593 lines
16 KiB
C
593 lines
16 KiB
C
// -*- mode: C; -*-
|
|
// Licence: GPL v2
|
|
// Author: Frederic Bouvier.
|
|
// Adapted from the paper by F. Policarpo et al. : Real-time Relief Mapping on Arbitrary Polygonal Surfaces
|
|
// Adapted from the paper and sources by M. Drobot in GPU Pro : Quadtree Displacement Mapping with Height Blending
|
|
|
|
#version 120
|
|
|
|
#extension GL_ATI_shader_texture_lod : enable
|
|
#extension GL_ARB_shader_texture_lod : enable
|
|
|
|
#define TEXTURE_MIP_LEVELS 10
|
|
#define TEXTURE_PIX_COUNT 1024 //pow(2,TEXTURE_MIP_LEVELS)
|
|
#define BINARY_SEARCH_COUNT 10
|
|
#define BILINEAR_SMOOTH_FACTOR 2.0
|
|
|
|
varying vec3 worldPos;
|
|
varying vec4 ecPosition;
|
|
varying vec3 VNormal;
|
|
varying vec3 VTangent;
|
|
//varying vec3 VBinormal;
|
|
//varying vec3 Normal;
|
|
varying vec4 constantColor;
|
|
varying vec3 light_diffuse;
|
|
varying vec3 relPos;
|
|
|
|
varying float yprime_alt;
|
|
varying float mie_angle;
|
|
//varying float steepness;
|
|
|
|
//uniform sampler3D NoiseTex;
|
|
uniform sampler2D BaseTex;
|
|
uniform sampler2D NormalTex;
|
|
uniform sampler2D QDMTex;
|
|
uniform float depth_factor;
|
|
uniform float tile_size;
|
|
uniform float quality_level;
|
|
uniform float visibility;
|
|
uniform float avisibility;
|
|
uniform float scattering;
|
|
uniform float terminator;
|
|
uniform float terrain_alt;
|
|
uniform float hazeLayerAltitude;
|
|
uniform float overcast;
|
|
uniform float eye_alt;
|
|
uniform float mysnowlevel;
|
|
uniform float dust_cover_factor;
|
|
uniform float wetness;
|
|
uniform float fogstructure;
|
|
uniform float cloud_self_shading;
|
|
uniform vec3 night_color;
|
|
|
|
const float scale = 1.0;
|
|
int linear_search_steps = 10;
|
|
int GlobalIterationCount = 0;
|
|
int gIterationCap = 64;
|
|
|
|
const float EarthRadius = 5800000.0;
|
|
const float terminator_width = 200000.0;
|
|
|
|
float alt;
|
|
float eShade;
|
|
|
|
|
|
float rand2D(in vec2 co){
|
|
return fract(sin(dot(co.xy ,vec2(12.9898,78.233))) * 43758.5453);
|
|
}
|
|
|
|
float rand3D(in vec3 co){
|
|
return fract(sin(dot(co.xyz ,vec3(12.9898,78.233,144.7272))) * 43758.5453);
|
|
}
|
|
|
|
|
|
float simple_interpolate(in float a, in float b, in float x)
|
|
{
|
|
return a + smoothstep(0.0,1.0,x) * (b-a);
|
|
}
|
|
|
|
float interpolatedNoise2D(in float x, in float y)
|
|
{
|
|
float integer_x = x - fract(x);
|
|
float fractional_x = x - integer_x;
|
|
|
|
float integer_y = y - fract(y);
|
|
float fractional_y = y - integer_y;
|
|
|
|
float v1 = rand2D(vec2(integer_x, integer_y));
|
|
float v2 = rand2D(vec2(integer_x+1.0, integer_y));
|
|
float v3 = rand2D(vec2(integer_x, integer_y+1.0));
|
|
float v4 = rand2D(vec2(integer_x+1.0, integer_y +1.0));
|
|
|
|
float i1 = simple_interpolate(v1 , v2 , fractional_x);
|
|
float i2 = simple_interpolate(v3 , v4 , fractional_x);
|
|
|
|
return simple_interpolate(i1 , i2 , fractional_y);
|
|
}
|
|
|
|
|
|
float interpolatedNoise3D(in float x, in float y, in float z)
|
|
{
|
|
float integer_x = x - fract(x);
|
|
float fractional_x = x - integer_x;
|
|
|
|
float integer_y = y - fract(y);
|
|
float fractional_y = y - integer_y;
|
|
|
|
float integer_z = z - fract(z);
|
|
float fractional_z = z - integer_z;
|
|
|
|
float v1 = rand3D(vec3(integer_x, integer_y, integer_z));
|
|
float v2 = rand3D(vec3(integer_x+1.0, integer_y, integer_z));
|
|
float v3 = rand3D(vec3(integer_x, integer_y+1.0, integer_z));
|
|
float v4 = rand3D(vec3(integer_x+1.0, integer_y +1.0, integer_z));
|
|
|
|
float v5 = rand3D(vec3(integer_x, integer_y, integer_z+1.0));
|
|
float v6 = rand3D(vec3(integer_x+1.0, integer_y, integer_z+1.0));
|
|
float v7 = rand3D(vec3(integer_x, integer_y+1.0, integer_z+1.0));
|
|
float v8 = rand3D(vec3(integer_x+1.0, integer_y +1.0, integer_z+1.0));
|
|
|
|
|
|
float i1 = simple_interpolate(v1,v5, fractional_z);
|
|
float i2 = simple_interpolate(v2,v6, fractional_z);
|
|
float i3 = simple_interpolate(v3,v7, fractional_z);
|
|
float i4 = simple_interpolate(v4,v8, fractional_z);
|
|
|
|
float ii1 = simple_interpolate(i1,i2,fractional_x);
|
|
float ii2 = simple_interpolate(i3,i4,fractional_x);
|
|
|
|
|
|
return simple_interpolate(ii1 , ii2 , fractional_y);
|
|
}
|
|
|
|
float Noise2D(in vec2 coord, in float wavelength)
|
|
{
|
|
return interpolatedNoise2D(coord.x/wavelength, coord.y/wavelength);
|
|
|
|
}
|
|
|
|
float Noise3D(in vec3 coord, in float wavelength)
|
|
{
|
|
return interpolatedNoise3D(coord.x/wavelength, coord.y/wavelength, coord.z/wavelength);
|
|
}
|
|
|
|
|
|
float light_func (in float x, in float a, in float b, in float c, in float d, in float e)
|
|
{
|
|
x = x - 0.5;
|
|
|
|
// use the asymptotics to shorten computations
|
|
if (x > 30.0) {return e;}
|
|
if (x < -15.0) {return 0.0;}
|
|
|
|
return e / pow((1.0 + a * exp(-b * (x-c)) ),(1.0/d));
|
|
}
|
|
|
|
// this determines how light is attenuated in the distance
|
|
// physically this should be exp(-arg) but for technical reasons we use a sharper cutoff
|
|
// for distance > visibility
|
|
|
|
float fog_func (in float targ)
|
|
{
|
|
|
|
|
|
float fade_mix;
|
|
|
|
// for large altitude > 30 km, we switch to some component of quadratic distance fading to
|
|
// create the illusion of improved visibility range
|
|
|
|
targ = 1.25 * targ * smoothstep(0.04,0.06,targ); // need to sync with the distance to which terrain is drawn
|
|
|
|
|
|
if (alt < 30000.0)
|
|
{return exp(-targ - targ * targ * targ * targ);}
|
|
else if (alt < 50000.0)
|
|
{
|
|
fade_mix = (alt - 30000.0)/20000.0;
|
|
return fade_mix * exp(-targ*targ - pow(targ,4.0)) + (1.0 - fade_mix) * exp(-targ - pow(targ,4.0));
|
|
}
|
|
else
|
|
{
|
|
return exp(- targ * targ - pow(targ,4.0));
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
void QDM(inout vec3 p, inout vec3 v)
|
|
{
|
|
const int MAX_LEVEL = TEXTURE_MIP_LEVELS;
|
|
const float NODE_COUNT = TEXTURE_PIX_COUNT;
|
|
const float TEXEL_SPAN_HALF = 1.0 / NODE_COUNT / 2.0;
|
|
|
|
float fDeltaNC = TEXEL_SPAN_HALF * depth_factor;
|
|
|
|
vec3 p2 = p;
|
|
float level = MAX_LEVEL;
|
|
vec2 dirSign = (sign(v.xy) + 1.0) * 0.5;
|
|
GlobalIterationCount = 0;
|
|
float d = 0.0;
|
|
|
|
while (level >= 0.0 && GlobalIterationCount < gIterationCap)
|
|
{
|
|
vec4 uv = vec4(p2.xyz, level);
|
|
d = texture2DLod(QDMTex, uv.xy, uv.w).w;
|
|
|
|
if (d > p2.z)
|
|
{
|
|
//predictive point of ray traversal
|
|
vec3 tmpP2 = p + v * d;
|
|
|
|
//current node count
|
|
float nodeCount = pow(2.0, (MAX_LEVEL - level));
|
|
//current and predictive node ID
|
|
vec4 nodeID = floor(vec4(p2.xy, tmpP2.xy)*nodeCount);
|
|
|
|
//check if we are crossing the current cell
|
|
if (nodeID.x != nodeID.z || nodeID.y != nodeID.w)
|
|
{
|
|
//calculate distance to nearest bound
|
|
vec2 a = p2.xy - p.xy;
|
|
vec2 p3 = (nodeID.xy + dirSign) / nodeCount;
|
|
vec2 b = p3.xy - p.xy;
|
|
|
|
vec2 dNC = (b.xy * p2.z) / a.xy;
|
|
//take the nearest cell
|
|
d = min(d,min(dNC.x, dNC.y))+fDeltaNC;
|
|
|
|
level++;
|
|
|
|
//use additional convergence speed-up
|
|
#ifdef USE_QDM_ASCEND_INTERVAL
|
|
if(frac(level*0.5) > EPSILON)
|
|
level++;
|
|
#elseif USE_QDM_ASCEND_CONST
|
|
level++;
|
|
#endif
|
|
}
|
|
p2 = p + v * d;
|
|
}
|
|
level--;
|
|
GlobalIterationCount++;
|
|
}
|
|
|
|
//
|
|
// Manual Bilinear filtering
|
|
//
|
|
float rayLength = length(p2.xy - p.xy) + fDeltaNC;
|
|
|
|
float dA = p2.z * (rayLength - BILINEAR_SMOOTH_FACTOR * TEXEL_SPAN_HALF) / rayLength;
|
|
float dB = p2.z * (rayLength + BILINEAR_SMOOTH_FACTOR * TEXEL_SPAN_HALF) / rayLength;
|
|
|
|
vec4 p2a = vec4(p + v * dA, 0.0);
|
|
vec4 p2b = vec4(p + v * dB, 0.0);
|
|
dA = texture2DLod(NormalTex, p2a.xy, p2a.w).w;
|
|
dB = texture2DLod(NormalTex, p2b.xy, p2b.w).w;
|
|
|
|
dA = abs(p2a.z - dA);
|
|
dB = abs(p2b.z - dB);
|
|
|
|
p2 = mix(p2a.xyz, p2b.xyz, dA / (dA + dB));
|
|
|
|
p = p2;
|
|
}
|
|
|
|
float ray_intersect_QDM(vec2 dp, vec2 ds)
|
|
{
|
|
vec3 p = vec3( dp, 0.0 );
|
|
vec3 v = vec3( ds, 1.0 );
|
|
QDM( p, v );
|
|
return p.z;
|
|
}
|
|
|
|
float ray_intersect_relief(vec2 dp, vec2 ds)
|
|
{
|
|
float size = 1.0 / float(linear_search_steps);
|
|
float depth = 0.0;
|
|
float best_depth = 1.0;
|
|
|
|
for(int i = 0; i < linear_search_steps - 1; ++i)
|
|
{
|
|
depth += size;
|
|
float t = step(0.95, texture2D(NormalTex, dp + ds * depth).a);
|
|
if(best_depth > 0.996)
|
|
if(depth >= t)
|
|
best_depth = depth;
|
|
}
|
|
depth = best_depth;
|
|
|
|
const int binary_search_steps = 5;
|
|
|
|
for(int i = 0; i < binary_search_steps; ++i)
|
|
{
|
|
size *= 0.5;
|
|
float t = step(0.95, texture2D(NormalTex, dp + ds * depth).a);
|
|
if(depth >= t)
|
|
{
|
|
best_depth = depth;
|
|
depth -= 2.0 * size;
|
|
}
|
|
depth += size;
|
|
}
|
|
|
|
return(best_depth);
|
|
}
|
|
|
|
float ray_intersect(vec2 dp, vec2 ds)
|
|
{
|
|
if ( quality_level >= 4.0 )
|
|
return ray_intersect_QDM( dp, ds );
|
|
else
|
|
return ray_intersect_relief( dp, ds );
|
|
}
|
|
|
|
void main (void)
|
|
{
|
|
if ( quality_level >= 3.0 ) {
|
|
linear_search_steps = 20;
|
|
}
|
|
vec3 shadedFogColor = vec3(0.65, 0.67, 0.78);
|
|
float effective_scattering = min(scattering, cloud_self_shading);
|
|
vec3 normal = normalize(VNormal);
|
|
vec3 tangent = normalize(VTangent);
|
|
//vec3 binormal = normalize(VBinormal);
|
|
vec3 binormal = normalize(cross(normal, tangent));
|
|
vec3 ecPos3 = ecPosition.xyz / ecPosition.w;
|
|
vec3 V = normalize(ecPos3);
|
|
vec3 s = vec3(dot(V, tangent), dot(V, binormal), dot(normal, -V));
|
|
vec2 ds = s.xy * depth_factor / s.z;
|
|
vec2 dp = gl_TexCoord[0].st - ds;
|
|
float d = ray_intersect(dp, ds);
|
|
|
|
vec2 uv = dp + ds * d;
|
|
vec3 N = texture2D(NormalTex, uv).xyz * 2.0 - 1.0;
|
|
|
|
|
|
float emis = N.z;
|
|
N.z = sqrt(1.0 - min(1.0,dot(N.xy, N.xy)));
|
|
float Nz = N.z;
|
|
N = normalize(N.x * tangent + N.y * binormal + N.z * normal);
|
|
|
|
vec3 l = gl_LightSource[0].position.xyz;
|
|
vec3 diffuse = gl_Color.rgb * max(0.0, dot(N, l));
|
|
float shadow_factor = 1.0;
|
|
|
|
// Shadow
|
|
if ( quality_level >= 2.0 ) {
|
|
dp += ds * d;
|
|
vec3 sl = normalize( vec3( dot( l, tangent ), dot( l, binormal ), dot( -l, normal ) ) );
|
|
ds = sl.xy * depth_factor / sl.z;
|
|
dp -= ds * d;
|
|
float dl = ray_intersect(dp, ds);
|
|
if ( dl < d - 0.05 )
|
|
shadow_factor = dot( constantColor.xyz, vec3( 1.0, 1.0, 1.0 ) ) * 0.25;
|
|
}
|
|
// end shadow
|
|
|
|
vec4 ambient_light = constantColor + vec4 (light_diffuse,1.0) * vec4(diffuse, 1.0);
|
|
float reflectance = ambient_light.r * 0.3 + ambient_light.g * 0.59 + ambient_light.b * 0.11;
|
|
if ( shadow_factor < 1.0 )
|
|
ambient_light = constantColor + vec4(light_diffuse,1.0) * shadow_factor * vec4(diffuse, 1.0);
|
|
float emission_factor = (1.0 - smoothstep(0.15, 0.25, reflectance)) * emis;
|
|
vec4 tc = texture2D(BaseTex, uv);
|
|
emission_factor *= 0.5*pow(tc.r+0.8*tc.g+0.2*tc.b, 2.0) -0.2;
|
|
ambient_light += (emission_factor * vec4(night_color, 0.0));
|
|
|
|
|
|
|
|
vec4 finalColor = texture2D(BaseTex, uv);
|
|
|
|
|
|
// texel postprocessing by shader effects
|
|
|
|
|
|
// dust effect
|
|
|
|
vec4 dust_color;
|
|
|
|
|
|
float noise_1500m = Noise3D(worldPos.xyz,1500.0);
|
|
float noise_2000m = Noise3D(worldPos.xyz,2000.0);
|
|
|
|
if (quality_level > 2)
|
|
{
|
|
// mix dust
|
|
dust_color = vec4 (0.76, 0.71, 0.56, 1.0);
|
|
|
|
finalColor = mix(finalColor, dust_color, clamp(0.5 * dust_cover_factor + 3.0 * dust_cover_factor * (((noise_1500m - 0.5) * 0.125)+0.125 ),0.0, 1.0) );
|
|
}
|
|
|
|
|
|
// darken wet terrain
|
|
|
|
finalColor.rgb = finalColor.rgb * (1.0 - 0.6 * wetness);
|
|
|
|
finalColor *= ambient_light;
|
|
|
|
vec4 p = vec4( ecPos3 + tile_size * V * (d-1.0) * depth_factor / s.z, 1.0 );
|
|
|
|
//finalColor.rgb = fog_Func(finalColor.rgb, fogType);
|
|
|
|
|
|
// here comes the terrain haze model
|
|
|
|
float dist = length(relPos);
|
|
float delta_z = hazeLayerAltitude - eye_alt;
|
|
|
|
|
|
if (dist > max(40.0, 0.04 * min(visibility,avisibility)))
|
|
{
|
|
|
|
alt = eye_alt;
|
|
|
|
|
|
float transmission;
|
|
float vAltitude;
|
|
float delta_zv;
|
|
float H;
|
|
float distance_in_layer;
|
|
float transmission_arg;
|
|
float intensity;
|
|
vec3 lightDir = gl_LightSource[0].position.xyz;
|
|
|
|
// angle with horizon
|
|
float ct = dot(vec3(0.0, 0.0, 1.0), relPos)/dist;
|
|
|
|
|
|
// we solve the geometry what part of the light path is attenuated normally and what is through the haze layer
|
|
|
|
if (delta_z > 0.0) // we're inside the layer
|
|
{
|
|
if (ct < 0.0) // we look down
|
|
{
|
|
distance_in_layer = dist;
|
|
vAltitude = min(distance_in_layer,min(visibility, avisibility)) * ct;
|
|
delta_zv = delta_z - vAltitude;
|
|
}
|
|
else // we may look through upper layer edge
|
|
{
|
|
H = dist * ct;
|
|
if (H > delta_z) {distance_in_layer = dist/H * delta_z;}
|
|
else {distance_in_layer = dist;}
|
|
vAltitude = min(distance_in_layer,visibility) * ct;
|
|
delta_zv = delta_z - vAltitude;
|
|
}
|
|
}
|
|
else // we see the layer from above, delta_z < 0.0
|
|
{
|
|
H = dist * -ct;
|
|
if (H < (-delta_z)) // we don't see into the layer at all, aloft visibility is the only fading
|
|
{
|
|
distance_in_layer = 0.0;
|
|
delta_zv = 0.0;
|
|
}
|
|
else
|
|
{
|
|
vAltitude = H + delta_z;
|
|
distance_in_layer = vAltitude/H * dist;
|
|
vAltitude = min(distance_in_layer,visibility) * (-ct);
|
|
delta_zv = vAltitude;
|
|
}
|
|
}
|
|
|
|
|
|
// ground haze cannot be thinner than aloft visibility in the model,
|
|
// so we need to use aloft visibility otherwise
|
|
|
|
|
|
transmission_arg = (dist-distance_in_layer)/avisibility;
|
|
|
|
|
|
float eqColorFactor;
|
|
|
|
|
|
|
|
if (visibility < avisibility)
|
|
{
|
|
if (quality_level > 3)
|
|
{
|
|
transmission_arg = transmission_arg + (distance_in_layer/(1.0 * visibility + 1.0 * visibility * fogstructure * 0.06 * (noise_1500m + noise_2000m -1.0) ));
|
|
|
|
}
|
|
else
|
|
{
|
|
transmission_arg = transmission_arg + (distance_in_layer/visibility);
|
|
}
|
|
// this combines the Weber-Fechner intensity
|
|
eqColorFactor = 1.0 - 0.1 * delta_zv/visibility - (1.0 - effective_scattering);
|
|
|
|
}
|
|
else
|
|
{
|
|
if (quality_level > 3)
|
|
{
|
|
transmission_arg = transmission_arg + (distance_in_layer/(1.0 * avisibility + 1.0 * avisibility * fogstructure * 0.06 * (noise_1500m + noise_2000m - 1.0) ));
|
|
}
|
|
else
|
|
{
|
|
transmission_arg = transmission_arg + (distance_in_layer/avisibility);
|
|
}
|
|
// this combines the Weber-Fechner intensity
|
|
eqColorFactor = 1.0 - 0.1 * delta_zv/avisibility - (1.0 - effective_scattering);
|
|
}
|
|
|
|
|
|
|
|
transmission = fog_func(transmission_arg);
|
|
|
|
// there's always residual intensity, we should never be driven to zero
|
|
if (eqColorFactor < 0.2) eqColorFactor = 0.2;
|
|
|
|
|
|
float lightArg = (terminator-yprime_alt)/100000.0;
|
|
|
|
vec3 hazeColor;
|
|
|
|
hazeColor.b = light_func(lightArg, 1.330e-05, 0.264, 2.527, 1.08e-05, 1.0);
|
|
hazeColor.g = light_func(lightArg, 3.931e-06, 0.264, 3.827, 7.93e-06, 1.0);
|
|
hazeColor.r = light_func(lightArg, 8.305e-06, 0.161, 3.827, 3.04e-05, 1.0);
|
|
|
|
|
|
// now dim the light for haze
|
|
eShade = 0.9 * smoothstep(terminator_width+ terminator, -terminator_width + terminator, yprime_alt) + 0.1;
|
|
|
|
// Mie-like factor
|
|
|
|
if (lightArg < 10.0)
|
|
{
|
|
intensity = length(hazeColor);
|
|
float mie_magnitude = 0.5 * smoothstep(350000.0, 150000.0, terminator-sqrt(2.0 * EarthRadius * terrain_alt));
|
|
hazeColor = intensity * ((1.0 - mie_magnitude) + mie_magnitude * mie_angle) * normalize(mix(hazeColor, vec3 (0.5, 0.58, 0.65), mie_magnitude * (0.5 - 0.5 * mie_angle)) );
|
|
}
|
|
|
|
|
|
intensity = length(hazeColor);
|
|
|
|
if (intensity > 0.0) // this needs to be a condition, because otherwise hazeColor doesn't come out correctly
|
|
{
|
|
// Mie-like factor
|
|
|
|
if (lightArg < 10.0)
|
|
{
|
|
float mie_magnitude = 0.5 * smoothstep(350000.0, 150000.0, terminator-sqrt(2.0 * EarthRadius * terrain_alt));
|
|
hazeColor = intensity * ((1.0 - mie_magnitude) + mie_magnitude * mie_angle) * normalize(mix(hazeColor, vec3 (0.5, 0.58, 0.65), mie_magnitude * (0.5 - 0.5 * mie_angle)) );
|
|
}
|
|
|
|
// high altitude desaturation of the haze color
|
|
hazeColor = intensity * normalize (mix(hazeColor, intensity * vec3 (1.0,1.0,1.0), 0.7* smoothstep(5000.0, 50000.0, alt)));
|
|
|
|
// blue hue of haze
|
|
|
|
hazeColor.x = hazeColor.x * 0.83;
|
|
hazeColor.y = hazeColor.y * 0.9;
|
|
|
|
|
|
// additional blue in indirect light
|
|
float fade_out = max(0.65 - 0.3 *overcast, 0.45);
|
|
intensity = length(hazeColor);
|
|
hazeColor = intensity * normalize(mix(hazeColor, 1.5* shadedFogColor, 1.0 -smoothstep(0.25, fade_out,eShade) ));
|
|
|
|
// change haze color to blue hue for strong fogging
|
|
hazeColor = intensity * normalize(mix(hazeColor, shadedFogColor, (1.0-smoothstep(0.5,0.9,eqColorFactor))));
|
|
|
|
|
|
// reduce haze intensity when looking at shaded surfaces, only in terminator region
|
|
|
|
float shadow = mix( min(1.0 + dot(VNormal,lightDir),1.0), 1.0, 1.0-smoothstep(0.1, 0.4, transmission));
|
|
hazeColor = mix(shadow * hazeColor, hazeColor, 0.3 + 0.7* smoothstep(250000.0, 400000.0, terminator));
|
|
}
|
|
|
|
|
|
|
|
finalColor.xyz = mix(eqColorFactor * hazeColor * eShade, finalColor.xyz,transmission);
|
|
gl_FragColor = finalColor;
|
|
|
|
}
|
|
else // if dist < threshold no fogging at all
|
|
{
|
|
gl_FragColor = finalColor;
|
|
}
|
|
|
|
|
|
// gl_FragColor = finalColor;
|
|
|
|
if (dot(normal,-V) > 0.1) {
|
|
vec4 iproj = gl_ProjectionMatrix * p;
|
|
iproj /= iproj.w;
|
|
gl_FragDepth = (iproj.z+1.0)/2.0;
|
|
} else {
|
|
gl_FragDepth = gl_FragCoord.z;
|
|
}
|
|
}
|