1
0
Fork 0
fgdata/Shaders/building-default.vert
Stuart Buchanan fc27175690 Reduce shader attribute usage by packing floats
Previously we required 6 shader attributes to pass
in all the required information for the building shader.
By using packing techniques this has been reduced to 4.

This should improve support for integrated graphics cards.
2020-03-26 22:06:21 +00:00

135 lines
5.3 KiB
GLSL

// -*-C++-*-
// Shader that uses OpenGL state values to do per-pixel lighting
//
// The only light used is gl_LightSource[0], which is assumed to be
// directional.
//
// Diffuse colors come from the gl_Color, ambient from the material. This is
// equivalent to osg::Material::DIFFUSE.
#version 120
#extension GL_EXT_draw_instanced : enable
#define MODE_OFF 0
#define MODE_DIFFUSE 1
#define MODE_AMBIENT_AND_DIFFUSE 2
attribute vec3 instancePosition; // (x,y,z)
attribute vec3 instanceScale ; // (width, depth, height)
attribute vec3 attrib1; // Generic packed attributes
attribute vec3 attrib2;
// The constant term of the lighting equation that doesn't depend on
// the surface normal is passed in gl_{Front,Back}Color. The alpha
// component is set to 1 for front, 0 for back in order to work around
// bugs with gl_FrontFacing in the fragment shader.
varying vec4 diffuse_term;
varying vec3 normal;
uniform int colorMode;
////fog "include"////////
//uniform int fogType;
//
//void fog_Func(int type);
/////////////////////////
const float c_precision = 128.0;
const float c_precisionp1 = c_precision + 1.0;
vec3 float2vec(float value) {
vec3 val;
val.x = mod(value, c_precisionp1) / c_precision;
val.y = mod(floor(value / c_precisionp1), c_precisionp1) / c_precision;
val.z = floor(value / (c_precisionp1 * c_precisionp1)) / c_precision;
return val;
}
void main()
{
// Unpack generic attributes
vec3 attr1 = float2vec(attrib1.x);
vec3 attr2 = float2vec(attrib1.z);
vec3 attr3 = float2vec(attrib2.x);
// Determine the rotation for the building.
float sr = sin(6.28 * attr1.x);
float cr = cos(6.28 * attr1.x);
vec3 position = gl_Vertex.xyz;
// Adjust the very top of the roof to match the rooftop scaling. This shapes
// the rooftop - gambled, gabled etc. These vertices are identified by gl_Color.z
position.x = (1.0 - gl_Color.z) * position.x + gl_Color.z * ((position.x + 0.5) * attr3.z - 0.5);
position.y = (1.0 - gl_Color.z) * position.y + gl_Color.z * (position.y * attrib2.y );
// Adjust pitch of roof to the correct height. These vertices are identified by gl_Color.z
// Scale down by the building height (instanceScale.z) because
// immediately afterwards we will scale UP the vertex to the correct scale.
position.z = position.z + gl_Color.z * attrib1.y / instanceScale.z;
position = position * instanceScale.xyz;
// Rotation of the building and movement into position
position.xy = vec2(dot(position.xy, vec2(cr, sr)), dot(position.xy, vec2(-sr, cr)));
position = position + instancePosition.xyz;
gl_Position = gl_ModelViewProjectionMatrix * vec4(position,1.0);
// Texture coordinates are stored as:
// - a separate offset (x0, y0) for the wall (wtex0x, wtex0y), and roof (rtex0x, rtex0y)
// - a semi-shared (x1, y1) so that the front and side of the building can have
// different texture mappings
//
// The vertex color value selects between them:
// gl_Color.x=1 indicates front/back walls
// gl_Color.y=1 indicates roof
// gl_Color.z=1 indicates top roof vertexs (used above)
// gl_Color.a=1 indicates sides
// Finally, the roof texture is on the right of the texture sheet
float wtex0x = attr1.y; // Front/Side texture X0
float wtex0y = attr1.z; // Front/Side texture Y0
float rtex0x = attr2.z; // Roof texture X0
float rtex0y = attr3.x; // Roof texture Y0
float wtex1x = attr2.x; // Front/Roof texture X1
float stex1x = attr3.y; // Side texture X1
float wtex1y = attr2.y; // Front/Roof/Side texture Y1
vec2 tex0 = vec2(sign(gl_MultiTexCoord0.x) * (gl_Color.x*wtex0x + gl_Color.y*rtex0x + gl_Color.a*wtex0x),
gl_Color.x*wtex0y + gl_Color.y*rtex0y + gl_Color.a*wtex0y);
vec2 tex1 = vec2(gl_Color.x*wtex1x + gl_Color.y*wtex1x + gl_Color.a*stex1x,
wtex1y);
gl_TexCoord[0].x = tex0.x + gl_MultiTexCoord0.x * tex1.x;
gl_TexCoord[0].y = tex0.y + gl_MultiTexCoord0.y * tex1.y;
// Rotate the normal.
normal = gl_Normal;
normal.xy = vec2(dot(normal.xy, vec2(cr, sr)), dot(normal.xy, vec2(-sr, cr)));
normal = gl_NormalMatrix * normal;
vec4 ambient_color, diffuse_color;
if (colorMode == MODE_DIFFUSE) {
diffuse_color = vec4(1.0,1.0,1.0,1.0);
ambient_color = gl_FrontMaterial.ambient;
} else if (colorMode == MODE_AMBIENT_AND_DIFFUSE) {
diffuse_color = vec4(1.0,1.0,1.0,1.0);
ambient_color = vec4(1.0,1.0,1.0,1.0);
} else {
diffuse_color = gl_FrontMaterial.diffuse;
ambient_color = gl_FrontMaterial.ambient;
}
diffuse_term = diffuse_color * gl_LightSource[0].diffuse;
vec4 constant_term = gl_FrontMaterial.emission + ambient_color *
(gl_LightModel.ambient + gl_LightSource[0].ambient);
// Super hack: if diffuse material alpha is less than 1, assume a
// transparency animation is at work
if (gl_FrontMaterial.diffuse.a < 1.0)
diffuse_term.a = gl_FrontMaterial.diffuse.a;
else
diffuse_term.a = 1.0;
// Another hack for supporting two-sided lighting without using
// gl_FrontFacing in the fragment shader.
gl_FrontColor.rgb = constant_term.rgb; gl_FrontColor.a = 1.0;
gl_BackColor.rgb = constant_term.rgb; gl_BackColor.a = 0.0;
//fogCoord = abs(ecPosition.z / ecPosition.w);
//fog_Func(fogType);
}