82d415cbd4
Now the properties of the atmospheric medium can be changed through the property tree.
403 lines
14 KiB
GLSL
403 lines
14 KiB
GLSL
#version 330 core
|
|
|
|
uniform int aerosol_type;
|
|
uniform float aerosol_turbidity;
|
|
uniform float ground_albedo;
|
|
uniform int month_of_the_year;
|
|
|
|
uniform float fg_EarthRadius;
|
|
|
|
const float RAYLEIGH_PHASE_SCALE = 0.05968310365946075091; // 3/(16*pi)
|
|
const float HENYEY_ASYMMETRY = 0.8;
|
|
const float HENYEY_ASYMMETRY2 = HENYEY_ASYMMETRY*HENYEY_ASYMMETRY;
|
|
|
|
/*
|
|
* Rayleigh scattering coefficient at sea level, units m^-1
|
|
* "Rayleigh-scattering calculations for the terrestrial atmosphere"
|
|
* by Anthony Bucholtz (1995).
|
|
*/
|
|
const vec4 molecular_scattering_coefficient_base =
|
|
vec4(6.605e-6, 1.067e-5, 1.842e-5, 3.156e-5);
|
|
|
|
/*
|
|
* Ozone absorption cross section, units m^2 / molecules
|
|
* "High spectral resolution ozone absorption cross-sections"
|
|
* by V. Gorshelev et al. (2014).
|
|
*/
|
|
const vec4 ozone_cross_section =
|
|
vec4(3.472e-21, 3.914e-21, 1.349e-21, 11.03e-23) * 1e-4f;
|
|
|
|
const float ozone_mean_monthly_dobson[] = float[](
|
|
347.0, // January
|
|
370.0, // February
|
|
381.0, // March
|
|
384.0, // April
|
|
372.0, // May
|
|
352.0, // June
|
|
333.0, // July
|
|
317.0, // August
|
|
298.0, // September
|
|
285.0, // October
|
|
290.0, // November
|
|
315.0 // December
|
|
);
|
|
const float ozone_height_distribution[] = float[](
|
|
9.0 / 210.0,
|
|
14.0 / 210.0,
|
|
111.0 / 210.0,
|
|
64.0 / 210.0,
|
|
6.0 / 210.0,
|
|
6.0 / 210.0,
|
|
0.0
|
|
);
|
|
|
|
// math.glsl
|
|
float M_PI();
|
|
float M_2PI();
|
|
float M_1_PI();
|
|
float M_1_4PI();
|
|
float sqr(float x);
|
|
|
|
//------------------------------------------------------------------------------
|
|
|
|
float get_earth_radius()
|
|
{
|
|
return fg_EarthRadius;
|
|
}
|
|
|
|
float get_atmosphere_radius()
|
|
{
|
|
return 6471e3; // m
|
|
}
|
|
|
|
/*
|
|
* Helper function to obtain the transmittance to the top of the atmosphere
|
|
* from the precomputed transmittance LUT.
|
|
*/
|
|
vec4 transmittance_from_lut(sampler2D lut, float cos_theta, float normalized_altitude)
|
|
{
|
|
float u = clamp(cos_theta * 0.5 + 0.5, 0.0, 1.0);
|
|
float v = clamp(normalized_altitude, 0.0, 1.0);
|
|
return texture(lut, vec2(u, v));
|
|
}
|
|
|
|
/*
|
|
* Returns the distance between ro and the first intersection with the sphere
|
|
* or -1.0 if there is no intersection. The sphere's origin is (0,0,0).
|
|
* -1.0 is also returned if the ray is pointing away from the sphere.
|
|
*/
|
|
float ray_sphere_intersection(vec3 ro, vec3 rd, float radius)
|
|
{
|
|
float b = dot(ro, rd);
|
|
float c = dot(ro, ro) - radius*radius;
|
|
if (c > 0.0 && b > 0.0) return -1.0;
|
|
float d = b*b - c;
|
|
if (d < 0.0) return -1.0;
|
|
if (d > b*b) return (-b+sqrt(d));
|
|
return (-b-sqrt(d));
|
|
}
|
|
|
|
/*
|
|
* Rayleigh phase function.
|
|
*/
|
|
float molecular_phase_function(float cos_theta)
|
|
{
|
|
return RAYLEIGH_PHASE_SCALE * (1.0 + cos_theta*cos_theta);
|
|
}
|
|
|
|
/*
|
|
* Henyey-Greenstrein phase function.
|
|
*/
|
|
float aerosol_phase_function(float cos_theta)
|
|
{
|
|
float den = 1.0 + HENYEY_ASYMMETRY2 + 2.0 * HENYEY_ASYMMETRY * cos_theta;
|
|
return M_1_4PI() * (1.0 - HENYEY_ASYMMETRY2) / (den * sqrt(den));
|
|
}
|
|
|
|
/*
|
|
* Get the approximated multiple scattering contribution for a given point
|
|
* within the atmosphere.
|
|
*/
|
|
vec4 get_multiple_scattering(sampler2D transmittance_lut,
|
|
float cos_theta,
|
|
float normalized_height,
|
|
float d)
|
|
{
|
|
// Solid angle subtended by the planet from a point at d distance
|
|
// from the planet center.
|
|
float omega = M_2PI() * (1.0 - sqrt(sqr(d) - sqr(get_earth_radius())) / d);
|
|
omega = max(0.0, omega);
|
|
|
|
vec4 T_to_ground = transmittance_from_lut(transmittance_lut, cos_theta, 0.0);
|
|
|
|
vec4 T_ground_to_sample =
|
|
transmittance_from_lut(transmittance_lut, 1.0, 0.0) /
|
|
transmittance_from_lut(transmittance_lut, 1.0, normalized_height);
|
|
|
|
// 2nd order scattering from the ground
|
|
vec4 L_ground = M_1_4PI() * omega * (ground_albedo * M_1_PI())
|
|
* T_to_ground * T_ground_to_sample * max(0.0, cos_theta);
|
|
|
|
// Fit of Earth's multiple scattering coming from other points in the atmosphere
|
|
vec4 L_ms = 0.02 * vec4(0.217, 0.347, 0.594, 1.0)
|
|
* (1.0 / (1.0 + 5.0 * exp(-17.92 * cos_theta)));
|
|
|
|
return L_ms + L_ground;
|
|
}
|
|
|
|
/*
|
|
* Return the molecular volume scattering coefficient (m^-1) for a given altitude
|
|
* in kilometers.
|
|
*/
|
|
vec4 get_molecular_scattering_coefficient(float h)
|
|
{
|
|
return molecular_scattering_coefficient_base
|
|
* exp(-0.07771971 * pow(h, 1.16364243));
|
|
}
|
|
|
|
/*
|
|
* Return the molecular volume absorption coefficient (km^-1) for a given altitude
|
|
* in kilometers.
|
|
*/
|
|
vec4 get_molecular_absorption_coefficient(float h)
|
|
{
|
|
int i = int(clamp(h / 9.0, 0.0, 6.0));
|
|
float density = ozone_height_distribution[i] *
|
|
ozone_mean_monthly_dobson[month_of_the_year-1] * 2.6867e20f; // molecules / m^2
|
|
density /= 9e3; // m^-3
|
|
return ozone_cross_section * density; // m^-1
|
|
}
|
|
|
|
/*
|
|
* Return the aerosol density for a given altitude in kilometers.
|
|
*/
|
|
float get_aerosol_density(float h, float base_density, float height_scale,
|
|
float relative_background_density)
|
|
{
|
|
if (aerosol_type == 0) {
|
|
// Only for the Background aerosol type, no dependency on height
|
|
return base_density * (1.0 + relative_background_density);
|
|
} else {
|
|
return base_density * (exp(-h / height_scale) + relative_background_density);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Get the aerosol collision coefficients for a given altitude h in km.
|
|
* The two main parameters are the aerosol type (0 to 8), and the turbidity.
|
|
* Every aerosol type expects 5 parameters:
|
|
* - Scattering cross section
|
|
* - Absorption cross section
|
|
* - Base density (km^-3)
|
|
* - Background density (km^-3)
|
|
* - Height scaling parameter
|
|
*
|
|
* This model for aerosols and their corresponding parameters come from
|
|
* "A Physically-Based Spatio-Temporal Sky Model"
|
|
* by Guimera et al. (2018).
|
|
*/
|
|
void get_aerosol_collision_coefficients(in float h,
|
|
out vec4 absorption,
|
|
out vec4 scattering)
|
|
{
|
|
vec4 aerosol_absorption_cross_section, aerosol_scattering_cross_section;
|
|
float aerosol_base_density, aerosol_background_density, aerosol_height_scale;
|
|
if (aerosol_type == 0) {
|
|
// Background
|
|
aerosol_absorption_cross_section = vec4(4.5517e-19, 5.9269e-19, 6.9143e-19, 8.5228e-19);
|
|
aerosol_scattering_cross_section = vec4(1.8921e-26, 1.6951e-26, 1.7436e-26, 2.1158e-26);
|
|
aerosol_base_density = 2.584e17;
|
|
aerosol_background_density = 2e6;
|
|
} else if (aerosol_type == 1) {
|
|
// Desert-Dust
|
|
aerosol_absorption_cross_section = vec4(4.6758e-16, 4.4654e-16, 4.1989e-16, 4.1493e-16);
|
|
aerosol_scattering_cross_section = vec4(2.9144e-16, 3.1463e-16, 3.3902e-16, 3.4298e-16);
|
|
aerosol_base_density = 1.8662e18;
|
|
aerosol_background_density = 2e6;
|
|
aerosol_height_scale = 2.0;
|
|
} else if (aerosol_type == 2) {
|
|
// Maritime Clean
|
|
aerosol_absorption_cross_section = vec4(6.3312e-19, 7.5567e-19, 9.2627e-19, 1.0391e-18);
|
|
aerosol_scattering_cross_section = vec4(4.6539e-26, 2.721e-26, 4.1104e-26, 5.6249e-26);
|
|
aerosol_base_density = 2.0266e17;
|
|
aerosol_background_density = 2e6;
|
|
aerosol_height_scale = 0.9;
|
|
} else if (aerosol_type == 3) {
|
|
// Maritime Mineral
|
|
aerosol_absorption_cross_section = vec4(6.9365e-19, 7.5951e-19, 8.2423e-19, 8.9101e-19);
|
|
aerosol_scattering_cross_section = vec4(2.3699e-19, 2.2439e-19, 2.2126e-19, 2.021e-19);
|
|
aerosol_base_density = 2.0266e17;
|
|
aerosol_background_density = 2e6;
|
|
aerosol_height_scale = 2.0;
|
|
} else if (aerosol_type == 4) {
|
|
// Polar Antarctic
|
|
aerosol_absorption_cross_section = vec4(1.3399e-16, 1.3178e-16, 1.2909e-16, 1.3006e-16);
|
|
aerosol_scattering_cross_section = vec4(1.5506e-19, 1.809e-19, 2.3069e-19, 2.5804e-19);
|
|
aerosol_base_density = 2.3864e16;
|
|
aerosol_background_density = 2e6;
|
|
aerosol_height_scale = 30.0;
|
|
} else if (aerosol_type == 5) {
|
|
// Polar Arctic
|
|
aerosol_absorption_cross_section = vec4(1.0364e-16, 1.0609e-16, 1.0193e-16, 1.0092e-16);
|
|
aerosol_scattering_cross_section = vec4(2.1609e-17, 2.2759e-17, 2.5089e-17, 2.6323e-17);
|
|
aerosol_base_density = 2.3864e16;
|
|
aerosol_background_density = 2e6;
|
|
aerosol_height_scale = 30.0;
|
|
} else if (aerosol_type == 6) {
|
|
// Remote Continental
|
|
aerosol_absorption_cross_section = vec4(4.5307e-18, 5.0662e-18, 4.4877e-18, 3.7917e-18);
|
|
aerosol_scattering_cross_section = vec4(1.8764e-18, 1.746e-18, 1.6902e-18, 1.479e-18);
|
|
aerosol_base_density = 6.103e18;
|
|
aerosol_background_density = 2e6;
|
|
aerosol_height_scale = 0.73;
|
|
} else if (aerosol_type == 7) {
|
|
// Rural
|
|
aerosol_absorption_cross_section = vec4(5.0393e-23, 8.0765e-23, 1.3823e-22, 2.3383e-22);
|
|
aerosol_scattering_cross_section = vec4(2.6004e-22, 2.4844e-22, 2.8362e-22, 2.7494e-22);
|
|
aerosol_base_density = 8.544e18;
|
|
aerosol_background_density = 2e6;
|
|
aerosol_height_scale = 0.73;
|
|
} else if (aerosol_type == 8) {
|
|
// Urban
|
|
aerosol_absorption_cross_section = vec4(2.8722e-24, 4.6168e-24, 7.9706e-24, 1.3578e-23);
|
|
aerosol_scattering_cross_section = vec4(1.5908e-22, 1.7711e-22, 2.0942e-22, 2.4033e-22);
|
|
aerosol_base_density = 1.3681e20;
|
|
aerosol_background_density = 2e6;
|
|
aerosol_height_scale = 0.73;
|
|
}
|
|
|
|
float aerosol_relative_background_density =
|
|
aerosol_background_density / aerosol_base_density;
|
|
|
|
float aerosol_density = get_aerosol_density(
|
|
h, aerosol_base_density, aerosol_height_scale,
|
|
aerosol_relative_background_density);
|
|
aerosol_density *= aerosol_turbidity * 1e-3;
|
|
|
|
absorption = aerosol_absorption_cross_section * aerosol_density;
|
|
scattering = aerosol_scattering_cross_section * aerosol_density;
|
|
}
|
|
|
|
/*
|
|
* Get the collision coefficients (scattering and absorption) of the
|
|
* atmospheric medium for a given point at an altitude h.
|
|
*/
|
|
void get_atmosphere_collision_coefficients(in float h,
|
|
out vec4 aerosol_absorption,
|
|
out vec4 aerosol_scattering,
|
|
out vec4 molecular_absorption,
|
|
out vec4 molecular_scattering,
|
|
out vec4 extinction)
|
|
{
|
|
h *= 1e-3; // To km
|
|
h = max(h, 0.0); // In case height is negative
|
|
get_aerosol_collision_coefficients(h, aerosol_absorption, aerosol_scattering);
|
|
molecular_absorption = get_molecular_absorption_coefficient(h);
|
|
molecular_scattering = get_molecular_scattering_coefficient(h);
|
|
extinction =
|
|
aerosol_absorption + aerosol_scattering +
|
|
molecular_absorption + molecular_scattering;
|
|
}
|
|
|
|
/*
|
|
* Any given ray inside the atmospheric medium can end in one of 3 places:
|
|
* 1. The Earth's surface.
|
|
* 2. Outer space. We define the boundary between space and the atmosphere
|
|
* at the Kármán line (100 km above sea level).
|
|
* 3. Any object within the atmosphere.
|
|
*/
|
|
float get_ray_end(vec3 ray_origin, vec3 ray_dir, float t_max)
|
|
{
|
|
float ray_altitude = length(ray_origin);
|
|
// Handle the camera being underground
|
|
float earth_radius = min(ray_altitude, get_earth_radius());
|
|
float atmos_dist = ray_sphere_intersection(ray_origin, ray_dir, get_atmosphere_radius());
|
|
float ground_dist = ray_sphere_intersection(ray_origin, ray_dir, earth_radius);
|
|
float t_d;
|
|
if (ray_altitude < get_atmosphere_radius()) {
|
|
// We are inside the atmosphere
|
|
if (ground_dist < 0.0) {
|
|
// No ground collision, use the distance to the outer atmosphere
|
|
t_d = atmos_dist;
|
|
} else {
|
|
// We have a collision with the ground, use the distance to it
|
|
t_d = ground_dist;
|
|
}
|
|
} else {
|
|
// We are in outer space
|
|
// XXX: For now this is a flight simulator, not a space simulator
|
|
t_d = -1.0;
|
|
}
|
|
return min(t_d, t_max);
|
|
}
|
|
|
|
/*
|
|
* Compute the in-scattering integral of the volume rendering equation (VRE)
|
|
*
|
|
* The integral is solved numerically by ray marching. The final in-scattering
|
|
* returned by this function is a 4D vector of the spectral radiance sampled for
|
|
* the 4 wavelengths at the top of this file. To obtain an RGB triplet, the
|
|
* spectral radiance must be multiplied by the spectral irradiance of the Sun
|
|
* and converted to sRGB.
|
|
*/
|
|
vec4 compute_inscattering(in vec3 ray_origin,
|
|
in vec3 ray_dir,
|
|
in float t_max,
|
|
in vec3 sun_dir,
|
|
in int steps,
|
|
in sampler2D transmittance_lut,
|
|
out vec4 transmittance)
|
|
{
|
|
float cos_theta = dot(-ray_dir, sun_dir);
|
|
|
|
float molecular_phase = molecular_phase_function(cos_theta);
|
|
float aerosol_phase = aerosol_phase_function(cos_theta);
|
|
|
|
float dt = t_max / float(steps);
|
|
|
|
vec4 L_inscattering = vec4(0.0);
|
|
transmittance = vec4(1.0);
|
|
|
|
for (int i = 0; i < steps; ++i) {
|
|
float t = (float(i) + 0.5) * dt;
|
|
vec3 x_t = ray_origin + ray_dir * t;
|
|
|
|
float distance_to_earth_center = length(x_t);
|
|
vec3 zenith_dir = x_t / distance_to_earth_center;
|
|
float altitude = distance_to_earth_center - get_earth_radius();
|
|
float normalized_altitude = altitude / (get_atmosphere_radius() - get_earth_radius());
|
|
|
|
float sample_cos_theta = dot(zenith_dir, sun_dir);
|
|
|
|
vec4 aerosol_absorption, aerosol_scattering;
|
|
vec4 molecular_absorption, molecular_scattering;
|
|
vec4 extinction;
|
|
get_atmosphere_collision_coefficients(
|
|
altitude,
|
|
aerosol_absorption, aerosol_scattering,
|
|
molecular_absorption, molecular_scattering,
|
|
extinction);
|
|
|
|
vec4 transmittance_to_sun = transmittance_from_lut(
|
|
transmittance_lut, sample_cos_theta, normalized_altitude);
|
|
|
|
vec4 ms = get_multiple_scattering(
|
|
transmittance_lut, sample_cos_theta, normalized_altitude,
|
|
distance_to_earth_center);
|
|
|
|
vec4 S =
|
|
molecular_scattering * (molecular_phase * transmittance_to_sun + ms) +
|
|
aerosol_scattering * (aerosol_phase * transmittance_to_sun + ms);
|
|
|
|
vec4 step_transmittance = exp(-dt * extinction);
|
|
|
|
// Energy-conserving analytical integration
|
|
// "Physically Based Sky, Atmosphere and Cloud Rendering in Frostbite"
|
|
// by Sébastien Hillaire
|
|
vec4 S_int = (S - S * step_transmittance) / max(extinction, 1e-7);
|
|
L_inscattering += transmittance * S_int;
|
|
transmittance *= step_transmittance;
|
|
}
|
|
|
|
return L_inscattering;
|
|
}
|