871 lines
29 KiB
C
871 lines
29 KiB
C
// -*- mode: C; -*-
|
|
// Licence: GPL v2
|
|
// Authors: Frederic Bouvier and Gijs de Rooy
|
|
// with major additions and revisions by
|
|
// Emilian Huminiuc and Vivian Meazza 2011
|
|
// ported to Atmospheric Light Scattering
|
|
// by Thorsten Renk, 2013
|
|
// changes for road and traffic rendering
|
|
// by Thorsten Renk 2017 -2019
|
|
#version 120
|
|
|
|
varying vec3 VBinormal;
|
|
varying vec3 VNormal;
|
|
varying vec3 VTangent;
|
|
varying vec3 rawpos;
|
|
varying vec3 reflVec;
|
|
varying vec3 vViewVec;
|
|
varying vec3 vertVec;
|
|
|
|
varying float alpha;
|
|
|
|
uniform sampler2D BaseTex;
|
|
uniform sampler2D NormalTex;
|
|
uniform sampler2D ReflMapTex;
|
|
uniform sampler2D CarTex;
|
|
uniform sampler2D CarMetaTex;
|
|
uniform sampler2D ReflGradientsTex;
|
|
uniform samplerCube Environment;
|
|
uniform sampler2D GrainTex;
|
|
|
|
uniform int dirt_enabled;
|
|
uniform int dirt_multi;
|
|
uniform int nmap_dds;
|
|
uniform int nmap_enabled;
|
|
uniform int refl_enabled;
|
|
uniform int refl_type;
|
|
uniform int refl_map;
|
|
uniform int grain_texture_enabled;
|
|
uniform int road_traffic_direction;
|
|
uniform int rain_enabled;
|
|
uniform int road_traffic_enabled;
|
|
uniform int cloud_shadow_flag;
|
|
uniform int use_searchlight;
|
|
uniform int use_landing_light;
|
|
uniform int use_alt_landing_light;
|
|
|
|
uniform float amb_correction;
|
|
uniform float dirt_b_factor;
|
|
uniform float dirt_g_factor;
|
|
uniform float dirt_r_factor;
|
|
uniform float nmap_tile;
|
|
uniform float refl_correction;
|
|
uniform float refl_fresnel;
|
|
uniform float refl_fresnel_factor;
|
|
uniform float refl_noise;
|
|
uniform float refl_rainbow;
|
|
uniform float grain_magnification;
|
|
uniform float wetness;
|
|
uniform float rain_norm;
|
|
uniform float road_traffic_density;
|
|
uniform float streetlight_factor;
|
|
uniform float road_traffic_variation;
|
|
|
|
uniform float avisibility;
|
|
uniform float cloud_self_shading;
|
|
uniform float eye_alt;
|
|
uniform float ground_scattering;
|
|
uniform float hazeLayerAltitude;
|
|
uniform float moonlight;
|
|
uniform float overcast;
|
|
uniform float scattering;
|
|
uniform float terminator;
|
|
uniform float terrain_alt;
|
|
uniform float visibility;
|
|
uniform float air_pollution;
|
|
uniform float snowlevel;
|
|
uniform float snow_thickness_factor;
|
|
|
|
uniform float osg_SimulationTime;
|
|
|
|
uniform float landing_light1_offset;
|
|
uniform float landing_light2_offset;
|
|
uniform float landing_light3_offset;
|
|
|
|
uniform bool use_IR_vision;
|
|
|
|
// constants needed by the light and fog computations ###################################################
|
|
|
|
const float EarthRadius = 5800000.0;
|
|
const float terminator_width = 200000.0;
|
|
|
|
|
|
uniform vec3 dirt_r_color;
|
|
uniform vec3 dirt_g_color;
|
|
uniform vec3 dirt_b_color;
|
|
|
|
uniform vec3 streetlight_color;
|
|
|
|
float DotNoise2D(in vec2 coord, in float wavelength, in float fractionalMaxDotSize, in float dot_density);
|
|
float shadow_func (in float x, in float y, in float noise, in float dist);
|
|
float fog_func (in float targ, in float altitude);
|
|
float rayleigh_in_func(in float dist, in float air_pollution, in float avisibility, in float eye_alt, in float vertex_alt);
|
|
float alt_factor(in float eye_alt, in float vertex_alt);
|
|
float light_distance_fading(in float dist);
|
|
float fog_backscatter(in float avisibility);
|
|
float rand2D(in vec2 co);
|
|
float Noise2D(in vec2 coord, in float wavelength);
|
|
|
|
vec3 rayleigh_out_shift(in vec3 color, in float outscatter);
|
|
vec3 get_hazeColor(in float lightArg);
|
|
vec3 searchlight();
|
|
vec3 landing_light(in float offset, in float offsetv);
|
|
vec3 filter_combined (in vec3 color) ;
|
|
vec3 addLights(in vec3 color1, in vec3 color2);
|
|
|
|
float getShadowing();
|
|
vec3 getClusteredLightsContribution(vec3 p, vec3 n, vec3 texel);
|
|
|
|
|
|
float light_func (in float x, in float a, in float b, in float c, in float d, in float e)
|
|
{
|
|
if (x > 30.0) {return e;}
|
|
if (x < -15.0) {return 0.0;}
|
|
return e / pow((1.0 + a * exp(-b * (x-c)) ),(1.0/d));
|
|
}
|
|
|
|
|
|
void road_type_mapper (in vec2 coord, out float rtype_traffic_density, out float rtype_base_illumination, out float rtype_traffic_speed, out int rtype_dual_lane)
|
|
{
|
|
if (coord.s < 0.125) // railway
|
|
{
|
|
rtype_dual_lane = 0;
|
|
rtype_traffic_density = 0;
|
|
rtype_base_illumination = 0;
|
|
rtype_traffic_speed = 0.0;
|
|
}
|
|
else if (coord.s < 0.250) // residential
|
|
{
|
|
rtype_dual_lane = 0;
|
|
rtype_traffic_density = 0.3;
|
|
rtype_base_illumination = 0.65;
|
|
rtype_traffic_speed = 0.5;
|
|
}
|
|
else if (coord.s < 0.375) // single-lane major
|
|
{
|
|
rtype_dual_lane = 0;
|
|
rtype_traffic_density = 1.0;
|
|
rtype_base_illumination = 0.65;
|
|
rtype_traffic_speed = 1.0;
|
|
}
|
|
else if (coord.s < 0.5)
|
|
{
|
|
rtype_dual_lane = 0;
|
|
rtype_traffic_density = 0.0;
|
|
rtype_base_illumination = 0.0;
|
|
rtype_traffic_speed = 0.0;
|
|
}
|
|
else if (coord.s < 0.625) // grass
|
|
{
|
|
rtype_dual_lane = 0;
|
|
rtype_traffic_density = 0.0;
|
|
rtype_base_illumination = 0.0;
|
|
rtype_traffic_speed = 0.0;
|
|
}
|
|
else if (coord.s < 0.750) // dual-lane highway
|
|
{
|
|
rtype_dual_lane = 1;
|
|
rtype_traffic_density = 1.0;
|
|
rtype_base_illumination = 0.0;
|
|
rtype_traffic_speed = 1.0;
|
|
}
|
|
else if (coord.s < 0.875) // dirt
|
|
{
|
|
rtype_dual_lane = 0;
|
|
rtype_traffic_density = 0.1;
|
|
rtype_base_illumination = 0.0;
|
|
rtype_traffic_speed = 0.3;
|
|
}
|
|
else // tramway
|
|
{
|
|
rtype_dual_lane = 0;
|
|
rtype_traffic_density = 0.0;
|
|
rtype_base_illumination = 0.0;
|
|
rtype_traffic_speed = 0.0;
|
|
}
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
void main (void)
|
|
{
|
|
vec4 texel = texture2D(BaseTex, gl_TexCoord[0].st);
|
|
vec4 nmap = texture2D(NormalTex, gl_TexCoord[0].st * nmap_tile);
|
|
vec4 reflmap = texture2D(ReflMapTex, gl_TexCoord[0].st);
|
|
vec4 noisevec = vec4 (1.0, 1.0, 1.0, 1.0);
|
|
|
|
vec4 grainTexel;
|
|
|
|
vec3 mixedcolor;
|
|
vec3 N = vec3(0.0,0.0,1.0);
|
|
|
|
// noise
|
|
|
|
float noise_1m = Noise2D(rawpos.xy, 1.0);
|
|
float noise_5m = Noise2D(rawpos.xy, 5.0);
|
|
|
|
// road type characteristics
|
|
|
|
float rtype_traffic_density = 0.0;
|
|
float rtype_base_illumination = 0.0;
|
|
float rtype_traffic_speed = 0.0;
|
|
int rtype_dual_lane = 0;
|
|
road_type_mapper (gl_TexCoord[0].st, rtype_traffic_density, rtype_base_illumination, rtype_traffic_speed, rtype_dual_lane);
|
|
|
|
float pf = 0.0;
|
|
float pf1 = 0.0;
|
|
///some generic light scattering parameters
|
|
vec3 shadedFogColor = vec3(0.55, 0.67, 0.88);
|
|
vec3 moonLightColor = vec3 (0.095, 0.095, 0.15) * moonlight;
|
|
float alt = eye_alt;
|
|
float effective_scattering = min(scattering, cloud_self_shading);
|
|
|
|
|
|
/// BEGIN geometry for light
|
|
|
|
vec3 up = (gl_ModelViewMatrix * vec4(0.0,0.0,1.0,0.0)).xyz;
|
|
|
|
vec3 nVertVec = normalize(vertVec);
|
|
|
|
float dist = length(vertVec);
|
|
float vertex_alt = max(100.0,dot(up, vertVec) + alt);
|
|
float vertex_scattering = ground_scattering + (1.0 - ground_scattering) * smoothstep(hazeLayerAltitude -100.0, hazeLayerAltitude + 100.0, vertex_alt);
|
|
|
|
|
|
vec3 lightHorizon = gl_LightSource[0].position.xyz - up * dot(up,gl_LightSource[0].position.xyz);
|
|
float yprime = -dot(vertVec, lightHorizon);
|
|
float yprime_alt = yprime - sqrt(2.0 * EarthRadius * vertex_alt);
|
|
float lightArg = (terminator-yprime_alt)/100000.0;
|
|
|
|
float earthShade = 0.6 * (1.0 - smoothstep(-terminator_width+ terminator, terminator_width + terminator, yprime_alt)) + 0.4;
|
|
|
|
float mie_angle;
|
|
if (lightArg < 10.0)
|
|
{mie_angle = (0.5 * dot(nVertVec, normalize(gl_LightSource[0].position.xyz)) ) + 0.5;}
|
|
else
|
|
{mie_angle = 1.0;}
|
|
|
|
float fog_vertex_alt = max(vertex_alt,hazeLayerAltitude);
|
|
float fog_yprime_alt = yprime_alt;
|
|
if (fog_vertex_alt > hazeLayerAltitude)
|
|
{
|
|
if (dist > 0.8 * avisibility)
|
|
{
|
|
fog_vertex_alt = mix(fog_vertex_alt, hazeLayerAltitude, smoothstep(0.8*avisibility, avisibility, dist));
|
|
fog_yprime_alt = yprime -sqrt(2.0 * EarthRadius * fog_vertex_alt);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
fog_vertex_alt = hazeLayerAltitude;
|
|
fog_yprime_alt = yprime -sqrt(2.0 * EarthRadius * fog_vertex_alt);
|
|
}
|
|
|
|
float fog_lightArg = (terminator-fog_yprime_alt)/100000.0;
|
|
float fog_earthShade = 0.9 * smoothstep(terminator_width+ terminator, -terminator_width + terminator, fog_yprime_alt) + 0.1;
|
|
|
|
float ct = dot(normalize(up), nVertVec);
|
|
|
|
vec3 relPos = (gl_ModelViewMatrixInverse * vec4 (vertVec,0.0)).xyz;
|
|
|
|
/// END geometry for light
|
|
|
|
|
|
/// BEGIN light
|
|
vec4 light_diffuse;
|
|
vec4 light_ambient;
|
|
float intensity;
|
|
|
|
light_diffuse.b = light_func(lightArg, 1.330e-05, 0.264, 3.827, 1.08e-05, 1.0);
|
|
light_diffuse.g = light_func(lightArg, 3.931e-06, 0.264, 3.827, 7.93e-06, 1.0);
|
|
light_diffuse.r = light_func(lightArg, 8.305e-06, 0.161, 3.827, 3.04e-05, 1.0);
|
|
light_diffuse.a = 1.0;
|
|
light_diffuse = light_diffuse * vertex_scattering;
|
|
|
|
light_ambient.r = light_func(lightArg, 0.236, 0.253, 1.073, 0.572, 0.33);
|
|
light_ambient.g = light_ambient.r * 0.4/0.33;
|
|
light_ambient.b = light_ambient.r * 0.5/0.33;
|
|
light_ambient.a = 1.0;
|
|
|
|
if (earthShade < 0.5)
|
|
{
|
|
intensity = length(light_ambient.rgb);
|
|
light_ambient.rgb = intensity * normalize(mix(light_ambient.rgb, shadedFogColor, 1.0 -smoothstep(0.1, 0.8,earthShade) ));
|
|
light_ambient.rgb = light_ambient.rgb + moonLightColor * (1.0 - smoothstep(0.4, 0.5, earthShade));
|
|
|
|
intensity = length(light_diffuse.rgb);
|
|
light_diffuse.rgb = intensity * normalize(mix(light_diffuse.rgb, shadedFogColor, 1.0 -smoothstep(0.1, 0.7,earthShade) ));
|
|
}
|
|
|
|
vec4 ep = gl_ModelViewMatrixInverse * vec4(0.0,0.0,0.0,1.0);
|
|
vec3 ecViewDir = (gl_ModelViewMatrix * (ep - vec4(rawpos, 1.0))).xyz;
|
|
vec3 HV = normalize(normalize(gl_LightSource[0].position.xyz) + normalize(ecViewDir));
|
|
|
|
/// END light
|
|
|
|
/// BEGIN grain overlay
|
|
if (grain_texture_enabled ==1)
|
|
{
|
|
grainTexel = texture2D(GrainTex, gl_TexCoord[0].st * grain_magnification);
|
|
texel.rgb = mix(texel.rgb, grainTexel.rgb, grainTexel.a );
|
|
}
|
|
else if (grain_texture_enabled == 2)
|
|
{
|
|
grainTexel = texture2D(GrainTex, rawpos.xy * grain_magnification);
|
|
texel.rgb = mix(texel.rgb, grainTexel.rgb, grainTexel.a );
|
|
}
|
|
|
|
/// END grain overlay
|
|
|
|
|
|
/// BEGIN procedural textures - cars and snow
|
|
|
|
vec2 roadCoords = gl_TexCoord[0].st;
|
|
roadCoords.s *=8.0;
|
|
roadCoords.s = fract(roadCoords.s);
|
|
|
|
|
|
|
|
vec4 snow_texel = vec4 (0.95, 0.95, 0.95, 1.0);
|
|
float noise_term = 0.5 * (noise_5m - 0.5);
|
|
noise_term += 0.5 * (noise_1m - 0.5);
|
|
snow_texel.a = snow_texel.a * 0.2+0.8* smoothstep(0.2,0.8, 0.3 +noise_term + 0.5*snow_thickness_factor +0.0001*(relPos.z +eye_alt -snowlevel) );
|
|
|
|
float noise_2000m = 0.0;
|
|
float noise_10m = 0.0;
|
|
|
|
float snowLaneShape = smoothstep(0.20, 0.28, roadCoords.s) * (1.0-smoothstep(0.42, 0.5, roadCoords.s));
|
|
snowLaneShape += smoothstep(0.6, 0.68, roadCoords.s) * (1.0-smoothstep(0.82, 0.9, roadCoords.s));
|
|
snow_texel.a *= (1.0 - 0.3* snowLaneShape * rtype_traffic_density);
|
|
|
|
texel.rgb = mix(texel.rgb, snow_texel.rgb, snow_texel.a* smoothstep(snowlevel, snowlevel+200.0, 1.0 * (relPos.z + eye_alt)+ (noise_2000m + 0.1 * noise_10m -0.55) *400.0));
|
|
|
|
float cTag = 0.0;
|
|
float cPresent = 0.0;
|
|
|
|
float cSign = 1.0;
|
|
float total_traffic_density = 0.0;
|
|
|
|
vec4 carMetaTexel;
|
|
|
|
if (road_traffic_enabled == 1)
|
|
{
|
|
float cOffset = 0.0;
|
|
if (roadCoords.s > 0.5)
|
|
{
|
|
if (rtype_dual_lane == 0) {cSign = -1.0;}
|
|
else {cOffset = 5.0;}
|
|
}
|
|
|
|
if (rtype_dual_lane == 1) {cSign = -1.0;}
|
|
|
|
cSign *= road_traffic_direction;
|
|
|
|
total_traffic_density = road_traffic_density * rtype_traffic_density * road_traffic_variation;
|
|
|
|
float cCoord = roadCoords.t + cOffset;
|
|
cCoord += 0.3 * osg_SimulationTime * cSign * rtype_traffic_speed * (1.0 - (0.9 * smoothstep(1.0, 2.5, total_traffic_density)));
|
|
cCoord *= 5.0;
|
|
|
|
cTag = fract(cCoord);
|
|
float cDomain = cCoord - cTag;
|
|
float cRnd = rand2D(vec2 (cDomain, cSign));
|
|
|
|
cPresent = 0.0;
|
|
float cDisc = 0.2 * total_traffic_density;
|
|
if (cRnd > 1.0 - cDisc) {cPresent = 1.0;}
|
|
|
|
float cColorRnd = (cRnd - 1.0 + cDisc)/ max(cDisc, 0.05);
|
|
float cColorRnd2 = rand2D(vec2 (cDomain, 0.5));
|
|
|
|
float cColumn = (cColorRnd2 * 16.0) - fract(cColorRnd2 * 16.0);
|
|
float cRow = (rand2D(vec2 (cDomain, 1.5)) * 2.0);
|
|
cRow = cRow- fract(cRow);
|
|
//cRow = 0.0;
|
|
|
|
|
|
vec3 cColor = vec3 (0.8 * (1.0 - cColorRnd), 0.8 * 2.0 * (0.5 - abs(cColorRnd - 0.5)) , 0.8 * cColorRnd);
|
|
cColor *= cColorRnd2;
|
|
|
|
float cPos = cTag;
|
|
if (cSign > 0.0) {cPos = 1.0 - cPos;}
|
|
float cShape = smoothstep(0.0, 0.05, cPos) * (1.0-smoothstep(0.35, 0.4, cPos));
|
|
|
|
float ctPos;
|
|
if (roadCoords.s < 0.5)
|
|
{ctPos = clamp(5.0 * (roadCoords.s - 0.25), 0.0,1.0); }
|
|
else
|
|
{ctPos = clamp(5.0 * (roadCoords.s - 0.65), 0.0,1.0); }
|
|
|
|
float clPos = cPos;// + 0.45;
|
|
|
|
vec4 carTexel = texture2D(CarTex, vec2((ctPos + cColumn) / 16.0 , ((clPos + cRow) / 2.0) ));
|
|
carMetaTexel = texture2D(CarMetaTex, vec2((ctPos + cColumn) / 16.0 , ((clPos + cRow) / 2.0) ));
|
|
|
|
|
|
float laneShape = smoothstep(0.25, 0.28, roadCoords.s) * (1.0-smoothstep(0.42, 0.45, roadCoords.s));
|
|
laneShape += smoothstep(0.65, 0.68, roadCoords.s) * (1.0-smoothstep(0.82, 0.85, roadCoords.s));
|
|
cShape *= laneShape;
|
|
|
|
//texel.rgb = mix(texel.rgb, cColor, cPresent * cShape);
|
|
texel.rgb = mix(texel.rgb, carTexel.rgb, cPresent * carTexel.a * laneShape);
|
|
//texel.rgb = mix(texel.rgb, vec3 (1.0, 0.0, 0.0) * cColorRnd2, 0.3);
|
|
}
|
|
|
|
|
|
|
|
/// END procedural cars
|
|
|
|
vec3 reflVecN;
|
|
|
|
///BEGIN bump
|
|
if (nmap_enabled > 0){
|
|
N = nmap.rgb * 2.0 - 1.0;
|
|
// this is exact only for viewing under 90 degrees but much faster than the real solution
|
|
reflVecN = normalize (N.x * VTangent + N.y * VBinormal + N.z * reflVec);
|
|
N = normalize(N.x * VTangent + N.y * VBinormal + N.z * VNormal);
|
|
if (nmap_dds > 0)
|
|
N = -N;
|
|
} else {
|
|
N = normalize(VNormal);
|
|
reflVecN = reflVec;
|
|
}
|
|
///END bump
|
|
|
|
|
|
|
|
vec4 reflection = textureCube(Environment, reflVecN );
|
|
vec3 viewVec = normalize(vViewVec);
|
|
float v = abs(dot(viewVec, normalize(VNormal)));// Map a rainbowish color
|
|
vec4 fresnel = texture2D(ReflGradientsTex, vec2(v, 0.75));
|
|
vec4 rainbow = texture2D(ReflGradientsTex, vec2(v, 0.25));
|
|
|
|
//float nDotVP = max(0.0, dot(N, normalize(gl_LightSource[0].position.xyz)));
|
|
|
|
|
|
float nDotVP = max(0.0, dot(N, normalize(gl_LightSource[0].position.xyz)));
|
|
|
|
//float nDotHV = max(0.0, dot(N, normalize(gl_LightSource[0].halfVector.xyz)));
|
|
float nDotHV = max(0.0, dot(N,HV));
|
|
//glare on the backside of tranparent objects
|
|
//if ((gl_FrontMaterial.diffuse.a < 1.0 || texel.a < 1.0)
|
|
// && dot(N, normalize(gl_LightSource[0].position.xyz)) < 0.0) {
|
|
// nDotVP = max(0.0, dot(-N, normalize(gl_LightSource[0].position.xyz)) * (1.0 -texel.a) );
|
|
// nDotHV = max(0.0, dot(-N, HV) * (1.0 -texel.a) );
|
|
// }
|
|
|
|
float nDotVP1 = 0.0;
|
|
float nDotHV1 = 0.0;
|
|
|
|
|
|
// try specular reflection of sky irradiance
|
|
nDotVP1 = max(0.0, dot(N, up));
|
|
nDotHV1 = max(0.0, dot(N, normalize(normalize(up) + normalize(-vertVec))));
|
|
|
|
|
|
if (nDotVP == 0.0)
|
|
{pf = 0.0;}
|
|
else
|
|
{pf = pow(nDotHV, gl_FrontMaterial.shininess);}
|
|
|
|
if (nDotVP1 == 0.0)
|
|
{pf1 = 0.0;}
|
|
else
|
|
{pf1 = pow(nDotHV1, 0.5*gl_FrontMaterial.shininess);}
|
|
|
|
|
|
|
|
if (cloud_shadow_flag == 1)
|
|
{
|
|
light_diffuse = light_diffuse * shadow_func(relPos.x, relPos.y, 1.0, dist);
|
|
}
|
|
|
|
vec3 secondary_light = vec3 (0.0,0.0,0.0);
|
|
|
|
if (use_searchlight == 1)
|
|
{
|
|
secondary_light += searchlight();
|
|
}
|
|
if (use_landing_light == 1)
|
|
{
|
|
secondary_light += landing_light(landing_light1_offset, landing_light3_offset);
|
|
}
|
|
if (use_alt_landing_light == 1)
|
|
{
|
|
secondary_light += landing_light(landing_light2_offset, landing_light3_offset);
|
|
}
|
|
|
|
float shadowmap = getShadowing();
|
|
vec4 Diffuse = light_diffuse * nDotVP * shadowmap;
|
|
Diffuse.rgb += secondary_light * light_distance_fading(dist);
|
|
if (use_IR_vision)
|
|
{
|
|
Diffuse.rgb = max(Diffuse.rgb, vec3 (0.5, 0.5, 0.5));
|
|
}
|
|
vec4 Specular = gl_FrontMaterial.specular * light_diffuse * pf + gl_FrontMaterial.specular * light_ambient * pf1 * shadowmap;
|
|
Specular+= gl_FrontMaterial.specular * pow(max(0.0,-dot(N,nVertVec)),gl_FrontMaterial.shininess) * vec4(secondary_light,1.0);
|
|
|
|
|
|
//vec4 color = gl_Color + Diffuse * gl_FrontMaterial.diffuse;
|
|
vec4 color = Diffuse;// * gl_FrontMaterial.diffuse;
|
|
|
|
|
|
color = clamp( color, 0.0, 1.0 );
|
|
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////
|
|
//BEGIN reflect
|
|
////////////////////////////////////////////////////////////////////
|
|
if (refl_enabled > 0){
|
|
float reflFactor = 0.0;
|
|
float transparency_offset = clamp(refl_correction, -1.0, 1.0);// set the user shininess offset
|
|
|
|
if(refl_map > 0){
|
|
// map the shininess of the object with user input
|
|
//float pam = (map.a * -2) + 1; //reverse map
|
|
reflFactor = reflmap.a + transparency_offset;
|
|
} else if (nmap_enabled > 0) {
|
|
// set the reflectivity proportional to shininess with user input
|
|
reflFactor = gl_FrontMaterial.shininess * 0.0078125 * nmap.a + transparency_offset;
|
|
} else {
|
|
reflFactor = gl_FrontMaterial.shininess* 0.0078125 + transparency_offset;
|
|
}
|
|
|
|
// enhance low angle reflection by a fresnel term
|
|
float fresnel_enhance = (1.0-smoothstep(0.0,0.4, dot(N,-nVertVec))) * refl_fresnel_factor;
|
|
|
|
reflFactor+=fresnel_enhance;
|
|
|
|
reflFactor = clamp(reflFactor, 0.0, 1.0);
|
|
|
|
// add fringing fresnel and rainbow effects and modulate by reflection
|
|
vec4 reflcolor = mix(reflection, rainbow, refl_rainbow * v);
|
|
//vec4 reflcolor = reflection;
|
|
vec4 reflfrescolor = mix(reflcolor, fresnel, refl_fresnel * v);
|
|
vec4 noisecolor = mix(reflfrescolor, noisevec, refl_noise);
|
|
//vec4 raincolor = vec4(noisecolor.rgb * reflFactor, 1.0);
|
|
vec4 raincolor = vec4(noisecolor.rgb, 1.0);
|
|
raincolor += Specular;
|
|
raincolor *= light_diffuse;
|
|
|
|
if (refl_type == 1)
|
|
{mixedcolor = mix(texel, raincolor, reflFactor).rgb;}
|
|
else if (refl_type == 2)
|
|
{mixedcolor = ((texel +(reflcolor * reflFactor))-(0.5*reflFactor)).rgb;}
|
|
|
|
} else {
|
|
mixedcolor = texel.rgb;
|
|
}
|
|
/////////////////////////////////////////////////////////////////////
|
|
//END reflect
|
|
/////////////////////////////////////////////////////////////////////
|
|
|
|
//////////////////////////////////////////////////////////////////////
|
|
//begin DIRT
|
|
//////////////////////////////////////////////////////////////////////
|
|
if (dirt_enabled >= 1){
|
|
vec3 dirtFactorIn = vec3 (dirt_r_factor, dirt_g_factor, dirt_b_factor);
|
|
vec3 dirtFactor = reflmap.rgb * dirtFactorIn.rgb;
|
|
//dirtFactor.r = smoothstep(0.0, 1.0, dirtFactor.r);
|
|
mixedcolor.rgb = mix(mixedcolor.rgb, dirt_r_color, smoothstep(0.0, 1.0, dirtFactor.r));
|
|
if (dirt_multi > 0) {
|
|
//dirtFactor.g = smoothstep(0.0, 1.0, dirtFactor.g);
|
|
//dirtFactor.b = smoothstep(0.0, 1.0, dirtFactor.b);
|
|
mixedcolor.rgb = mix(mixedcolor.rgb, dirt_g_color, smoothstep(0.0, 1.0, dirtFactor.g));
|
|
mixedcolor.rgb = mix(mixedcolor.rgb, dirt_b_color, smoothstep(0.0, 1.0, dirtFactor.b));
|
|
}
|
|
}
|
|
//////////////////////////////////////////////////////////////////////
|
|
//END Dirt
|
|
//////////////////////////////////////////////////////////////////////
|
|
|
|
//////////////////////////////////////////////////////////////////////
|
|
//begin WETNESS
|
|
//////////////////////////////////////////////////////////////////////
|
|
|
|
if (rain_enabled >0.0)
|
|
{
|
|
texel.rgb = texel.rgb * (1.0 - 0.6 * wetness);
|
|
float rain_factor = 0.0;
|
|
|
|
float rain_orientation = max(dot(VNormal, up),0.0);
|
|
|
|
if ((rain_norm > 0.0) && (rain_orientation > 0.0))
|
|
{
|
|
rain_factor += DotNoise2D(rawpos.xy, 0.2 ,0.5, rain_norm) * abs(sin(6.0*osg_SimulationTime));
|
|
rain_factor += DotNoise2D(rawpos.xy, 0.3 ,0.4, rain_norm) * abs(sin(6.0*osg_SimulationTime + 2.094));
|
|
rain_factor += DotNoise2D(rawpos.xy, 0.4 ,0.3, rain_norm)* abs(sin(6.0*osg_SimulationTime + 4.188));
|
|
}
|
|
|
|
|
|
|
|
// secondary reflection of sky irradiance in water film
|
|
float fresnelW = ((0.8 * wetness) ) * (1.0-smoothstep(0.0,0.4, dot(N,-nVertVec) * 1.0 - 0.2 * rain_factor * wetness));
|
|
float sky_factor = (1.0-ct*ct);
|
|
vec3 sky_light = vec3 (1.0,1.0,1.0) * length(light_diffuse.rgb) * (1.0-effective_scattering);
|
|
Specular.rgb += sky_factor * fresnelW * sky_light;
|
|
}
|
|
/////////////////////////////////////////////////////////////////////
|
|
//end WETNESS
|
|
//////////////////////////////////////////////////////////////////////
|
|
|
|
|
|
// set ambient adjustment to remove bluiness with user input
|
|
float ambient_offset = clamp(amb_correction, -1.0, 1.0);
|
|
vec4 ambient = gl_LightModel.ambient + light_ambient;
|
|
vec4 ambient_Correction = vec4(ambient.rg, ambient.b * 0.6, 1.0)
|
|
* ambient_offset ;
|
|
ambient_Correction = clamp(ambient_Correction, -1.0, 1.0);
|
|
|
|
color += ambient;
|
|
color.a = texel.a * alpha;
|
|
vec4 fragColor = vec4(color.rgb * mixedcolor + ambient_Correction.rgb, color.a);
|
|
|
|
fragColor += Specular * nmap.a;
|
|
|
|
fragColor.rgb += getClusteredLightsContribution(vertVec, N, texel.rgb);
|
|
|
|
//////////////////////////////////////////////////////////////////////
|
|
// BEGIN procedural lightmap
|
|
//////////////////////////////////////////////////////////////////////
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
vec3 pLMColor = streetlight_color;
|
|
|
|
float pLMIntensity = smoothstep(0.0, 0.4, roadCoords.s) * (1.0 - smoothstep(0.6, 1.0, roadCoords.s));
|
|
pLMIntensity = 0.25 * rtype_base_illumination * (1.0+ streetlight_factor) + 0.1 * max(0.0,sin(4.0 * roadCoords.t)) * streetlight_factor;
|
|
pLMIntensity = clamp(pLMIntensity, 0.0, 1.0);
|
|
|
|
if (gl_FrontMaterial.diffuse.r == 0.0) {pLMIntensity =0.0;}
|
|
|
|
pLMColor *= pLMIntensity;
|
|
|
|
if (road_traffic_enabled == 1)
|
|
{
|
|
|
|
float viewAngleFactor = smoothstep(-0.05, 0.0, cSign * dot(normalize(VBinormal), nVertVec));
|
|
|
|
vec3 pCLColor = vec3 (0.95, 1.0, 1.0);
|
|
vec3 pTLColor = vec3 (0.95, 0.0, 0.0);
|
|
|
|
|
|
// mean illumination by car headlights
|
|
pLMColor = pLMColor + 0.2 * min(1.0,total_traffic_density) * pCLColor;
|
|
|
|
//float pCLIntensity = smoothstep(0.4, 0.6, cTag) * (1.0-smoothstep(0.6, 0.8, cTag));
|
|
//float laneFact = smoothstep(0.25, 0.3, roadCoords.s) * (1.0-smoothstep(0.3, 0.35, roadCoords.s));
|
|
//laneFact += smoothstep(0.35, 0.4, roadCoords.s) * (1.0-smoothstep(0.4, 0.45, roadCoords.s));
|
|
//laneFact += smoothstep(0.65, 0.7, roadCoords.s) * (1.0-smoothstep(0.7, 0.75, roadCoords.s));
|
|
//laneFact += smoothstep(0.75, 0.8, roadCoords.s) * (1.0-smoothstep(0.8, 0.85, roadCoords.s));
|
|
//pCLIntensity = pCLIntensity * laneFact * cPresent;
|
|
|
|
|
|
float pCLIntensity, pTLIntensity;
|
|
if (cSign == -1.0)
|
|
{
|
|
pCLIntensity = carMetaTexel.r * cPresent * smoothstep(0.45, 0.55, cTag) * viewAngleFactor ;
|
|
pCLIntensity += 0.85 * carMetaTexel.b * cPresent * smoothstep(0.45, 0.55, cTag);
|
|
pTLIntensity = carMetaTexel.r * cPresent * (1.0 - smoothstep(0.45, 0.55, cTag)) * (1.0 - viewAngleFactor);
|
|
pTLIntensity += 0.85 * carMetaTexel.b * cPresent * (1.0 - smoothstep(0.45, 0.55, cTag));
|
|
|
|
}
|
|
else
|
|
{
|
|
pCLIntensity = carMetaTexel.r * cPresent * (1.0 - smoothstep(0.45, 0.55, cTag)) *viewAngleFactor ;
|
|
pCLIntensity += 0.85 * carMetaTexel.b * cPresent * (1.0 - smoothstep(0.45, 0.55, cTag));
|
|
pTLIntensity = carMetaTexel.r * cPresent * smoothstep(0.45, 0.55, cTag) * (1.0 - viewAngleFactor);
|
|
pTLIntensity += 0.85 * carMetaTexel.b * cPresent * smoothstep(0.45, 0.55, cTag);
|
|
}
|
|
|
|
//pCLColor *= pCLIntensity;
|
|
|
|
|
|
|
|
//if (cSign == 1.0)
|
|
// {
|
|
// pTLIntensity = smoothstep(0.9, 0.94, cTag) * (1.0-smoothstep(0.96, 1.0, cTag));
|
|
// }
|
|
//else
|
|
// {
|
|
// pTLIntensity = smoothstep(0.0, 0.04, cTag) * (1.0-smoothstep(0.06, 0.1, cTag));
|
|
// }
|
|
|
|
|
|
|
|
//pTLIntensity = pTLIntensity * laneFact * cPresent * (1.0 - viewAngleFactor);
|
|
|
|
|
|
pCLColor = pCLColor * pCLIntensity + pTLColor * pTLIntensity;
|
|
|
|
|
|
pLMColor = clamp(pLMColor, 0.0, 1.0);
|
|
|
|
pLMColor = max(pLMColor,pCLColor);
|
|
}
|
|
|
|
//fragColor.rgb = max(fragColor.rgb, pLMColor * gl_FrontMaterial.diffuse.rgb * smoothstep(0.0, 1.0, mixedcolor*.5 + pLMColor*.5));
|
|
|
|
fragColor.rgb = max(fragColor.rgb, pLMColor * smoothstep(0.0, 1.0, mixedcolor*.5 + pLMColor*.5));
|
|
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////
|
|
// END procedural lightmap
|
|
//////////////////////////////////////////////////////////////////////
|
|
|
|
|
|
/// BEGIN fog amount
|
|
|
|
float transmission;
|
|
float vAltitude;
|
|
float delta_zv;
|
|
float H;
|
|
float distance_in_layer;
|
|
float transmission_arg;
|
|
float eqColorFactor;
|
|
|
|
float delta_z = hazeLayerAltitude - eye_alt;
|
|
float mvisibility = min(visibility, avisibility);
|
|
|
|
if (dist > 0.04 * mvisibility)
|
|
{
|
|
if (delta_z > 0.0) // we're inside the layer
|
|
{
|
|
if (ct < 0.0) // we look down
|
|
{
|
|
distance_in_layer = dist;
|
|
vAltitude = min(distance_in_layer,mvisibility) * ct;
|
|
delta_zv = delta_z - vAltitude;
|
|
}
|
|
else // we may look through upper layer edge
|
|
{
|
|
H = dist * ct;
|
|
if (H > delta_z) {distance_in_layer = dist/H * delta_z;}
|
|
else {distance_in_layer = dist;}
|
|
vAltitude = min(distance_in_layer,visibility) * ct;
|
|
delta_zv = delta_z - vAltitude;
|
|
}
|
|
}
|
|
else // we see the layer from above, delta_z < 0.0
|
|
{
|
|
H = dist * -ct;
|
|
if (H < (-delta_z)) // we don't see into the layer at all, aloft visibility is the only fading
|
|
{
|
|
distance_in_layer = 0.0;
|
|
delta_zv = 0.0;
|
|
}
|
|
else
|
|
{
|
|
vAltitude = H + delta_z;
|
|
distance_in_layer = vAltitude/H * dist;
|
|
vAltitude = min(distance_in_layer,visibility) * (-ct);
|
|
delta_zv = vAltitude;
|
|
}
|
|
}
|
|
|
|
transmission_arg = (dist-distance_in_layer)/avisibility;
|
|
|
|
|
|
if (visibility < avisibility)
|
|
{
|
|
transmission_arg = transmission_arg + (distance_in_layer/visibility);
|
|
eqColorFactor = 1.0 - 0.1 * delta_zv/visibility - (1.0 -effective_scattering);
|
|
}
|
|
else
|
|
{
|
|
transmission_arg = transmission_arg + (distance_in_layer/avisibility);
|
|
eqColorFactor = 1.0 - 0.1 * delta_zv/avisibility - (1.0 -effective_scattering);
|
|
}
|
|
transmission = fog_func(transmission_arg, alt);
|
|
if (eqColorFactor < 0.2) eqColorFactor = 0.2;
|
|
}
|
|
else
|
|
{
|
|
eqColorFactor = 1.0;
|
|
transmission = 1.0;
|
|
}
|
|
|
|
/// END fog amount
|
|
|
|
/// BEGIN fog color
|
|
|
|
vec3 hazeColor = get_hazeColor(fog_lightArg);
|
|
|
|
float rShade = 1.0 - 0.9 * smoothstep(-terminator_width+ terminator, terminator_width + terminator, yprime_alt + 420000.0);
|
|
float lightIntensity = length(hazeColor * effective_scattering) * rShade;
|
|
|
|
if (transmission< 1.0)
|
|
{
|
|
|
|
|
|
|
|
if (fog_lightArg < 10.0)
|
|
{
|
|
intensity = length(hazeColor);
|
|
float mie_magnitude = 0.5 * smoothstep(350000.0, 150000.0, terminator-sqrt(2.0 * EarthRadius * terrain_alt));
|
|
hazeColor = intensity * ((1.0 - mie_magnitude) + mie_magnitude * mie_angle) * normalize(mix(hazeColor, vec3 (0.5, 0.58, 0.65), mie_magnitude * (0.5 - 0.5 * mie_angle)) );
|
|
}
|
|
|
|
intensity = length(hazeColor);
|
|
hazeColor = intensity * normalize (mix(hazeColor, intensity * vec3 (1.0,1.0,1.0), 0.7* smoothstep(5000.0, 50000.0, alt)));
|
|
|
|
hazeColor.r = hazeColor.r * 0.83;
|
|
hazeColor.g = hazeColor.g * 0.9;
|
|
|
|
float fade_out = max(0.65 - 0.3 *overcast, 0.45);
|
|
intensity = length(hazeColor);
|
|
hazeColor = intensity * normalize(mix(hazeColor, 1.5* shadedFogColor, 1.0 -smoothstep(0.25, fade_out,fog_earthShade) ));
|
|
hazeColor = intensity * normalize(mix(hazeColor, shadedFogColor, (1.0-smoothstep(0.5,0.9,eqColorFactor))));
|
|
|
|
float shadow = mix( min(1.0 + dot(VNormal,gl_LightSource[0].position.xyz),1.0), 1.0, 1.0-smoothstep(0.1, 0.4, transmission));
|
|
hazeColor = mix(shadow * hazeColor, hazeColor, 0.3 + 0.7* smoothstep(250000.0, 400000.0, terminator));
|
|
}
|
|
else
|
|
{
|
|
hazeColor = vec3 (1.0, 1.0, 1.0);
|
|
}
|
|
|
|
|
|
|
|
|
|
/// END fog color
|
|
fragColor = clamp(fragColor, 0.0, 1.0);
|
|
hazeColor = clamp(hazeColor, 0.0, 1.0);
|
|
|
|
///BEGIN Rayleigh fog ///
|
|
|
|
// Rayleigh color shift due to out-scattering
|
|
float rayleigh_length = 0.5 * avisibility * (2.5 - 1.9 * air_pollution)/alt_factor(eye_alt, eye_alt+relPos.z);
|
|
float outscatter = 1.0-exp(-dist/rayleigh_length);
|
|
fragColor.rgb = rayleigh_out_shift(fragColor.rgb,outscatter);
|
|
|
|
vec3 rayleighColor = vec3 (0.17, 0.52, 0.87) * lightIntensity;
|
|
float rayleighStrength = rayleigh_in_func(dist, air_pollution, avisibility/max(lightIntensity,0.05), eye_alt, eye_alt + relPos.z);
|
|
fragColor.rgb = mix(fragColor.rgb, rayleighColor,rayleighStrength);
|
|
|
|
/// END Rayleigh fog
|
|
|
|
// don't let the light fade out too rapidly
|
|
lightArg = (terminator + 200000.0)/100000.0;
|
|
float minLightIntensity = min(0.2,0.16 * lightArg + 0.5);
|
|
vec3 minLight = minLightIntensity * vec3 (0.2, 0.3, 0.4);
|
|
hazeColor *= eqColorFactor * fog_earthShade;
|
|
hazeColor.rgb = max(hazeColor.rgb, minLight.rgb);
|
|
|
|
|
|
fragColor.rgb = mix(hazeColor +secondary_light * fog_backscatter(mvisibility), fragColor.rgb,transmission);
|
|
|
|
fragColor.rgb = filter_combined(fragColor.rgb);
|
|
|
|
gl_FragColor = fragColor;
|
|
|
|
}
|