1
0
Fork 0
fgdata/Shaders/HDR/lighting-include.frag
Fernando García Liñán c4d19877cf HDR: Significant update
- New atmosphering rendering technique based on my own work.
- Attempt to fix some remaining transparency issues.
- Use a luminance histogram for auto exposure.
- Add support for clustered shading.
- Add WS 2.0 shaders.
- Add 3D cloud shaders.
- Add orthoscenery support.
2023-04-06 00:18:29 +02:00

185 lines
5.5 KiB
GLSL

#version 330 core
uniform sampler2D dfg_lut;
uniform samplerCube prefiltered_envmap;
const float PI = 3.14159265359;
const float RECIPROCAL_PI = 0.31830988618;
const float DIELECTRIC_SPECULAR = 0.04;
const float MAX_PREFILTERED_LOD = 4.0;
//------------------------------------------------------------------------------
// BRDF utility functions
/**
* Fresnel term with included roughness to get a pleasant visual result.
* See https://seblagarde.wordpress.com/2011/08/17/hello-world/
*/
vec3 F_SchlickRoughness(float NdotV, vec3 F0, float r)
{
return F0 + (max(vec3(1.0 - r), F0) - F0) * pow(max(1.0 - NdotV, 0.0), 5.0);
}
/**
* Fresnel (specular F)
* Schlick's approximation for the Cook-Torrance BRDF.
*/
vec3 F_Schlick(float VdotH, vec3 F0)
{
return F0 + (vec3(1.0) - F0) * pow(clamp(1.0 - VdotH, 0.0, 1.0), 5.0);
}
float F_Schlick(float VdotH, float F0)
{
return F0 + (1.0 - F0) * pow(clamp(1.0 - VdotH, 0.0, 1.0), 5.0);
}
/**
* Normal distribution function (NDF) (specular D)
* Trowbridge-Reitz/GGX microfacet distribution. Includes Disney's
* reparametrization of a=roughness*roughness
*/
float D_GGX(float NdotH, float a2)
{
float f = (NdotH * a2 - NdotH) * NdotH + 1.0;
return a2 / (PI * f * f);
}
/**
* Geometric attenuation (specular G)
* Smith-GGX formulation.
*/
float G_SmithGGX(float NdotV, float NdotL, float a2)
{
float attV = 2.0 * NdotV / (NdotV + sqrt(a2 + (1.0 - a2) * (NdotV * NdotV)));
float attL = 2.0 * NdotL / (NdotL + sqrt(a2 + (1.0 - a2) * (NdotL * NdotL)));
return attV * attL;
}
/**
* Basic Lambertian diffuse BRDF
*/
vec3 Fd_Lambert(vec3 c_diff)
{
return c_diff * RECIPROCAL_PI;
}
/**
* Get the fresnel reflectance at 0 degrees (light hitting the surface
* perpendicularly).
*/
vec3 getF0Reflectance(vec3 baseColor, float metallic)
{
return mix(vec3(DIELECTRIC_SPECULAR), baseColor, metallic);
}
//------------------------------------------------------------------------------
// IBL evaluation
/**
* Indirect diffuse irradiance
* To get better results we should be precomputing the irradiance into a cubemap
* or calculating spherical harmonics coefficients on the CPU.
* Sampling the roughness=1 mipmap level of the prefiltered specular map
* works too. :)
*/
vec3 evaluateDiffuseIrradianceIBL(vec3 n)
{
int roughnessOneLevel = int(MAX_PREFILTERED_LOD);
ivec2 s = textureSize(prefiltered_envmap, roughnessOneLevel);
float du = 1.0 / float(s.x);
float dv = 1.0 / float(s.y);
vec3 m0 = normalize(cross(n, vec3(0.0, 1.0, 0.0)));
vec3 m1 = cross(m0, n);
vec3 m0du = m0 * du;
vec3 m1dv = m1 * dv;
vec3 c;
c = textureLod(prefiltered_envmap, n - m0du - m1dv, roughnessOneLevel).rgb;
c += textureLod(prefiltered_envmap, n + m0du - m1dv, roughnessOneLevel).rgb;
c += textureLod(prefiltered_envmap, n + m0du + m1dv, roughnessOneLevel).rgb;
c += textureLod(prefiltered_envmap, n - m0du + m1dv, roughnessOneLevel).rgb;
return c * 0.25;
}
/**
* Indirect specular (ambient specular)
* Sample from the prefiltered environment map.
*/
vec3 evaluateSpecularIBL(float NdotV, vec3 reflected, float roughness, vec3 f)
{
vec3 prefilteredColor = textureLod(prefiltered_envmap,
reflected,
roughness * MAX_PREFILTERED_LOD).rgb;
vec2 envBRDF = texture(dfg_lut, vec2(NdotV, roughness)).rg;
return prefilteredColor * (f * envBRDF.x + envBRDF.y);
}
vec3 evaluateIBL(
vec3 baseColor,
float metallic,
float roughness,
vec3 f0, // Use getF0Reflectance() to obtain this
float visibility,
vec3 nWorldSpace, // Normal in world space
float NdotV, // Must be positive and non-zero
vec3 reflected // Reflected vector in world space: reflect(-v, n)
)
{
vec3 f = F_SchlickRoughness(NdotV, f0, roughness);
vec3 specular = evaluateSpecularIBL(NdotV, reflected, roughness, f);
vec3 diffuse = evaluateDiffuseIrradianceIBL(nWorldSpace) * baseColor
* (vec3(1.0) - f) * (1.0 - metallic);
return (diffuse + specular) * visibility;
}
//------------------------------------------------------------------------------
// Analytical light source evaluation
vec3 evaluateLight(
vec3 baseColor,
float metallic,
float roughness,
vec3 f0, // Use getF0Reflectance() to obtain this
vec3 intensity,
float visibility,
vec3 n,
vec3 l,
vec3 v,
float NdotL, // Must not be clamped to [0,1]
float NdotV // Must be positive and non-zero
)
{
// Skip fragments that are completely occluded or that are not facing the light
if (visibility <= 0.0 || NdotL <= 0.0)
return vec3(0.0);
NdotL = clamp(NdotL, 0.001, 1.0);
vec3 h = normalize(v + l);
float NdotH = clamp(dot(n, h), 0.0, 1.0);
float VdotH = clamp(dot(v, h), 0.0, 1.0);
vec3 c_diff = mix(baseColor * (1.0 - DIELECTRIC_SPECULAR), vec3(0.0), metallic);
// Avoid blown out lighting by capping the roughness to a non-zero value
float a = max(roughness * roughness, 0.001);
float a2 = a * a;
vec3 F = F_Schlick(VdotH, f0);
float D = D_GGX(NdotH, a2);
float G = G_SmithGGX(NdotV, NdotL, a2);
// Diffuse term: Lambertian diffuse model
vec3 f_diffuse = (vec3(1.0) - F) * Fd_Lambert(c_diff);
// Specular term: Cook-Torrance specular microfacet model
vec3 f_specular = ((D * G) * F) / (4.0 * NdotV * NdotL);
vec3 material = f_diffuse + f_specular;
vec3 color = material * intensity * visibility * NdotL;
return color;
}