1
0
Fork 0
fgdata/Aircraft/Generic/Systems/failures.nas
Anton Gomez Alvedro c108f3b988 Bugfixes and improvements to the Failure Manager
- Fix: runtime exception in remove_failure_mode()
  - Fix: keep failure & trigger status on teleport.
  - Fix: allow random failures from the gui to be enabled/disabled multiple times.
  - Fix: mcbf/mtbf are set to zero when they fire, so they can be reactivated from the gui.
  - Fix: string casts of several trigger types had syntax errors.
  - Usability: screen messages related to failures now use positive logic:
         "condition 100%" instead of "failure level 0%"
  - Performance: Time triggers now use internal timers, instead of requiring being polled.
  - Reviewed Trigger interface for more rational usage. reset() is replaced by arm()/disarm()
  - Added a subscription interface to listen to FailureMgr events.
  - Added an internal log buffer to keep a record of relevant events and present them to gui elements.
  - Several usability improvements to the FailureMgr Nasal API.
2014-12-21 12:39:52 +01:00

405 lines
9.4 KiB
Text

# Failure simulation library
#
# Collection of generic Triggers and FailureActuators for programming the
# FailureMgr Nasal module.
#
# Copyright (C) 2014 Anton Gomez Alvedro
# Based on previous work by Stuart Buchanan, Erobo & John Denker
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU General Public License as
# published by the Free Software Foundation; either version 2 of the
# License, or (at your option) any later version.
#
# This program is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
# General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software
# Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
#
# Functions for generating FailureActuators
# ------------------------------------------
##
# Returns an actuator object that will set the serviceable property at
# the given node to zero when the level of failure is > 0.
var set_unserviceable = func(path) {
var prop = path ~ "/serviceable";
if (props.globals.getNode(prop) == nil)
props.globals.initNode(prop, 1, "BOOL");
return {
parents: [FailureMgr.FailureActuator],
set_failure_level: func(level) setprop(prop, level > 0 ? 0 : 1),
get_failure_level: func { getprop(prop) ? 0 : 1 }
}
}
##
# Returns an actuator object that will make the given property read only.
# This prevents any other system from updating it, and effectively jamming
# whatever it is that is controlling.
var set_readonly = func(property) {
return {
parents: [FailureMgr.FailureActuator],
set_failure_level: func(level) {
var pnode = props.globals.getNode(property);
pnode.setAttribute("writable", level > 0 ? 0 : 1);
},
get_failure_level: func {
var pnode = props.globals.getNode(property);
pnode.getAttribute("writable") ? 0 : 1;
}
}
}
##
# Returns an an actuator object the manipulates engine controls (magnetos &
# cutoff) to simulate an engine failure. Sets these properties to read only
# while the system is failed.
var fail_engine = func(engine) {
return {
parents: [FailureMgr.FailureActuator],
level: 0,
magnetos: props.globals.getNode("/controls/engines/" ~ engine ~ "/magnetos", 1),
cutoff: props.globals.getNode("/controls/engines/" ~ engine ~ "/cutoff", 1),
get_failure_level: func me.level,
set_failure_level: func(level) {
if (level) {
# Switch off the engine, and disable writing to it.
me.magnetos.setValue(0);
me.magnetos.setAttribute("writable", 0);
me.cutoff.setValue(1);
me.cutoff.setAttribute("writable", 0);
}
else {
# Enable the properties, but don't set the magnetos, as they may
# be off for a reason.
me.magnetos.setAttribute("writable", 1);
me.cutoff.setAttribute("writable", 1);
me.cutoff.setValue(0);
}
me.level = level;
}
}
}
#
# Triggers
# ---------
##
# Returns a random number from a Normal distribution with given mean and
# standard deviation.
var norm_rand = func(mean, std) {
var r = -2 * math.ln(1 - rand());
var a = 2 * math.pi * (1 - rand());
return mean + (math.sqrt(r) * math.sin(a) * std);
};
##
# Trigger object that will fire when aircraft altitude is between
# min and max, both specified in feet. One of min or max may be nil for
# expressing "altitude > x" or "altitude < x" conditions.
var AltitudeTrigger = {
parents: [FailureMgr.Trigger],
type: "altitude",
requires_polling: 1,
new: func(min, max) {
min != nil or max != nil or
die("AltitudeTrigger.new: either min or max must be specified");
var m = FailureMgr.Trigger.new();
m.parents = [AltitudeTrigger];
m.params["min-altitude-ft"] = min;
m.params["max-altitude-ft"] = max;
m._altitude_prop = "/position/altitude-ft";
return m;
},
to_str: func {
var min = me.params["min-altitude-ft"];
var max = me.params["max-altitude-ft"];
if (min == nil) sprintf("Altitude below %d ft", int(max));
elsif (max == nil) sprintf("Altitude above %d ft", int(min));
else sprintf("Altitude between %d and %d ft", int(min), int(max));
},
update: func {
var alt = getprop(me._altitude_prop);
var min = me.params["min-altitude-ft"];
var max = me.params["max-altitude-ft"];
me.fired = min != nil ? min < alt : 1;
me.fired = max != nil ? me.fired and alt < max : me.fired;
}
};
##
# Trigger object that fires when the aircraft's position is within a certain
# distance of a given waypoint.
var WaypointTrigger = {
parents: [FailureMgr.Trigger],
type: "waypoint",
requires_polling: 1,
new: func(lat, lon, distance) {
var wp = geo.Coord.new();
wp.set_latlon(lat, lon);
var m = FailureMgr.Trigger.new();
m.parents = [WaypointTrigger];
m.params["latitude-deg"] = lat;
m.params["longitude-deg"] = lon;
m.params["distance-nm"] = distance;
m.waypoint = wp;
return m;
},
arm: func {
call(FailureMgr.Trigger.arm, [], me);
me.waypoint.set_latlon(me.params["latitude-deg"],
me.params["longitude-deg"]);
},
to_str: func {
sprintf("Within %.2f miles of %s", me.params["distance-nm"],
geo.format(me.waypoint.lat(), me.waypoint.lon()));
},
update: func {
var d = geo.aircraft_position().distance_to(me.waypoint) * M2NM;
me.fired = d < me.params["distance-nm"];
}
};
##
# Trigger object that will fire on average after the specified time.
var MtbfTrigger = {
parents: [FailureMgr.Trigger],
type: "mtbf",
requires_polling: 0,
new: func(mtbf) {
var m = FailureMgr.Trigger.new();
m.parents = [MtbfTrigger];
m.params["mtbf"] = mtbf;
m.timer = maketimer(0, func m.on_fire());
m.timer.singleShot = 1;
return m;
},
enable: func {
me.armed and me.timer.start();
me.enabled = 1;
},
disable: func {
me.timer.stop();
me.enabled = 0;
},
arm: func {
call(FailureMgr.Trigger.arm, [], me);
me.timer.restart(norm_rand(me.params["mtbf"], me.params["mtbf"] / 10));
me.enabled and me.timer.start();
},
disarm: func {
call(FailureMgr.Trigger.disarm, [], me);
me.timer.stop();
},
to_str: func {
sprintf("Mean time between failures: %.1f mins", me.params["mtbf"] / 60);
},
update: func {
me.fired = getprop(me._time_prop) > me.fire_time;
}
};
##
# Trigger object that will fire exactly after the given timeout.
var TimeoutTrigger = {
parents: [FailureMgr.Trigger],
type: "timeout",
requires_polling: 0,
new: func(timeout) {
var m = FailureMgr.Trigger.new();
m.parents = [TimeoutTrigger];
m.params["timeout-sec"] = timeout;
m.timer = maketimer(0, func m.on_fire());
m.timer.singleShot = 1;
return m;
},
enable: func {
me.armed and me.timer.start();
me.enabled = 1;
},
disable: func {
me.timer.stop();
me.enabled = 0;
},
arm: func {
call(FailureMgr.Trigger.arm, [], me);
me.timer.restart(me.params["timeout-sec"]);
me.enabled and me.timer.start();
},
disarm: func {
call(FailureMgr.Trigger.disarm, [], me);
me.timer.stop();
},
to_str: func {
sprintf("Fixed delay: %d minutes", me.params["timeout-sec"] / 60);
},
update: func {
me.fired = getprop("/sim/time/elapsed-sec") > me.fire_time;
}
};
##
# Simple approach to count usage cycles for a given property. Every time
# the propery variation changes in direction, we count half a cycle.
# If the property represents aileron angular position, for example, this
# would count roughly the number of times the aileron has been actuated.
var CycleCounter = {
new: func(property, on_update = nil) {
return {
parents: [CycleCounter],
cycles: 0,
_property: property,
_on_update: on_update,
_prev_value: getprop(property),
_prev_delta: 0,
_lsnr: nil
};
},
enable: func {
if (me._lsnr == nil)
me._lsnr = setlistener(me._property, func (p) me._on_prop_change(p), 0, 0);
},
disable: func {
if (me._lsnr != nil) {
removelistener(me._lsnr);
me._lsnr = nil;
}
},
reset: func {
me.cycles = 0;
me._prev_value = getprop(me._property);
me._prev_delta = 0;
},
_on_prop_change: func(prop) {
# TODO: Implement a filter for avoiding spureous values.
var value = prop.getValue();
var delta = value - me._prev_value;
if (delta == 0) return;
if (delta * me._prev_delta < 0) {
# Property variation has changed direction
me.cycles += 0.5;
if (me._on_update != nil) me._on_update(me.cycles);
}
me._prev_delta = delta;
me._prev_value = value;
}
};
##
# Trigger object that will fire on average after a property has gone through
# mcbf (mean cycles between failures) cycles.
var McbfTrigger = {
parents: [FailureMgr.Trigger],
type: "mcbf",
requires_polling: 0,
new: func(property, mcbf) {
var m = FailureMgr.Trigger.new();
m.parents = [McbfTrigger];
m.params["mcbf"] = mcbf;
m.counter = CycleCounter.new(property, func(c) call(m._on_cycle, [c], m));
m.activation_cycles = 0;
return m;
},
enable: func {
me.counter.enable();
me.enabled = 1;
},
disable: func {
me.counter.disable();
me.enabled = 0;
},
arm: func {
call(FailureMgr.Trigger.arm, [], me);
me.counter.reset();
me.activation_cycles =
norm_rand(me.params["mcbf"], me.params["mcbf"] / 10);
me.enabled and me.counter.enable();
},
disarm: func {
call(FailureMgr.Trigger.disarm, [], me);
me.enabled and me.counter.disable();
},
to_str: func {
sprintf("Mean cycles between failures: %.2f", me.params["mcbf"]);
},
_on_cycle: func(cycles) {
if (!me.fired and cycles > me.activation_cycles) {
me.fired = 1;
me.on_fire();
}
}
};