-median-ft",alt_med);
setprop(lw~"tmp/tile-alt-min-ft",alt_min);
setprop(lw~"tmp/tile-alt-mean-ft",alt_mean);
setprop(lw~"tmp/tile-alt-layered-ft",0.5 * (alt_min + alt_20));
append(alt_50_array, alt_med);
append(alt_20_array, alt_20);
append(alt_min_array, alt_min);
append(alt_mean_array, alt_mean);
current_mean_alt = 0.5 * (current_mean_alt + alt_20);
}
###########################################################
# wave conditions search
###########################################################
var wave_detection_loop = func (blat, blon, nx, alpha) {
if (local_weather_running_flag == 0) {return;}
var phi = alpha * math.pi/180.0;
var elevation = 0.0;
var ny = 20;
for (var i=0; i<ny; i=i+1)
{
var x = 5000.0;
var y = -20000.0 + i * 2000.0;
var lat = blat + (y * math.cos(phi) - x * math.sin(phi)) * m_to_lat;
var lon = blon + (x * math.cos(phi) + y * math.sin(phi)) * m_to_lon;
elevation = compat_layer.get_elevation(lat, lon);
print(elevation);
}
}
###########################################################
# detailed altitude determination for convective calls
# clouds follow the terrain to some degree, but not excessively so
###########################################################
var get_convective_altitude = func (balt, elevation, tile_index, grad) {
var alt_offset = alt_20_array[tile_index - 1];
var alt_median = alt_50_array[tile_index - 1];
# get the maximal shift
var alt_variation = alt_median - alt_offset;
# always get some amount of leeway
if (alt_variation < 500.0) {alt_variation = 500.0;}
# get the correction to the maximal shift by detailed terrain
if (detailed_terrain_interaction_flag == 1)
{
var gradfact = get_gradient_factor(grad);
if ((local_weather.wind_model_flag == 1) or (local_weather.wind_model_flag == 3))
{
var windspeed = tile_wind_speed[0];
}
else if ((local_weather.wind_model_flag ==2) or (local_weather.wind_model_flag == 4) or (local_weather.wind_model_flag == 5))
{
var windspeed = tile_wind_speed[tile_index-1];
}
var gradfact = ((gradfact - 1.0) * windspeed) + 1.0;
#print("gradfact: ", gradfact);
}
else
{
var gradfact = 1.0;
}
var alt_variation = alt_variation * gradfact;
# get the difference between offset and foot point
var alt_diff = elevation - alt_offset;
# now get the elevation-induced shift
var fraction = alt_diff / alt_variation;
if (fraction > 1.0) {fraction = 1.0;} # no placement above maximum shift
if (fraction < 0.0) {fraction = 0.0;} # no downward shift
# get the cloud base
var cloudbase = balt - alt_offset;
var alt_above_terrain = balt - elevation;
# the shift strength is weakened if the layer is high above base elevation
# the reference altitude is 1000 ft, anything higher has less sensitivity to terrain
var shift_strength = 1000.0/alt_above_terrain;
if (shift_strength > 1.0) {shift_strength = 1.0;} # no enhancement for very low layers
if (shift_strength < 0.0) {shift_strength = 1.0;} # this shouldn't happen, but just in case...
if (alt_diff > alt_variation) {alt_diff = alt_variation;} # maximal shift is given by alt_variation
# print("balt: ", balt, " new alt: ", balt + shift_strength * alt_diff * fraction);
return balt + shift_strength * alt_diff * fraction;
}
###########################################################
# detailed terrain gradient determination in wind direction
###########################################################
var get_terrain_gradient = func (lat, lon, elevation1, phi, dist) {
# get the first elevation
# var elevation1 = compat_layer.get_elevation(lat,lon);
# look <dist> upwind to learn about the history of the cloud
var elevation2 = compat_layer.get_elevation(lat+weather_tiles.get_lat(0.0,dist,phi), lon+weather_tiles.get_lon(0.0,dist,phi));
return (elevation2 - elevation1)/(dist * m_to_ft);
}
###########################################################
# enhancement of the placement altitude due to terrain
###########################################################
var get_gradient_factor = func (grad) {
if (grad > 0.0)
{return 1.0;}
else
{
return 1.0 -2.0 * grad;
}
}
###########################################################
# suppression of placement in lee terrain
###########################################################
var get_lee_bias = func (grad) {
if ((local_weather.wind_model_flag == 1) or (local_weather.wind_model_flag == 3))
{
var windspeed = tile_wind_speed[0];
}
else if ((local_weather.wind_model_flag ==2) or (local_weather.wind_model_flag == 4) or (local_weather.wind_model_flag == 5))
{
var windspeed = tile_wind_speed[tile_index-1];
}
if (grad < 0.0)
{return 1.0;}
else
{
var lee_bias = 1.0 - (grad * 0.2 * windspeed);
}
if (lee_bias < 0.2) {lee_bias = 0.2;}
return lee_bias;
}
###########################################################
# enhancement of Cumulus in above average altitude
###########################################################
var get_terrain_altitude_factor = func (tile_index, balt, elevation) {
var alt_mean = alt_mean_array[tile_index -1];
var alt_base = alt_20_array[tile_index -1];
var alt_layer = balt - alt_base;
var alt_above_terrain = balt - elevation;
var alt_above_mean = balt - alt_mean;
# the cloud may still be above terrain even if the layer altitude is negative, but we want to avoid neg. factors here
if (alt_above_terrain < 0.0) {alt_above_terrain = 0.0;}
var norm_alt_diff = (alt_above_mean - alt_above_terrain)/alt_layer;
if (norm_alt_diff > 0.0)
{
var terrain_altitude_factor = 1.0 + 2.0 * norm_alt_diff;
}
else
{
var terrain_altitude_factor = 1.0/(1.0 - 5.0 * norm_alt_diff);
}
if (terrain_altitude_factor > 3.0) {terrain_altitude_factor = 3.0;}
if (terrain_altitude_factor < 0.1) {terrain_altitude_factor = 0.1;}
return terrain_altitude_factor;
}
var get_terrain_strength_factor = func (terrain_altitude_factor) {
return 1.0+ (0.5 * (terrain_altitude_factor-1.0));
}
###########################################################
# terrain presampling listener dispatcher
###########################################################
var manage_presampling = func {
var status = getprop(lw~"tmp/presampling-status");
# we only take action when the analysis is done
if (status != "finished") {return;}
if (getprop(lw~"tiles/tile-counter") == 0) # we deal with a tile setup call from the menu
{
set_tile();
}
else # the tile setup call came from weather_tile_management
{
var lat = getprop(lw~"tiles/tmp/latitude-deg");
var lon = getprop(lw~"tiles/tmp/longitude-deg");
var code = getprop(lw~"tiles/tmp/code");
var dir_index = getprop(lw~"tiles/tmp/dir-index");
weather_tile_management.generate_tile(code, lat, lon, dir_index);
}
# set status to idle again
setprop(lw~"tmp/presampling-status", "idle");
}
###########################################################
# hardcoded terrain presampling listener dispatcher
###########################################################
var manage_hardcoded_presampling = func {
var status = getprop("/environment/terrain/area[0]/enabled");
print("Hard-coded terrain presampling status: ", status);
# no action unless the sampler has finished
if (status ==0) {return;}
# no action if the sampler hasn't been started
if (getprop(lw~"tmp/presampling-status") != "sampling") {return;}
terrain_presampling_analysis();
if (debug_output_flag == 1)
{print("Presampling done!");}
setprop(lw~"tmp/presampling-status", "finished");
}
###########################################################
# set wind model flag
###########################################################
var set_wind_model_flag = func {
var wind_model = getprop(lw~"config/wind-model");
if (wind_model == "constant") {wind_model_flag = 1;}
else if (wind_model == "constant in tile") {wind_model_flag =2;}
else if (wind_model == "aloft interpolated") {wind_model_flag =3; }
else if (wind_model == "airmass interpolated") {wind_model_flag =4;}
else if (wind_model == "aloft waypoints") {wind_model_flag =5;}
else {print("Wind model not implemented!"); wind_model_flag =1;}
}
###########################################################
# set texture mix for convective clouds
###########################################################
var set_texture_mix = func {
var thermal_properties = getprop(lw~"config/thermal-properties");
convective_texture_mix = -(thermal_properties - 1.0) * 0.4;
if (convective_texture_mix < -0.2) {convective_texture_mix = -0.2;}
if (convective_texture_mix > 0.2) {convective_texture_mix = 0.2;}
}
###########################################################
# create an effect volume
###########################################################
var create_effect_volume = func (geometry, lat, lon, r1, r2, phi, alt_low, alt_high, vis, rain, snow, turb, lift, lift_flag, sat) {
var ev = effectVolume.new (geometry, lat, lon, r1, r2, phi, alt_low, alt_high, vis, rain, snow, turb, lift, lift_flag, sat);
ev.index = getprop(lw~"tiles/tile-counter");
ev.active_flag = 0;
if (vis < 0.0) {ev.vis_flag = 0;} else {ev.vis_flag = 1;}
if (rain < 0.0) {ev.rain_flag = 0;} else {ev.rain_flag = 1;}
if (snow < 0.0) {ev.snow_flag = 0;} else {ev.snow_flag = 1;}
if (turb < 0.0) {ev.turb_flag = 0;} else {ev.turb_flag = 1;}
if (lift_flag == 0.0) {ev.lift_flag = 0;} else {ev.lift_flag = 1;}
if (sat < 0.0) {ev.sat_flag = 0;} else {ev.sat_flag = 1;}
if (sat > 1.0) {sat = 1.0;}
if (lift_flag == -2) # we create a thermal by function
{
ev.lift_flag = 2;
ev.radius = 0.8 * r1;
ev.height = alt_high * 0.87;
ev.cn = 0.7 + rand() * 0.2;
ev.sh = 0.7 + rand() * 0.2;
ev.max_lift = lift;
ev.f_lift_radius = 0.7 + rand() * 0.2;
if (dynamics_flag == 1) # globals set by the convective system
{
ev.flt = cloud_fractional_lifetime;
ev.evolution_timestamp = cloud_evolution_timestamp;
}
}
if (lift_flag == -3) # we create a wave lift
{
ev.lift_flag = 3;
ev.height = 10000.0; # scale height in ft
ev.max_lift = lift;
ev.index = 0; # static objects are assigned tile id zero
}
# set a timestamp if needed
if (dynamics_flag == 1)
{
ev.timestamp = weather_dynamics.time_lw;
}
# and add to the counter
setprop(lw~"effect-volumes/number",getprop(lw~"effect-volumes/number")+1);
append(effectVolumeArray,ev);
}
###########################################################
# set a weather station for interpolation
###########################################################
var set_weather_station = func (lat, lon, alt, vis, T, D, p) {
var s = weatherStation.new (lat, lon, alt, vis, T, D, p);
s.index = getprop(lw~"tiles/tile-counter");
s.weight = 0.02;
# set a timestamp if needed
if (dynamics_flag == 1)
{
s.timestamp = weather_dynamics.time_lw;
}
append(weatherStationArray,s);
}
###########################################################
# set an atmosphere condition point for interpolation
###########################################################
var set_atmosphere_ipoint = func (lat, lon, vis_aloft, vis_alt1, vis_ovcst, ovcst,ovcst_alt_low, ovcst_alt_high, scatt, scatt_alt_low, scatt_alt_high) {
var a = atmosphereIpoint.new (lat, lon, vis_aloft, vis_alt1, vis_ovcst, ovcst, ovcst_alt_low, ovcst_alt_high, scatt, scatt_alt_low, scatt_alt_high);
a.index = getprop(lw~"tiles/tile-counter");
a.weight = 0.02;
# set a timestamp if needed
if (dynamics_flag == 1)
{
a.timestamp = weather_dynamics.time_lw;
}
append(atmosphereIpointArray,a);
}
###########################################################
# set a wind interpolation point
###########################################################
var set_wind_ipoint = func (lat, lon, d0, v0, d1, v1, d2, v2, d3, v3, d4, v4, d5, v5, d6, v6, d7, v7, d8, v8) {
var w = windIpoint.new(lat, lon, d0, v0, d1, v1, d2, v2, d3, v3, d4, v4, d5, v5, d6, v6, d7, v7, d8, v8);
append(windIpointArray, w);
}
###########################################################
# set a wind interpolation point from ground METAR data
###########################################################
var set_wind_ipoint_metar = func (lat, lon, d0, v0) {
# insert a plausible pattern of aloft winds based on ground info
# direction of Coriolis deflection depends on hemisphere
if (lat >0.0) {var dsign = -1.0;} else {var dsign = 1.0;}
var v1 = v0 * (1.0 + rand() * 0.1);
var d1 = d0 + dsign * 2.0 * rand();
var v2 = v0 * (1.2 + rand() * 0.2);
var d2 = d0 + dsign * (3.0 * rand() + 2.0);
var v3 = v0 * (1.3 + rand() * 0.4) + 5.0;
var d3 = d0 + dsign * (3.0 * rand() + dsign * 4.0);
var v4 = v0 * (1.7 + rand() * 0.5) + 10.0;
var d4 = d0 + dsign * (4.0 * rand() + dsign * 8.0);
var v5 = v0 * (1.7 + rand() * 0.5) + 20.0;
var d5 = d0 + dsign * (4.0 * rand() + dsign * 10.0);
var v6 = v0 * (1.7 + rand() * 0.5) + 40.0;
var d6 = d0 + dsign * (4.0 * rand() + dsign * 12.0);
var v7 = v0 * (2.0 + rand() * 0.7) + 50.0;
var d7 = d0 + dsign * (4.0 * rand() + dsign * 13.0);
var v8 = v0 * (2.0 + rand() * 0.7) + 55.0;;
var d8 = d0 + dsign * (5.0 * rand() + dsign * 14.0);
var w = windIpoint.new(lat, lon, d0, v0, d1, v1, d2, v2, d3, v3, d4, v4, d5, v5, d6, v6, d7, v7, d8, v8);
append(windIpointArray, w);
}
###########################################################
# helper to show additional dialogs
###########################################################
var showDialog = func (name) {
fgcommand("dialog-show", props.Node.new({"dialog-name":name}));
}
###########################################################
# helper to transfer configuration flags in menu to Nasal
###########################################################
var readFlags = func {
# thermal lift must be 1 for constant thermals (obsolete), 2 for thermals by model (menu default)
# and 3 for blue thermals (set internally inside the tile only)
if (getprop(lw~"config/generate-thermal-lift-flag") ==1) {generate_thermal_lift_flag = 2;}
else {generate_thermal_lift_flag = 0};
thread_flag = getprop(lw~"config/thread-flag");
# dynamics_flag = getprop(lw~"config/dynamics-flag");
presampling_flag = getprop(lw~"config/presampling-flag");
detailed_clouds_flag = getprop(lw~"config/detailed-clouds-flag");
dynamical_convection_flag = getprop(lw~"config/dynamical-convection-flag");
debug_output_flag = getprop(lw~"config/debug-output-flag");
fps_control_flag = getprop(lw~"config/fps-control-flag");
realistic_visibility_flag = getprop(lw~"config/realistic-visibility-flag");
detailed_terrain_interaction_flag = getprop(lw~"config/detailed-terrain-interaction-flag");
scattering_shader_flag = getprop("/sim/rendering/shaders/skydome");
}
###########################################################
# wrappers to call functions from the local weather menu bar
###########################################################
var streak_wrapper = func {
thread_flag = 0;
dynamics_flag = 0;
presampling_flag = 0;
var array = [];
append(weather_tile_management.modelArrays,array);
setprop(lw~"tiles/tile-counter",getprop(lw~"tiles/tile-counter")+1);
var lat = getprop("position/latitude-deg");
var lon = getprop("position/longitude-deg");
var type = getprop("/local-weather/tmp/cloud-type");
var alt = getprop("/local-weather/tmp/alt");
var nx = getprop("/local-weather/tmp/nx");
var xoffset = getprop("/local-weather/tmp/xoffset");
var xedge = getprop("/local-weather/tmp/xedge");
var ny = getprop("/local-weather/tmp/ny");
var yoffset = getprop("/local-weather/tmp/yoffset");
var yedge = getprop("/local-weather/tmp/yedge");
var dir = getprop("/local-weather/tmp/dir");
var tri = getprop("/local-weather/tmp/tri");
var rnd_alt = getprop("/local-weather/tmp/rnd-alt");
var rnd_pos_x = getprop("/local-weather/tmp/rnd-pos-x");
var rnd_pos_y = getprop("/local-weather/tmp/rnd-pos-y");
create_streak(type,lat,lon,alt,rnd_alt,nx,xoffset,xedge,rnd_pos_x,ny,yoffset,yedge,rnd_pos_y,dir,tri);
}
var convection_wrapper = func {
thread_flag = 0;
dynamics_flag = 0;
presampling_flag = 0;
var array = [];
append(weather_tile_management.modelArrays,array);
setprop(lw~"tiles/tile-counter",getprop(lw~"tiles/tile-counter")+1);
var lat = getprop("position/latitude-deg");
var lon = getprop("position/longitude-deg");
var alt = getprop("/local-weather/tmp/conv-alt");
var size = getprop("/local-weather/tmp/conv-size");
var strength = getprop("/local-weather/tmp/conv-strength");
var n = int(10 * size * size * strength);
create_cumosys(lat,lon,alt,n, size*1000.0);
}
var barrier_wrapper = func {
thread_flag = 0;
dynamics_flag = 0;
presampling_flag = 0;
var array = [];
append(weather_tile_management.modelArrays,array);
setprop(lw~"tiles/tile-counter",getprop(lw~"tiles/tile-counter")+1);
var lat = getprop("position/latitude-deg");
var lon = getprop("position/longitude-deg");
var alt = getprop("/local-weather/tmp/bar-alt");
var n = getprop("/local-weather/tmp/bar-n");
var dir = getprop("/local-weather/tmp/bar-dir");
var dist = getprop("/local-weather/tmp/bar-dist") * 1000.0;
var size = getprop("/local-weather/tmp/bar-size") * 1000.0;
create_rise_clouds(lat, lon, alt, n, size, dir, dist);
}
var single_cloud_wrapper = func {
thread_flag = 0;
dynamics_flag = 0;
presampling_flag = 0;
var array = [];
append(weather_tile_management.modelArrays,array);
setprop(lw~"tiles/tile-counter",getprop(lw~"tiles/tile-counter")+1);
var type = getprop("/local-weather/tmp/scloud-type");
var subtype = getprop("/local-weather/tmp/scloud-subtype");
var lat = getprop("/local-weather/tmp/scloud-lat");
var lon = getprop("/local-weather/tmp/scloud-lon");
var alt = getprop("/local-weather/tmp/scloud-alt");
var heading = getprop("/local-weather/tmp/scloud-dir");
var path = select_cloud_model(type,subtype);
compat_layer.create_cloud(path, lat, lon, alt, heading);
}
var layer_wrapper = func {
thread_flag = 0;
dynamics_flag = 0;
presampling_flag = 0;
var array = [];
append(weather_tile_management.modelArrays,array);
setprop(lw~"tiles/tile-counter",getprop(lw~"tiles/tile-counter")+1);
var lat = getprop("position/latitude-deg");
var lon = getprop("position/longitude-deg");
var type = getprop(lw~"tmp/layer-type");
var rx = getprop(lw~"tmp/layer-rx") * 1000.0;
var ry = getprop(lw~"tmp/layer-ry") * 1000.0;
var phi = getprop(lw~"tmp/layer-phi");
var alt = getprop(lw~"tmp/layer-alt");
var thick = getprop(lw~"tmp/layer-thickness");
var density = getprop(lw~"tmp/layer-density");
var edge = getprop(lw~"tmp/layer-edge");
var rain_flag = getprop(lw~"tmp/layer-rain-flag");
var rain_density = getprop(lw~"tmp/layer-rain-density");
create_layer(type, lat, lon, alt, thick, rx, ry, phi, density, edge, rain_flag, rain_density);
}
var box_wrapper = func {
thread_flag = 0;
dynamics_flag = 0;
presampling_flag = 0;
setprop(lw~"tiles/tile-counter",getprop(lw~"tiles/tile-counter")+1);
var lat = getprop("position/latitude-deg");
var lon = getprop("position/longitude-deg");
var alt = getprop("position/altitude-ft");
var x = getprop(lw~"tmp/box-x-m");
var y = getprop(lw~"tmp/box-y-m");
var z = getprop(lw~"tmp/box-alt-ft");
var n = getprop(lw~"tmp/box-n");
var f_core = getprop(lw~"tmp/box-core-fraction");
var r_core = getprop(lw~"tmp/box-core-offset");
var h_core = getprop(lw~"tmp/box-core-height");
var n_core = getprop(lw~"tmp/box-core-n");
var f_bottom = getprop(lw~"tmp/box-bottom-fraction");
var h_bottom = getprop(lw~"tmp/box-bottom-thickness");
var n_bottom = getprop(lw~"tmp/box-bottom-n");
var type = "Box_test";
create_cloudbox(type, lat, lon, alt, x,y,z,n, f_core, r_core, h_core, n_core, f_bottom, h_bottom, n_bottom);
}
var set_aloft_wrapper = func {
var lat = getprop(lw~"tmp/ipoint-latitude-deg");
var lon = getprop(lw~"tmp/ipoint-longitude-deg");
var d0 = getprop(lw~"tmp/FL0-wind-from-heading-deg");
var v0 = getprop(lw~"tmp/FL0-windspeed-kt");
var d1 = getprop(lw~"tmp/FL50-wind-from-heading-deg");
var v1 = getprop(lw~"tmp/FL50-windspeed-kt");
var d2 = getprop(lw~"tmp/FL100-wind-from-heading-deg");
var v2 = getprop(lw~"tmp/FL100-windspeed-kt");
var d3 = getprop(lw~"tmp/FL180-wind-from-heading-deg");
var v3 = getprop(lw~"tmp/FL180-windspeed-kt");
var d4 = getprop(lw~"tmp/FL240-wind-from-heading-deg");
var v4 = getprop(lw~"tmp/FL240-windspeed-kt");
var d5 = getprop(lw~"tmp/FL300-wind-from-heading-deg");
var v5 = getprop(lw~"tmp/FL300-windspeed-kt");
var d6 = getprop(lw~"tmp/FL340-wind-from-heading-deg");
var v6 = getprop(lw~"tmp/FL340-windspeed-kt");
var d7 = getprop(lw~"tmp/FL390-wind-from-heading-deg");
var v7 = getprop(lw~"tmp/FL390-windspeed-kt");
var d8 = getprop(lw~"tmp/FL450-wind-from-heading-deg");
var v8 = getprop(lw~"tmp/FL450-windspeed-kt");
set_wind_ipoint(lat, lon, d0, v0, d1, v1, d2, v2, d3, v3, d4, v4, d5, v5, d6, v6, d7, v7, d8, v8);
if (wind_model_flag == 5)
{setprop(lwi~"ipoint-number", getprop(lwi~"ipoint-number") + 1);}
}
####################################
# tile setup call wrapper
####################################
var set_tile = func {
# check if another instance of local weather is running already
if (local_weather_running_flag == 1)
{
setprop("/sim/messages/pilot", "Local weather: Local weather is already running, use Clear/End before restarting. Aborting...");
return;
}
local_weather_startup_flag = 1;
var type = getprop("/local-weather/tmp/tile-type");
# set tile center coordinates to current position
var lat = getprop("position/latitude-deg");
var lon = getprop("position/longitude-deg");
setprop(lw~"tiles/tmp/latitude-deg",lat);
setprop(lw~"tiles/tmp/longitude-deg",lon);
setprop(lw~"tiles/tmp/dir-index",4);
readFlags();
# check consistency of flags
if (dynamical_convection_flag == 1)
{
if (dynamics_flag == 0)
{
print("Dynamical convection needs weather dynamics to run! Aborting...");
setprop("/sim/messages/pilot", "Local weather: dynamical convection needs weather dynamics to run! Aborting...");
return;
}
if (presampling_flag == 0)
{
print("Dynamical convection needs terrain presampling to run! Aborting...");
setprop("/sim/messages/pilot", "Local weather: dynamical convection needs terrain presampling to run! Aborting...");
return;
}
}
if (detailed_terrain_interaction_flag == 1)
{
if (presampling_flag == 0)
{
print("Terrain effect needs terrain presampling to run! Aborting...");
setprop("/sim/messages/pilot", "Local weather: terrain effect needs terrain presampling to run! Aborting...");
return;
}
}
# if we can do so, we switch global weather and METAR parsing in environment off at this point
if (compat_layer.features.can_disable_environment ==1)
{
props.globals.getNode("/environment/config/enabled").setBoolValue(0);
props.globals.getNode("/environment/params/metar-updates-environment").setBoolValue(0);
}
# switch off normal 3d clouds
local_weather.setDefaultCloudsOff();
# now see if we need to presample the terrain
if ((presampling_flag == 1) and (getprop(lw~"tmp/presampling-status") == "idle"))
{
terrain_presampling_start(lat, lon, 1000, 40000, getprop(lw~"tmp/tile-orientation-deg"));
return;
}
# indicate that we're up and running
local_weather_startup_flag = 0;
local_weather_running_flag = 1;
# see if we use METAR for weather setup
if ((getprop("/environment/metar/valid") == 1) and (getprop(lw~"tmp/tile-management") == "METAR"))
{
type = "METAR";
metar_flag = 1;
setprop(lw~"METAR/station-id","METAR");
}
else if ((getprop("/environment/metar/valid") == 0) and (getprop(lw~"tmp/tile-management") == "METAR"))
{
print("No METAR available, aborting...");
setprop("/sim/messages/pilot", "Local weather: No METAR available! Aborting...");
return;
}
# see if we need to create an aloft wind interpolation structure
if ((wind_model_flag == 3) or ((wind_model_flag ==5) and (getprop(lwi~"ipoint-number") == 0)))
{
if (metar_flag != 1)
{set_aloft_wrapper();}
}
# prepare the first tile wind field
if (metar_flag == 1) # the winds from current METAR are used
{
# METAR reports ground winds, we want to set aloft, so we need to compute the local boundary layer
# need to set the tile index for this
setprop(lw~"tiles/tile[4]/tile-index",1);
var boundary_correction = 1.0/get_slowdown_fraction();
var metar_base_wind_deg = getprop("environment/metar/base-wind-dir-deg");
var metar_base_wind_speed = boundary_correction * getprop("environment/metar/base-wind-speed-kt");
# set the wind hash for the new scheme
wind.cloudlayer = [metar_base_wind_deg,metar_base_wind_speed];
wind.surface = [metar_base_wind_deg,metar_base_wind_speed/boundary_correction];
wind.current = wind.surface;
if ((wind_model_flag == 1) or (wind_model_flag == 2))
{
append(weather_dynamics.tile_wind_direction, metar_base_wind_deg);
append(weather_dynamics.tile_wind_speed, metar_base_wind_speed);
setprop(lw~"tmp/tile-orientation-deg",metar_base_wind_deg);
}
else if (wind_model_flag == 5)
{
var station_lat = getprop("/environment/metar/station-latitude-deg");
var station_lon = getprop("/environment/metar/station-longitude-deg");
set_wind_ipoint_metar(station_lat, station_lon, metar_base_wind_deg, metar_base_wind_speed);
var res = wind_interpolation(lat,lon,0.0);
append(weather_dynamics.tile_wind_direction,res[0]);
append(weather_dynamics.tile_wind_speed,res[1]);
setprop(lw~"tmp/tile-orientation-deg", weather_dynamics.tile_wind_direction[0]);
}
else
{
print("Wind model currently not supported with live data!");
setprop("/sim/messages/pilot", "Local weather: Wind model currently not supported with live data! Aborting...");
return;
}
}
else
{
setprop(lw~"tiles/tile[4]/tile-index",1);
var boundary_correction = get_slowdown_fraction();
if (wind_model_flag == 5) # it needs to be interpolated
{
var res = wind_interpolation(lat,lon,0.0);
append(weather_dynamics.tile_wind_direction,res[0]);
append(weather_dynamics.tile_wind_speed,res[1]);
# set the wind hash for the new scheme
wind.surface = [res[0],res[1] * boundary_correction];
wind.cloudlayer = res;
wind.current = wind.surface;
}
else if (wind_model_flag == 3) # it comes from a different menu
{
append(weather_dynamics.tile_wind_direction, getprop(lw~"tmp/FL0-wind-from-heading-deg"));
append(weather_dynamics.tile_wind_speed, getprop(lw~"tmp/FL0-windspeed-kt"));
# set the wind hash for the new scheme
wind.cloudlayer = [getprop(lw~"tmp/FL0-wind-from-heading-deg"),getprop(lw~"tmp/FL0-windspeed-kt") ];
wind.surface = [wind.cloudlayer[0],wind.cloudlayer[1] * boundary_correction];
wind.current = wind.surface;
}
else # it comes from the standard menu
{
append(weather_dynamics.tile_wind_direction, getprop(lw~"tmp/tile-orientation-deg"));
append(weather_dynamics.tile_wind_speed, getprop(lw~"tmp/windspeed-kt"));
# set the wind hash for the new scheme
wind.cloudlayer = [getprop(lw~"tmp/tile-orientation-deg"),getprop(lw~"tmp/windspeed-kt")];
wind.surface = [wind.cloudlayer[0],wind.cloudlayer[1] * boundary_correction];
wind.current = wind.surface;
}
# when the aloft wind menu is used, the lowest winds should be taken from there
# so we need to overwrite the setting from the tile generating menu in this case
# otherwise the wrong orientation is built
if (wind_model_flag ==3)
{
setprop(lw~"tmp/tile-orientation-deg", getprop(lw~"tmp/FL0-wind-from-heading-deg"));
}
else if (wind_model_flag == 5)
{
setprop(lw~"tmp/tile-orientation-deg", weather_dynamics.tile_wind_direction[0]);
}
}
# create all the neighbouring tile coordinate sets
weather_tile_management.create_neighbours(lat,lon,getprop(lw~"tmp/tile-orientation-deg"));
setprop(lw~"tiles/tile-counter",getprop(lw~"tiles/tile-counter")+1);
# see if we need to generate a quadtree structure for clouds
if (dynamics_flag ==1)
{
var quadtree = [];
weather_dynamics.generate_quadtree_structure(0, quadtree);
append(weather_dynamics.cloudQuadtrees,quadtree);
}
if (type == "High-pressure-core")
{weather_tiles.set_high_pressure_core_tile();}
else if (type == "High-pressure")
{weather_tiles.set_high_pressure_tile();}
else if (type == "High-pressure-border")
{weather_tiles.set_high_pressure_border_tile();}
else if (type == "Low-pressure-border")
{weather_tiles.set_low_pressure_border_tile();}
else if (type == "Low-pressure")
{weather_tiles.set_low_pressure_tile();}
else if (type == "Low-pressure-core")
{weather_tiles.set_low_pressure_core_tile();}
else if (type == "Cold-sector")
{weather_tiles.set_cold_sector_tile();}
else if (type == "Warm-sector")
{weather_tiles.set_warm_sector_tile();}
else if (type == "Tropical")
{weather_tiles.set_tropical_weather_tile();}
else if (type == "Coldfront")
{weather_tiles.set_coldfront_tile();}
else if (type == "Warmfront")
{weather_tiles.set_warmfront1_tile();}
else if (type == "Warmfront-2")
{weather_tiles.set_warmfront2_tile();}
else if (type == "Warmfront-3")
{weather_tiles.set_warmfront3_tile();}
else if (type == "Warmfront-4")
{weather_tiles.set_warmfront4_tile();}
else if (type == "Thunderstorms")
{weather_tiles.set_thunderstorms_tile();}
else if (type == "METAR")
{weather_tiles.set_METAR_tile();}
else if (type == "Altocumulus sky")
{weather_tiles.set_altocumulus_tile();setprop(lw~"tiles/code","altocumulus_sky");}
else if (type == "Broken layers")
{weather_tiles.set_broken_layers_tile();setprop(lw~"tiles/code","broken_layers");}
else if (type == "Cold front")
{weather_tiles.set_coldfront_tile();setprop(lw~"tiles/code","coldfront");}
else if (type == "Cirrus sky")
{weather_tiles.set_cirrus_sky_tile();setprop(lw~"tiles/code","cirrus_sky");}
else if (type == "Fair weather")
{setprop(lw~"tiles/code","cumulus_sky");weather_tiles.set_fair_weather_tile();}
else if (type == "Glider's sky")
{setprop(lw~"tiles/code","gliders_sky");weather_tiles.set_gliders_sky_tile();}
else if (type == "Blue thermals")
{setprop(lw~"tiles/code","blue_thermals");weather_tiles.set_blue_thermals_tile();}
else if (type == "Incoming rainfront")
{weather_tiles.set_rainfront_tile();setprop(lw~"tiles/code","rainfront");}
else if (type == "8/8 stratus sky")
{weather_tiles.set_overcast_stratus_tile();setprop(lw~"tiles/code","overcast_stratus");}
else if (type == "Test tile")
{weather_tiles.set_4_8_stratus_tile();setprop(lw~"tiles/code","test");}
else if (type == "Summer rain")
{weather_tiles.set_summer_rain_tile();setprop(lw~"tiles/code","summer_rain");}
else
{print("Tile not implemented.");setprop(lw~"tiles/tile-counter",getprop(lw~"tiles/tile-counter")-1);return();}
# mark tile as active
append(weather_tile_management.active_tile_list,1);
# start tile management loop if needed
if (getprop(lw~"tmp/tile-management") != "single tile") {
if (getprop(lw~"tile-loop-flag") == 0)
{
setprop(lw~"tiles/tile[4]/code",getprop(lw~"tiles/code"));
setprop(lw~"tile-loop-flag",1);
weather_tile_management.tile_management_loop();}
}
# start the interpolation loop
if (getprop(lw~"interpolation-loop-flag") == 0)
{setprop(lw~"interpolation-loop-flag",1); local_weather.interpolation_loop();}
# start the effect volume loop
if (getprop(lw~"effect-loop-flag") == 0)
{setprop(lw~"effect-loop-flag",1); local_weather.effect_volume_loop(0,0);}
# start weather dynamics loops if needed
if (getprop(lw~"timing-loop-flag") == 0)
{setprop(lw~"timing-loop-flag",1); local_weather.timing_loop();}
if (dynamics_flag ==1)
{
if (getprop(lw~"dynamics-loop-flag") == 0)
{
setprop(lw~"dynamics-loop-flag",1);
weather_dynamics.quadtree_loop();
weather_dynamics.weather_dynamics_loop(0,0);
}
if ((getprop(lw~"convective-loop-flag") == 0) and (getprop(lw~"config/dynamical-convection-flag") ==1))
{
setprop(lw~"convective-loop-flag",1);
weather_dynamics.convective_loop();
}
}
# and start the buffer loop and housekeeping loop if needed
if (buffer_flag == 1)
{
if (getprop(lw~"buffer-loop-flag") == 0)
{
setprop(lw~"buffer-loop-flag",1); weather_tile_management.buffer_loop(0);
setprop(lw~"housekeeping-loop-flag",1); weather_tile_management.housekeeping_loop(0,0);
}
}
# weather_tile_management.watchdog_loop();
}
#################################################
# Anything that needs to run at startup goes here
#################################################
var startup = func {
print("Loading local weather routines...");
# get local Cartesian geometry
var lat = getprop("position/latitude-deg");
var lon = getprop("position/longitude-deg");
calc_geo(lat);
# copy weather properties at startup to local weather
setprop(lw~"interpolation/visibility-m",getprop(ec~"boundary/entry[0]/visibility-m"));
setprop(lw~"interpolation/pressure-sea-level-inhg",getprop(ec~"boundary/entry[0]/pressure-sea-level-inhg"));
setprop(lw~"interpolation/temperature-degc",getprop(ec~"boundary/entry[0]/temperature-degc"));
setprop(lw~"interpolation/wind-from-heading-deg",getprop(ec~"boundary/entry[0]/wind-from-heading-deg"));
setprop(lw~"interpolation/wind-speed-kt",getprop(ec~"boundary/entry[0]/wind-speed-kt"));
setprop(lw~"interpolation/turbulence",getprop(ec~"boundary/entry[0]/turbulence/magnitude-norm"));
setprop(lw~"interpolation/rain-norm",0.0);
setprop(lw~"interpolation/snow-norm",0.0);
setprop(lw~"interpolation/thermal-lift",0.0);
# before interpolation starts, these are also initially current
setprop(lw~"current/visibility-m",getprop(lwi~"visibility-m"));
setprop(lw~"current/pressure-sea-level-inhg",getprop(lw~"interpolation/pressure-sea-level-inhg"));
setprop(lw~"current/temperature-degc",getprop(lw~"interpolation/temperature-degc"));
setprop(lw~"current/wind-from-heading-deg",getprop(lw~"interpolation/wind-from-heading-deg"));
setprop(lw~"current/wind-speed-kt",getprop(lw~"interpolation/wind-speed-kt"));
setprop(lw~"current/rain-norm",getprop(lw~"interpolation/rain-norm"));
setprop(lw~"current/snow-norm",getprop(lw~"interpolation/snow-norm"));
setprop(lw~"current/thermal-lift",getprop(lw~"interpolation/thermal-lift"));
setprop(lw~"current/turbulence",getprop(lwi~"turbulence"));
# create default properties for METAR system, should be overwritten by real-weather-fetch
setprop(lw~"METAR/latitude-deg",lat);
setprop(lw~"METAR/longitude-deg",lon);
setprop(lw~"METAR/altitude-ft",0.0);
setprop(lw~"METAR/wind-direction-deg",0.0);
setprop(lw~"METAR/wind-strength-kt",10.0);
setprop(lw~"METAR/visibility-m",17000.0);
setprop(lw~"METAR/rain-norm",0.0);
setprop(lw~"METAR/snow-norm",0.0);
setprop(lw~"METAR/temperature-degc",10.0);
setprop(lw~"METAR/dewpoint-degc",7.0);
setprop(lw~"METAR/pressure-inhg",29.92);
setprop(lw~"METAR/thunderstorm-flag",0);
setprop(lw~"METAR/layer[0]/cover-oct",4);
setprop(lw~"METAR/layer[0]/alt-agl-ft", 3000.0);
setprop(lw~"METAR/layer[1]/cover-oct",0);
setprop(lw~"METAR/layer[1]/alt-agl-ft", 20000.0);
setprop(lw~"METAR/layer[2]/cover-oct",0);
setprop(lw~"METAR/layer[2]/alt-agl-ft", 20000.0);
setprop(lw~"METAR/layer[3]/cover-oct",0);
setprop(lw~"METAR/layer[3]/alt-agl-ft", 20000.0);
setprop(lw~"METAR/available-flag",1);
# set listeners
setlistener(lw~"tmp/thread-status", func {var s = size(clouds_path); compat_layer.create_cloud_array(s, clouds_path, clouds_lat, clouds_lon, clouds_alt, clouds_orientation); });
setlistener(lw~"tmp/convective-status", func {var s = size(clouds_path); compat_layer.create_cloud_array(s, clouds_path, clouds_lat, clouds_lon, clouds_alt, clouds_orientation); });
setlistener(lw~"tmp/effect-thread-status", func {var s = size(effects_geo); effect_placement_loop(s); });
setlistener(lw~"tmp/presampling-status", func {manage_presampling(); });
setlistener(lw~"config/wind-model", func {set_wind_model_flag();});
setlistener(lw~"config/thermal-properties", func {set_texture_mix();});
setlistener(lw~"config/clouds-in-dynamics-loop", func {weather_dynamics.max_clouds_in_loop = int(getprop(lw~"config/clouds-in-dynamics-loop"));});
setlistener(lw~"config/clouds-visible-range-m", func {weather_tile_management.cloud_view_distance = getprop(lw~"config/clouds-visible-range-m");});
setlistener(lw~"config/distance-to-load-tile-m", func {setprop(lw~"config/distance-to-remove-tile-m",getprop(lw~"config/distance-to-load-tile-m") + 500.0);});
setlistener(lw~"config/fps-control-flag", func {fps_control_flag = getprop(lw~"config/fps-control-flag");});
setlistener(lw~"config/target-framerate", func {target_framerate = getprop(lw~"config/target-framerate");});
setlistener(lw~"config/small-scale-persistence", func {weather_tiles.small_scale_persistence = getprop(lw~"config/small-scale-persistence");});
setlistener(lw~"config/ground-haze-factor", func {ground_haze_factor = getprop(lw~"config/ground-haze-factor");});
setlistener(lw~"config/aux-max-vis-range-m", func {max_vis_range = math.exp(getprop(lw~"config/aux-max-vis-range-m")); setprop(lw~"config/max-vis-range-m",max_vis_range);});
setlistener(lw~"config/temperature-offset-degc", func {temperature_offset = getprop(lw~"config/temperature-offset-degc");});
setlistener("/sim/rendering/shaders/skydome", func {scattering_shader_flag = getprop("/sim/rendering/shaders/skydome"); });
}
#####################################################
# Standard test call (for development and debug only)
#####################################################
var test = func {
var lat = getprop("position/latitude-deg");
var lon = getprop("position/longitude-deg");
var alt = getprop("position/altitude-ft");
thread_flag = 0;
dynamics_flag = 0;
presampling_flag = 0;
#if (compat_layer.features.can_disable_environment ==1)
# {
# props.globals.getNode("/environment/config/enabled").setBoolValue(0);
# props.globals.getNode("/environment/params/metar-updates-environment").setBoolValue(0);
# }
#
#compat_layer.setDefaultCloudsOff();
#var array = [];
#append(weather_tile_management.modelArrays,array);
#setprop(lw~"tiles/tile-counter",getprop(lw~"tiles/tile-counter")+1);
#var pos = geo.aircraft_position();
# debug.dump(geodinfo(lat, lon));
#create_cumulonimbus_cloud(lat, lon, 6000.0, 2.5);
local_weather.place_model("Models/Weather/cloudsphere.ac",lat, lon, alt-10000.0, 0.0);
#setprop("/environment/terrain/area[0]/input/latitude-deg", lat );
#setprop("/environment/terrain/area[0]/input/longitude-deg", lon );
#setprop("/environment/terrain/area[0]/output/valid", 0 );
# elttest();
}
var elttest = func {
var lat_uncertainty = 0.001;
var lon_uncertainty = 0.001;
#var lat = getprop("/position/latitude-deg") + lat_uncertainty * 0.5 - rand();
#var lon = getprop("/position/longitude-deg") + lon_uncertainty * 0.5 - rand();
var lat = getprop("/position/latitude-string");
var lon = getprop("/position/longitude-string");
var aircraft = getprop("sim/description");
var callsign = getprop("sim/multiplay/callsign");
var help_string = "ELT AutoMessage: " ~ aircraft ~ " " ~ callsign ~ " " ~lat~" LAT "~lon~" LON, requesting SAR service";
setprop("/sim/multiplay/chat", help_string);
}
#################################################################
# object classes
#################################################################
var weatherStation = {
new: func (lat, lon, alt, vis, T, D, p) {
var s = { parents: [weatherStation] };
s.lat = lat;
s.lon = lon;
s.alt = alt;
s.vis = vis;
s.T = T;
s.D = D;
s.p = p;
s.scattering = 0.8;
return s;
},
move: func {
var windfield = weather_dynamics.get_windfield(me.index);
var dt = weather_dynamics.time_lw - me.timestamp;
me.lat = me.lat + windfield[1] * dt * local_weather.m_to_lat;
me.lon = me.lon + windfield[0] * dt * local_weather.m_to_lon;
me.timestamp = weather_dynamics.time_lw;
},
};
var atmosphereIpoint = {
new: func (lat, lon, vis_aloft, vis_alt1, vis_ovcst, ovcst, ovcst_alt_low, ovcst_alt_high, scatt, scatt_alt_low, scatt_alt_high){
var a = { parents: [atmosphereIpoint] };
a.lat = lat;
a.lon = lon;
a.vis_aloft = vis_aloft;
a.vis_alt1 = vis_alt1;
a.vis_ovcst = vis_ovcst;
a.ovcst = ovcst;
a.ovcst_alt_low = ovcst_alt_low;
a.ovcst_alt_high = ovcst_alt_high;
a.scatt = scatt;
a.scatt_alt_low = scatt_alt_low;
a.scatt_alt_high = scatt_alt_high;
return a;
},
move: func {
var windfield = weather_dynamics.get_windfield(me.index);
var dt = weather_dynamics.time_lw - me.timestamp;
me.lat = me.lat + windfield[1] * dt * local_weather.m_to_lat;
me.lon = me.lon + windfield[0] * dt * local_weather.m_to_lon;
me.timestamp = weather_dynamics.time_lw;
},
};
var windIpoint = {
new: func (lat, lon, d0, v0, d1, v1, d2, v2, d3, v3, d4, v4, d5, v5, d6, v6, d7, v7, d8, v8) {
var w = { parents: [windIpoint] };
w.lat = lat;
w.lon = lon;
altvec = [];
var wv = windVec.new(d0, v0);
append(altvec,wv);
wv = windVec.new(d1, v1);
append(altvec, wv);
wv = windVec.new(d2, v2);
append(altvec, wv);
wv = windVec.new(d3, v3);
append(altvec, wv);
wv = windVec.new(d4, v4);
append(altvec, wv);
wv = windVec.new(d5, v5);
append(altvec, wv);
wv = windVec.new(d6, v6);
append(altvec, wv);
wv = windVec.new(d7, v7);
append(altvec, wv);
wv = windVec.new(d8, v8);
append(altvec, wv);
w.alt = altvec;
w.weight = 0.02;
return w;
},
};
var windVec = {
new: func (d, v) {
var wv = { parents: [windVec] };
wv.d = d;
wv.v = v;
return wv;
},
};
var effectVolume = {
new: func (geometry, lat, lon, r1, r2, phi, alt_low, alt_high, vis, rain, snow, turb, lift, lift_flag, sat) {
var e = { parents: [effectVolume] };
e.geometry = geometry;
e.lat = lat;
e.lon = lon;
e.r1 = r1;
e.r2 = r2;
e.phi = phi;
e.alt_low = alt_low;
e.alt_high = alt_high;
e.vis = vis;
e.rain = rain;
e.snow = snow;
e.turb = turb;
e.lift = lift;
e.lift_flag = lift_flag;
e.sat = sat;
return e;
},
move: func {
var windfield = weather_dynamics.get_windfield(me.index);
var dt = weather_dynamics.time_lw - me.timestamp;
me.lat = me.lat + windfield[1] * dt * local_weather.m_to_lat;
me.lon = me.lon + windfield[0] * dt * local_weather.m_to_lon;
me.timestamp = weather_dynamics.time_lw;
},
correct_altitude: func {
var convective_alt = weather_dynamics.tile_convective_altitude[me.index-1] + alt_20_array[me.index-1];
var elevation = compat_layer.get_elevation(me.lat, me.lon);
me.alt_high = local_weather.get_convective_altitude(convective_alt, elevation, me.index,0.0) *1.15;
me.height = me.alt_high * 0.87;
},
correct_altitude_and_age: func {
var convective_alt = weather_dynamics.tile_convective_altitude[me.index-1] + local_weather.alt_20_array[me.index-1];
var elevation = -1.0; var p_cover = 0.2;
var info = geodinfo(me.lat, me.lon);
if (info != nil)
{
elevation = info[0] * local_weather.m_to_ft;
if (info[1] != nil)
{
var landcover = info[1].names[0];
if (contains(landcover_map,landcover)) {p_cover = landcover_map[landcover];}
else {p_cover = 0.2;}
}
}
me.alt_high = get_convective_altitude(convective_alt, elevation, me.index,0.0) * 1.15;
me.height = me.alt_high * 0.87;
var current_lifetime = math.sqrt(p_cover)/math.sqrt(0.35) * weather_dynamics.cloud_convective_lifetime_s;
var fractional_increase = (weather_dynamics.time_lw - me.evolution_timestamp)/current_lifetime;
me.flt = me.flt + fractional_increase;
me.evolution_timestamp = weather_dynamics.time_lw;
},
get_distance: func {
var lat = getprop("position/latitude-deg");
var lon = getprop("position/longitude-deg");
return math.sqrt(calc_d_sq(lat, lon, me.lat, me.lon));
},
};
var thermalLift = {
new: func (lat, lon, radius, height, cn, sh, max_lift, f_lift_radius) {
var l = { parents: [thermalLift] };
l.lat = lat;
l.lon = lon;
l.radius = radius;
l.height = height;
l.cn = cn;
l.sh = sh;
l.max_lift = max_lift;
l.f_lift_radius = f_lift_radius;
return l;
},
move: func {
var windfield = weather_dynamics.get_windfield(me.index);
var dt = weather_dynamics.time_lw - me.timestamp;
me.lat = me.lat + windfield[1] * dt * local_weather.m_to_lat;
me.lon = me.lon + windfield[0] * dt * local_weather.m_to_lon;
me.timestamp = weather_dynamics.time_lw;
},
correct_altitude: func {
var convective_alt = weather_dynamics.tile_convective_altitude[me.index-1] + alt_20_array[me.index-1];
var elevation = compat_layer.get_elevation(me.lat, me.lon);
me.height = local_weather.get_convective_altitude(convective_alt, elevation, me.index,0.0);
},
correct_altitude_and_age: func {
var convective_alt = weather_dynamics.tile_convective_altitude[me.index-1] + local_weather.alt_20_array[me.index-1];
var elevation = -1.0; var p_cover = 0.2;
var info = geodinfo(me.lat, me.lon);
if (info != nil)
{
elevation = info[0] * local_weather.m_to_ft;
if (info[1] != nil)
{
var landcover = info[1].names[0];
if (contains(landcover_map,landcover)) {p_cover = landcover_map[landcover];}
else {p_cover = 0.2;}
}
}
me.height = get_convective_altitude(convective_alt, elevation, me.index,0.0);
var current_lifetime = math.sqrt(p_cover)/math.sqrt(0.35) * weather_dynamics.cloud_convective_lifetime_s;
var fractional_increase = (weather_dynamics.time_lw - me.evolution_timestamp)/current_lifetime;
me.flt = me.flt + fractional_increase;
me.evolution_timestamp = weather_dynamics.time_lw;
},
};
var waveLift = {
new: func (lat, lon, x, y, phi, height, max_lift) {
var w = { parents: [waveLift] };
w.lat = lat;
w.lon = lon;
w.x = x;
w.y = y;
w.phi = phi;
w.height = height;
w.max_lift = max_lift;
w.phi = getprop(lw~"tmp/tile-orientation-deg");
return w;
},
};
#################################################################
# global variable, property creation and the startup listener
#################################################################
var rad_E = 6378138.12; # earth radius
var lat_to_m = 110952.0; # latitude degrees to meters
var m_to_lat = 9.01290648208234e-06; # meters to latitude degrees
var ft_to_m = 0.30480;
var m_to_ft = 1.0/ft_to_m;
var lon_to_m = 0.0; # needs to be calculated dynamically
var m_to_lon = 0.0; # we do this on startup
# some common abbreviations
var lw = "/local-weather/";
var lwi = "/local-weather/interpolation/";
var ec = "/environment/config/";
# a hash map of the strength for convection associated with terrain types
var landcover_map = {BuiltUpCover: 0.35, Town: 0.35, Freeway:0.35, BarrenCover:0.3, HerbTundraCover: 0.25, GrassCover: 0.2, CropGrassCover: 0.2, EvergreenBroadCover: 0.2, EvergreenNeedleCover: 0.2, Sand: 0.25, Grass: 0.2, Ocean: 0.01, Marsh: 0.05, Lake: 0.01, ShrubCover: 0.15, Landmass: 0.2, CropWoodCover: 0.15, MixedForestCover: 0.15, DryCropPastureCover: 0.25, MixedCropPastureCover: 0.2, IrrCropPastureCover: 0.15, DeciduousBroadCover: 0.1, DeciduousNeedleCover: 0.1, Bog: 0.05, pa_taxiway : 0.35, pa_tiedown: 0.35, pc_taxiway: 0.35, pc_tiedown: 0.35, Glacier: 0.03, SnowCover: 0.04, DryLake: 0.3, IntermittentStream: 0.2, DryCrop: 0.2, Lava: 0.3, GolfCourse: 0.2, Rock: 0.3, Construction: 0.35, PackIce: 0.04, NaturalCrop: 0.2};
# a hash map of average vertical cloud model sizes
var cloud_vertical_size_map = {Altocumulus: 700.0, Cumulus: 600.0, Congestus: 2000.0, Nimbus: 1000.0, Stratus: 800.0, Stratus_structured: 600.0, Stratus_thin: 400.0, Cirrocumulus: 200.0, Cb_box: 2000.0};
# a hash map of offsets for the new cloud rendering system
var offset_map = {Nimbus: 2800.0, Stratus: 2000.0, Stratus_thin: 2500.0, Cirrostratus: 4500.0, Stratus_structured: 1800.0, Stratus_alt: 600.0, Cumulus: 200.0, Congestus: 600.0 };
# the array of aloft wind interpolation altitudes
var wind_altitude_array = [0.0, 5000.0, 10000.0, 18000.0, 24000.0, 30000.0, 34000.0, 39000.0, 45000.0];
# storage arrays for cloud generation
var clouds_path = [];
var clouds_lat = [];
var clouds_lon = [];
var clouds_alt = [];
var clouds_orientation = [];
# storage array for assembled clouds
var cloudAssemblyArray = [];
# additional info needed for dynamical clouds: the base altitude around which cloudlets are distributed
# and the fractional lifetime
var clouds_mean_alt = [];
var clouds_flt = [];
var clouds_evolution_timestamp = [];
# storage arrays for terrain presampling and results by tile
var terrain_n = [];
var alt_50_array = [];
var alt_20_array = [];
var alt_min_array = [];
var alt_mean_array = [];
# array of currently existing effect volumes
var effectVolumeArray = [];
var n_effectVolumeArray = 0;
# the thermal and the wave hash
var thermal = {};
var wave = {};
# the wind hash stores the current winds
var wind = {surface: [0.0,0.0] , cloudlayer: [0.0,0.0], current: [0.0,0.0]};
# arrays of currently existing weather stations, wind interpolation and atmospheric condition points
var weatherStationArray = [];
var windIpointArray = [];
var atmosphereIpointArray = [];
# a flag for the wind model (so we don't have to do string comparisons all the time)
# 1: constant 2: constant in tile 3: aloft interpolated 4: airmass interpolated
var wind_model_flag = 1;
# globals governing properties of the Cumulus system
var convective_texture_mix = 0.0;
var convective_size_bias = 0.0;
var cumulus_efficiency_factor = 1.0;
var cloud_mean_altitude = 0.0;
# globals keeping track of the lifetime when building a Cumulus from individual cloudlets
var cloud_fractional_lifetime = 0.0;
var cloud_evolution_timestamp = 0.0;
# globals propagating gust information inside the interpolation loop
var windspeed_multiplier = 1.0;
var winddir_change = 0.0;
# global flags mirroring property tree menu settings
var generate_thermal_lift_flag = 0;
var thread_flag = 1;
var dynamics_flag = 1;
var presampling_flag = 1;
var detailed_clouds_flag = 1;
var dynamical_convection_flag = 1;
var debug_output_flag = 1;
var metar_flag = 0;
var local_weather_running_flag = 0;
var local_weather_startup_flag = 0;
var fps_control_flag = 0;
var buffer_flag = 1;
var detailed_terrain_interaction_flag = 1;
var hardcoded_clouds_flag = 1;
var realistic_visibility_flag = 0;
var scattering_shader_flag = 0;
var wxradar_support_flag = 1;
var ground_haze_factor = 1.0;
var max_vis_range = 120000.0;
var temperature_offset = 0.0;
var current_mean_alt = 0.0;
# globals for framerate controlled cloud management
var fps_average = 0.0;
var fps_samples = 0;
var fps_sum = 0.0;
var target_framerate = 25.0;
# set all sorts of default properties for the menu
setprop(lw~"tmp/scloud-lat",getprop("position/latitude-deg"));
setprop(lw~"tmp/scloud-lon",getprop("position/longitude-deg"));
setprop(lw~"tmp/tile-alt-median-ft",0.0);
setprop(lw~"tmp/tile-alt-min-ft",0.0);
setprop(lw~"tmp/last-reading-pos-del",0);
setprop(lw~"tmp/last-reading-pos-mod",0);
setprop(lw~"tmp/thread-status", "idle");
setprop(lw~"tmp/convective-status", "idle");
setprop(lw~"tmp/presampling-status", "idle");
setprop(lw~"tmp/buffer-status", "idle");
setprop(lw~"tmp/buffer-tile-index", 0);
setprop(lw~"tmp/ipoint-latitude-deg",getprop("position/latitude-deg"));
setprop(lw~"tmp/ipoint-longitude-deg",getprop("position/longitude-deg"));
# set the default loop flags to loops inactive
setprop(lw~"effect-loop-flag",0);
setprop(lw~"interpolation-loop-flag",0);
setprop(lw~"tile-loop-flag",0);
setprop(lw~"lift-loop-flag",0);
setprop(lw~"wave-loop-flag",0);
setprop(lw~"buffer-loop-flag",0);
setprop(lw~"housekeeping-loop-flag",0);
setprop(lw~"convective-loop-flag",0);
# create other management properties
#setprop(lw~"clouds/cloud-number",0);
setprop(lw~"clouds/placement-index",0);
setprop(lw~"clouds/model-placement-index",0);
setprop(lw~"effect-volumes/effect-placement-index",0);
# create properties for effect volume management
setprop(lw~"effect-volumes/number",0);
setprop(lw~"effect-volumes/number-active-vis",0);
setprop(lw~"effect-volumes/number-active-rain",0);
setprop(lw~"effect-volumes/number-active-snow",0);
setprop(lw~"effect-volumes/number-active-turb",0);
setprop(lw~"effect-volumes/number-active-lift",0);
setprop(lw~"effect-volumes/number-active-sat",0);
# setprop(lw~"config/max-vis-range-m", 120000.0);
setprop(lw~"config/temperature-offset-degc", 0.0);
setprop("/sim/rendering/eye-altitude-m", getprop("/position/altitude-ft") * ft_to_m);
# create properties for tile management
setprop(lw~"tiles/tile-counter",0);
# create properties for wind
setprop(lwi~"ipoint-number",0);
var updateMenu = func {
var isEnabled = getprop("/nasal/local_weather/enabled");
gui.menuEnable("local_weather", isEnabled);
}
_setlistener("/nasal/local_weather/enabled", updateMenu);