1
0
Fork 0
fgdata/Shaders/HDR/atmos-sky-view.frag

114 lines
4.1 KiB
GLSL

// An implementation of Sébastien Hillaire's "A Scalable and Production Ready
// Sky and Atmosphere Rendering Technique".
//
// This shader generates the sky-view texture. Since the sky generally has low
// frequency detail, it's possible to pre-compute it on a small texture and
// sample it later when rendering the skydome. This effectively bypasses the
// need for raymarching on screen-sized textures, which is specially costly on
// larger resolutions like 4K.
#version 330 core
out vec3 fragColor;
in vec2 texCoord;
uniform vec3 fg_CameraPositionCart;
uniform vec3 fg_CameraPositionGeod;
uniform vec3 fg_SunDirectionWorld;
uniform sampler2D transmittance_lut;
uniform sampler2D multiscattering_lut;
const float PI = 3.141592653;
const float ATMOSPHERE_RADIUS = 6471e3;
const int SCATTERING_SAMPLES = 32;
float raySphereIntersection(vec3 ro, vec3 rd, float radius);
vec3 sampleMedium(in float height,
out float mieScattering, out float mieAbsorption,
out vec3 rayleighScattering, out vec3 ozoneAbsorption);
float miePhaseFunction(float cosTheta);
float rayleighPhaseFunction(float cosTheta);
vec3 getValueFromLUT(sampler2D lut, float sunCosTheta, float normalizedHeight);
void main()
{
// Always leave the sun right in the middle of the texture as the skydome
// model is already being rotated.
vec3 up = normalize(fg_CameraPositionCart);
float sunCosTheta = dot(fg_SunDirectionWorld, up);
vec3 sunDir = vec3(-sqrt(1.0 - sunCosTheta*sunCosTheta), 0.0, sunCosTheta);
float azimuth = 2.0 * PI * texCoord.x; // [0, 2pi]
// Apply a non-linear transformation to the elevation to dedicate more
// texels to the horizon, which is where having more detail matters.
float l = texCoord.y * 2.0 - 1.0;
float elev = l*l * sign(l) * PI * 0.5; // [-pi/2, pi/2]
vec3 rayDir = vec3(cos(elev) * cos(azimuth), cos(elev) * sin(azimuth), sin(elev));
float cameraHeight = length(fg_CameraPositionCart);
float earthRadius = cameraHeight - max(fg_CameraPositionGeod.z, 0.0);
vec3 rayOrigin = vec3(0.0, 0.0, cameraHeight);
float atmosDist = raySphereIntersection(rayOrigin, rayDir, ATMOSPHERE_RADIUS);
float groundDist = raySphereIntersection(rayOrigin, rayDir, earthRadius);
float tmax;
if (cameraHeight < ATMOSPHERE_RADIUS) {
// We are inside the atmosphere
if (groundDist < 0.0) {
// No ground collision, use the distance to the outer atmosphere
tmax = atmosDist;
} else {
// Use the distance to the ground
tmax = groundDist;
}
} else {
// We are in outer space, skip
fragColor = vec3(0.0);
return;
}
float cosTheta = dot(rayDir, sunDir);
float miePhase = miePhaseFunction(cosTheta);
float rayleighPhase = rayleighPhaseFunction(-cosTheta);
vec3 L = vec3(0.0);
vec3 throughput = vec3(1.0);
float t = 0.0;
for (int i = 0; i < SCATTERING_SAMPLES; ++i) {
float newT = ((float(i) + 0.3) / SCATTERING_SAMPLES) * tmax;
float dt = newT - t;
t = newT;
vec3 samplePos = rayOrigin + rayDir * t;
float height = length(samplePos) - earthRadius;
float normalizedHeight = height / (ATMOSPHERE_RADIUS - earthRadius);
float mieScattering, mieAbsorption;
vec3 rayleighScattering, ozoneAbsorption;
vec3 extinction = sampleMedium(height, mieScattering, mieAbsorption,
rayleighScattering, ozoneAbsorption);
vec3 sampleTransmittance = exp(-dt*extinction);
vec3 sunTransmittance = getValueFromLUT(
transmittance_lut, sunCosTheta, normalizedHeight);
vec3 multiscattering = getValueFromLUT(
multiscattering_lut, sunCosTheta, normalizedHeight);
vec3 S =
rayleighScattering * (rayleighPhase * sunTransmittance + multiscattering) +
mieScattering * (miePhase * sunTransmittance + multiscattering);
vec3 Sint = (S - S * sampleTransmittance) / extinction;
L += throughput * Sint;
throughput *= sampleTransmittance;
}
fragColor = L;
}