140 lines
5.4 KiB
GLSL
140 lines
5.4 KiB
GLSL
// -*-C++-*-
|
|
|
|
// Shader that uses OpenGL state values to do per-pixel lighting
|
|
//
|
|
// The only light used is gl_LightSource[0], which is assumed to be
|
|
// directional.
|
|
//
|
|
// Diffuse colors come from the gl_Color, ambient from the material. This is
|
|
// equivalent to osg::Material::DIFFUSE.
|
|
#version 120
|
|
#extension GL_EXT_draw_instanced : enable
|
|
#define MODE_OFF 0
|
|
#define MODE_DIFFUSE 1
|
|
#define MODE_AMBIENT_AND_DIFFUSE 2
|
|
|
|
attribute vec3 instancePosition; // (x,y,z)
|
|
attribute vec3 instanceScale ; // (width, depth, height)
|
|
attribute vec3 attrib1; // Generic packed attributes
|
|
attribute vec3 attrib2;
|
|
|
|
// The constant term of the lighting equation that doesn't depend on
|
|
// the surface normal is passed in gl_{Front,Back}Color. The alpha
|
|
// component is set to 1 for front, 0 for back in order to work around
|
|
// bugs with gl_FrontFacing in the fragment shader.
|
|
varying vec4 diffuse_term;
|
|
varying vec3 normal;
|
|
varying vec4 ecPosition;
|
|
|
|
uniform int colorMode;
|
|
|
|
////fog "include"////////
|
|
//uniform int fogType;
|
|
//
|
|
//void fog_Func(int type);
|
|
/////////////////////////
|
|
|
|
void setupShadows(vec4 eyeSpacePos);
|
|
|
|
const float c_precision = 128.0;
|
|
const float c_precisionp1 = c_precision + 1.0;
|
|
|
|
vec3 float2vec(float value) {
|
|
vec3 val;
|
|
val.x = mod(value, c_precisionp1) / c_precision;
|
|
val.y = mod(floor(value / c_precisionp1), c_precisionp1) / c_precision;
|
|
val.z = floor(value / (c_precisionp1 * c_precisionp1)) / c_precision;
|
|
return val;
|
|
}
|
|
|
|
void main()
|
|
{
|
|
// Unpack generic attributes
|
|
vec3 attr1 = float2vec(attrib1.x);
|
|
vec3 attr2 = float2vec(attrib1.z);
|
|
vec3 attr3 = float2vec(attrib2.x);
|
|
|
|
// Determine the rotation for the building.
|
|
float sr = sin(6.28 * attr1.x);
|
|
float cr = cos(6.28 * attr1.x);
|
|
|
|
vec3 position = gl_Vertex.xyz;
|
|
// Adjust the very top of the roof to match the rooftop scaling. This shapes
|
|
// the rooftop - gambled, gabled etc. These vertices are identified by gl_Color.z
|
|
position.x = (1.0 - gl_Color.z) * position.x + gl_Color.z * ((position.x + 0.5) * attr3.z - 0.5);
|
|
position.y = (1.0 - gl_Color.z) * position.y + gl_Color.z * (position.y * attrib2.y );
|
|
|
|
// Adjust pitch of roof to the correct height. These vertices are identified by gl_Color.z
|
|
// Scale down by the building height (instanceScale.z) because
|
|
// immediately afterwards we will scale UP the vertex to the correct scale.
|
|
position.z = position.z + gl_Color.z * attrib1.y / instanceScale.z;
|
|
position = position * instanceScale.xyz;
|
|
|
|
// Rotation of the building and movement into position
|
|
position.xy = vec2(dot(position.xy, vec2(cr, sr)), dot(position.xy, vec2(-sr, cr)));
|
|
position = position + instancePosition.xyz;
|
|
|
|
gl_Position = gl_ModelViewProjectionMatrix * vec4(position,1.0);
|
|
|
|
// Texture coordinates are stored as:
|
|
// - a separate offset (x0, y0) for the wall (wtex0x, wtex0y), and roof (rtex0x, rtex0y)
|
|
// - a semi-shared (x1, y1) so that the front and side of the building can have
|
|
// different texture mappings
|
|
//
|
|
// The vertex color value selects between them:
|
|
// gl_Color.x=1 indicates front/back walls
|
|
// gl_Color.y=1 indicates roof
|
|
// gl_Color.z=1 indicates top roof vertexs (used above)
|
|
// gl_Color.a=1 indicates sides
|
|
// Finally, the roof texture is on the right of the texture sheet
|
|
float wtex0x = attr1.y; // Front/Side texture X0
|
|
float wtex0y = attr1.z; // Front/Side texture Y0
|
|
float rtex0x = attr2.z; // Roof texture X0
|
|
float rtex0y = attr3.x; // Roof texture Y0
|
|
float wtex1x = attr2.x; // Front/Roof texture X1
|
|
float stex1x = attr3.y; // Side texture X1
|
|
float wtex1y = attr2.y; // Front/Roof/Side texture Y1
|
|
vec2 tex0 = vec2(sign(gl_MultiTexCoord0.x) * (gl_Color.x*wtex0x + gl_Color.y*rtex0x + gl_Color.a*wtex0x),
|
|
gl_Color.x*wtex0y + gl_Color.y*rtex0y + gl_Color.a*wtex0y);
|
|
|
|
vec2 tex1 = vec2(gl_Color.x*wtex1x + gl_Color.y*wtex1x + gl_Color.a*stex1x,
|
|
wtex1y);
|
|
|
|
gl_TexCoord[0].x = tex0.x + gl_MultiTexCoord0.x * tex1.x;
|
|
gl_TexCoord[0].y = tex0.y + gl_MultiTexCoord0.y * tex1.y;
|
|
|
|
// Rotate the normal.
|
|
normal = gl_Normal;
|
|
normal.xy = vec2(dot(normal.xy, vec2(cr, sr)), dot(normal.xy, vec2(-sr, cr)));
|
|
normal = gl_NormalMatrix * normal;
|
|
|
|
vec4 ambient_color, diffuse_color;
|
|
if (colorMode == MODE_DIFFUSE) {
|
|
diffuse_color = vec4(1.0,1.0,1.0,1.0);
|
|
ambient_color = gl_FrontMaterial.ambient;
|
|
} else if (colorMode == MODE_AMBIENT_AND_DIFFUSE) {
|
|
diffuse_color = vec4(1.0,1.0,1.0,1.0);
|
|
ambient_color = vec4(1.0,1.0,1.0,1.0);
|
|
} else {
|
|
diffuse_color = gl_FrontMaterial.diffuse;
|
|
ambient_color = gl_FrontMaterial.ambient;
|
|
}
|
|
|
|
diffuse_term = diffuse_color * gl_LightSource[0].diffuse;
|
|
vec4 constant_term = gl_FrontMaterial.emission + ambient_color *
|
|
(gl_LightModel.ambient + gl_LightSource[0].ambient);
|
|
// Super hack: if diffuse material alpha is less than 1, assume a
|
|
// transparency animation is at work
|
|
if (gl_FrontMaterial.diffuse.a < 1.0)
|
|
diffuse_term.a = gl_FrontMaterial.diffuse.a;
|
|
else
|
|
diffuse_term.a = 1.0;
|
|
// Another hack for supporting two-sided lighting without using
|
|
// gl_FrontFacing in the fragment shader.
|
|
gl_FrontColor.rgb = constant_term.rgb; gl_FrontColor.a = 1.0;
|
|
gl_BackColor.rgb = constant_term.rgb; gl_BackColor.a = 0.0;
|
|
//fogCoord = abs(ecPosition.z / ecPosition.w);
|
|
//fog_Func(fogType);
|
|
ecPosition = gl_ModelViewMatrix * vec4(position, 1.0);
|
|
setupShadows(ecPosition);
|
|
}
|