1
0
Fork 0
fgdata/Shaders/ws30-ALS.frag
Stuart Buchanan bf55997a56 WS30: Improved ambient color
Previous we just applied gl_LightSource[0].ambient without
multiplying it by the texture itself, so it just lightened
everything.

This fixes that.  (ws30-ALS-detailed.frag still to do)
2021-11-05 19:55:05 +00:00

324 lines
10 KiB
C++

// WS30 FRAGMENT SHADER
// -*-C++-*-
#version 130
#extension GL_EXT_texture_array : enable
// written by Thorsten Renk, Oct 2011, based on default.frag
// Ambient term comes in gl_Color.rgb.
varying vec4 diffuse_term;
varying vec3 normal;
varying vec3 relPos;
uniform sampler2D landclass;
uniform sampler2DArray textureArray;
uniform sampler1D dimensionsArray;
uniform sampler1D diffuseArray;
uniform sampler1D specularArray;
uniform sampler2D perlin;
varying float yprime_alt;
varying float mie_angle;
varying vec4 ecPosition;
uniform float visibility;
uniform float avisibility;
uniform float scattering;
uniform float terminator;
uniform float terrain_alt;
uniform float hazeLayerAltitude;
uniform float overcast;
uniform float eye_alt;
uniform float cloud_self_shading;
// Passed from VPBTechnique, not the Effect
uniform int tile_level;
uniform float tile_width;
uniform float tile_height;
const float EarthRadius = 5800000.0;
const float terminator_width = 200000.0;
float alt;
float eShade;
float fog_func (in float targ, in float alt);
vec3 get_hazeColor(in float light_arg);
vec3 filter_combined (in vec3 color) ;
float getShadowing();
vec3 getClusteredLightsContribution(vec3 p, vec3 n, vec3 texel);
float luminance(vec3 color)
{
return dot(vec3(0.212671, 0.715160, 0.072169), color);
}
// Test-phase code:
float rand2D(in vec2 co);
// Create random landclasses without a texture lookup to stress test
// Each square of square_size in m is assigned a random landclass value
int get_random_landclass(in vec2 co)
{
float square_size = 200.0;
//float r = rand2D( floor(vec2(co.s*tile_width, co.t*tile_height)/square_size) );
float r = rand2D( floor(vec2(co.s*tile_height, co.t*tile_width)/square_size) );
int lc = int(r*48.0); // only 48 landclasses mapped so far
return lc;
}
float Noise2D(in vec2 coord, in float wavelength);
// End Test-phase code
void main()
{
vec3 shadedFogColor = vec3(0.55, 0.67, 0.88);
// this is taken from default.frag
vec3 n;
float NdotL, NdotHV, fogFactor;
vec3 lightDir = gl_LightSource[0].position.xyz;
vec3 halfVector = gl_LightSource[0].halfVector.xyz;
vec4 texel;
vec4 fragColor;
vec4 specular = vec4(0.0);
float intensity;
// Oct 2021:
// Geometry is in the form of roughly rectangular 'tiles'
// with a mesh forming a grid with regular spacing.
// Each vertex in the mesh is given an elevation
// Tile dimensions in m
vec2 tile_size = vec2(tile_width , tile_height);
// Temp: sizes are the wrong way around currently
tile_size.xy =tile_size.yx;
// Tile texture coordinates range [0..1] over the tile 'rectangle'
vec2 tile_coord = gl_TexCoord[0].st;
// Look up the landclass id [0 .. 255] for this particular fragment
// Each tile has 1 texture containing landclass ids stetched over it
// Testing. Landclass sources: texture or random
int tlc = int(texture2D(landclass, tile_coord.st).g * 255.0 + 0.5);
//int rlc = get_random_landclass(tile_coord.st);
int lc = tlc;
// The landclass id is used to index into arrays containing
// material parameters and textures for the landclass as
// defined in the regional definitions
float index = float(lc)/512.0;
float mat_shininess = texture(dimensionsArray, index).z;
vec4 mat_diffuse = texture(diffuseArray, index);
vec4 mat_specular = texture(specularArray, index);
vec4 color = mat_diffuse * (gl_Color + NdotL * gl_LightSource[0].diffuse);
// Testing code:
// Use rlc even when looking up textures to recreate the extra performance hit
// so any performance difference between the two is due to the texture lookup
// color = color+0.00001*float(rlc);
float effective_scattering = min(scattering, cloud_self_shading);
vec4 light_specular = gl_LightSource[0].specular;
// If gl_Color.a == 0, this is a back-facing polygon and the
// normal should be reversed.
//n = (2.0 * gl_Color.a - 1.0) * normal;
n = normalize(normal);
NdotL = dot(n, lightDir);
if (NdotL > 0.0) {
float shadowmap = getShadowing();
color += diffuse_term * NdotL * shadowmap;
NdotHV = max(dot(n, halfVector), 0.0);
if (mat_shininess > 0.0)
specular.rgb = (mat_specular.rgb
* light_specular.rgb
* pow(NdotHV, gl_FrontMaterial.shininess)
* shadowmap);
}
color.a = diffuse_term.a;
// This shouldn't be necessary, but our lighting becomes very
// saturated. Clamping the color before modulating by the texture
// is closer to what the OpenGL fixed function pipeline does.
color = clamp(color, 0.0, 1.0);
// Look up ground textures by indexing into the texture array.
// Different textures are stretched along the ground to different
// lengths along each axes as set by <xsize> and <ysize>
// regional definitions parameters
// Look up stretching dimensions of textures in m - scaled to fit in [0..1], so rescale
vec2 g_texture_stretch_dim = 10000.0 * texture(dimensionsArray, index).st;
vec2 g_texture_scale = tile_size.xy / g_texture_stretch_dim.xy;
// Ground texture coords
vec2 st = g_texture_scale * tile_coord.st;
// Rotate texture using the perlin texture as a mask to reduce tiling
float pnoise1 = texture(perlin, st / 8.0).r;
float pnoise2 = texture(perlin, - st / 16.0).r;
//Testing: Non texture alternative
//float pnoise1 = Noise2D(st, 8.0);
//float pnoise2 = Noise2D(-st, 16.0);
if (pnoise1 >= 0.5) st = g_texture_scale.st * tile_coord.ts;
if (pnoise2 >= 0.5) st = -st;
texel = texture(textureArray, vec3(st, lc));
fragColor = color * texel + specular;
fragColor.rgb += getClusteredLightsContribution(ecPosition.xyz, n, texel.rgb);
// here comes the terrain haze model
float delta_z = hazeLayerAltitude - eye_alt;
float dist = length(relPos);
float mvisibility = min(visibility,avisibility);
if (dist > 0.04 * mvisibility)
{
alt = eye_alt;
float transmission;
float vAltitude;
float delta_zv;
float H;
float distance_in_layer;
float transmission_arg;
// angle with horizon
float ct = dot(vec3(0.0, 0.0, 1.0), relPos)/dist;
// we solve the geometry what part of the light path is attenuated normally and what is through the haze layer
if (delta_z > 0.0) // we're inside the layer
{
if (ct < 0.0) // we look down
{
distance_in_layer = dist;
vAltitude = min(distance_in_layer,mvisibility) * ct;
delta_zv = delta_z - vAltitude;
}
else // we may look through upper layer edge
{
H = dist * ct;
if (H > delta_z) {distance_in_layer = dist/H * delta_z;}
else {distance_in_layer = dist;}
vAltitude = min(distance_in_layer,visibility) * ct;
delta_zv = delta_z - vAltitude;
}
}
else // we see the layer from above, delta_z < 0.0
{
H = dist * -ct;
if (H < (-delta_z)) // we don't see into the layer at all, aloft visibility is the only fading
{
distance_in_layer = 0.0;
delta_zv = 0.0;
}
else
{
vAltitude = H + delta_z;
distance_in_layer = vAltitude/H * dist;
vAltitude = min(distance_in_layer,visibility) * (-ct);
delta_zv = vAltitude;
}
}
// ground haze cannot be thinner than aloft visibility in the model,
// so we need to use aloft visibility otherwise
transmission_arg = (dist-distance_in_layer)/avisibility;
float eqColorFactor;
if (visibility < avisibility)
{
transmission_arg = transmission_arg + (distance_in_layer/visibility);
// this combines the Weber-Fechner intensity
eqColorFactor = 1.0 - 0.1 * delta_zv/visibility - (1.0 -effective_scattering);
}
else
{
transmission_arg = transmission_arg + (distance_in_layer/avisibility);
// this combines the Weber-Fechner intensity
eqColorFactor = 1.0 - 0.1 * delta_zv/avisibility - (1.0 -effective_scattering);
}
transmission = fog_func(transmission_arg, alt);
// there's always residual intensity, we should never be driven to zero
if (eqColorFactor < 0.2) {eqColorFactor = 0.2;}
float lightArg = (terminator-yprime_alt)/100000.0;
vec3 hazeColor = get_hazeColor(lightArg);
// now dim the light for haze
eShade = 1.0 - 0.9 * smoothstep(-terminator_width+ terminator, terminator_width + terminator, yprime_alt);
// Mie-like factor
if (lightArg < 10.0)
{intensity = length(hazeColor);
float mie_magnitude = 0.5 * smoothstep(350000.0, 150000.0, terminator-sqrt(2.0 * EarthRadius * terrain_alt));
hazeColor = intensity * ((1.0 - mie_magnitude) + mie_magnitude * mie_angle) * normalize(mix(hazeColor, vec3 (0.5, 0.58, 0.65), mie_magnitude * (0.5 - 0.5 * mie_angle)) );
}
// high altitude desaturation of the haze color
intensity = length(hazeColor);
hazeColor = intensity * normalize (mix(hazeColor, intensity * vec3 (1.0,1.0,1.0), 0.7* smoothstep(5000.0, 50000.0, alt)));
// blue hue of haze
hazeColor.x = hazeColor.x * 0.83;
hazeColor.y = hazeColor.y * 0.9;
// additional blue in indirect light
float fade_out = max(0.65 - 0.3 *overcast, 0.45);
intensity = length(hazeColor);
hazeColor = intensity * normalize(mix(hazeColor, 1.5* shadedFogColor, 1.0 -smoothstep(0.25, fade_out,eShade) ));
// change haze color to blue hue for strong fogging
//intensity = length(hazeColor);
hazeColor = intensity * normalize(mix(hazeColor, shadedFogColor, (1.0-smoothstep(0.5,0.9,eqColorFactor))));
// reduce haze intensity when looking at shaded surfaces, only in terminator region
float shadow = mix( min(1.0 + dot(normal,lightDir),1.0), 1.0, 1.0-smoothstep(0.1, 0.4, transmission));
hazeColor = mix(shadow * hazeColor, hazeColor, 0.3 + 0.7* smoothstep(250000.0, 400000.0, terminator));
// don't let the light fade out too rapidly
lightArg = (terminator + 200000.0)/100000.0;
float minLightIntensity = min(0.2,0.16 * lightArg + 0.5);
vec3 minLight = minLightIntensity * vec3 (0.2, 0.3, 0.4);
hazeColor *= eqColorFactor * eShade;
hazeColor.rgb = max(hazeColor.rgb, minLight.rgb);
// determine the right mix of transmission and haze
fragColor.rgb = mix(hazeColor, fragColor.rgb,transmission);
}
fragColor.rgb = filter_combined(fragColor.rgb);
gl_FragColor = fragColor;
}