3995 lines
121 KiB
Text
3995 lines
121 KiB
Text
|
|
########################################################
|
|
# routines to set up, transform and manage local weather
|
|
# Thorsten Renk, October 2010
|
|
# thermal model by Patrice Poly, April 2010
|
|
########################################################
|
|
|
|
# function purpose
|
|
#
|
|
# calc_geo to compute the latitude to meter conversion
|
|
# calc_d_sq to compute a distance square in local Cartesian approximation
|
|
# effect_volume_loop to check if the aircraft has entered an effect volume
|
|
# assemble_effect_array to store the size of the effect volume array
|
|
# add_vectors to add two vectors in polar coordinates
|
|
# wind_altitude_interpolation to interpolate aloft winds in altitude
|
|
# wind_interpolation to interpolate aloft winds in altitude and position
|
|
# get_slowdown_fraction to compute the effect of boundary layer wind slowdown
|
|
# interpolation_loop to continuously interpolate weather parameters between stations
|
|
# thermal_lift_start to start the detailed thermal model
|
|
# thermal_lift_loop to manage the detailed thermal lift model
|
|
# thermal_lift_stop to end the detailed thermal lift model
|
|
# wave_lift_start to start the detailed wave lift model
|
|
# wave_lift_loop to manage the detailed wave lift model
|
|
# wave_lift_stop to end the detailed wave lift model
|
|
# effect_volume_start to manage parameters when an effect volume is entered
|
|
# effect_volume_stop to manage parameters when an effect volume is left
|
|
# ts_factor (helper function for thermal lift model)
|
|
# tl_factor (helper function for thermal lift model)
|
|
# calcLift_max to calculate the maximal available thermal lift for given altitude
|
|
# calcLift to calculate the thermal lift at aircraft position
|
|
# calcWaveLift to calculate wave lift at aircraft position
|
|
# select_cloud_model to select a path to the cloud model, given the cloud type and subtype
|
|
# create_cloud_vec to place a single cloud into an array to be written later
|
|
# clear_all to remove all clouds, effect volumes and weather stations and stop loops
|
|
# create_detailed_cumulus_cloud to place multiple cloudlets into a box based on a size parameter
|
|
# create_cumulonimbus_cloud to place multiple cloudlets into a box
|
|
# create_cumosys wrapper to place a convective cloud system based on terrain coverage
|
|
# cumulus_loop to place 25 Cumulus clouds each frame
|
|
# create_cumulus to place a convective cloud system based on terrain coverage
|
|
# recreate_cumulus to respawn convective clouds as part of the convective dynamics algorithm
|
|
# cumulus_exclusion_layer to create a layer with 'holes' left for thunderstorm placement
|
|
# create_rise_clouds to create a barrier cloud system
|
|
# create_streak to create a cloud streak
|
|
# create_layer to create a cloud layer with optional precipitation
|
|
# create_hollow_layer to create a cloud layer in a hollow cylinder (better for performance)
|
|
# create_cloudbox to create a sophisticated cumulus cloud with different textures (experimental)
|
|
# terrain_presampling_start to initialize terrain presampling
|
|
# terrain_presampling_loop to sample 25 terrain points per frame
|
|
# terrain_presampling to sample terrain elevation at a random point within specified area
|
|
# terrain_presampling_analysis to analyze terrain presampling results
|
|
# wave_detection_loop to detect if and where wave lift should be placed (currently unfinished)
|
|
# get_convective_altitude to determine the altitude at which a Cumulus cloud is placed
|
|
# manage presampling to take proper action when a presampling call has been finished
|
|
# set_wind_model_flag to convert the wind model string into an integer flag
|
|
# set_texture_mix to determine the texture mix between smooth and rough cloud appearance
|
|
# create_effect_volume to create an effect volume
|
|
# set_weather_station to specify a weather station for interpolation
|
|
# set_wind_ipoint to set an aloft wind interpolation point
|
|
# showDialog to pop up a dialog window
|
|
# readFlags to read configuration flags from the property tree into Nasal variables at startup
|
|
# streak_wrapper wrapper to execute streak from menu
|
|
# convection wrapper wrapper to execute convective clouds from menu
|
|
# barrier wrapper wrapper to execute barrier clouds from menu
|
|
# single_cloud_wrapper wrapper to create single cloud from menu
|
|
# layer wrapper wrapper to create layer from menu
|
|
# box wrapper wrapper to create a cloudbox (experimental)
|
|
# set_aloft wrapper wrapper to create aloft winds from menu
|
|
# set_tile to call a weather tile creation from menu
|
|
# startup to prepare the package at startup
|
|
# test to serve as a testbed for new functions
|
|
|
|
# object purpose
|
|
|
|
# weatherStation to store info about weather conditions
|
|
# effectVolume to store effect volume info and provide methods to move and time-evolve effect volumes
|
|
# thermalLift to store thermal info and provide methods to move and time-evolve a thermal
|
|
# waveLift to store wave info
|
|
|
|
###################################
|
|
# geospatial helper functions
|
|
###################################
|
|
|
|
var calc_geo = func(clat) {
|
|
|
|
lon_to_m = math.cos(clat*math.pi/180.0) * lat_to_m;
|
|
m_to_lon = 1.0/lon_to_m;
|
|
|
|
weather_dynamics.lon_to_m = lon_to_m;
|
|
weather_dynamics.m_to_lon = m_to_lon;
|
|
|
|
}
|
|
|
|
|
|
var calc_d_sq = func (lat1, lon1, lat2, lon2) {
|
|
|
|
var x = (lat1 - lat2) * lat_to_m;
|
|
var y = (lon1 - lon2) * lon_to_m;
|
|
|
|
return (x*x + y*y);
|
|
}
|
|
|
|
|
|
###################################
|
|
# effect volume management loop
|
|
###################################
|
|
|
|
var effect_volume_loop = func (index, n_active) {
|
|
|
|
var n = 25;
|
|
|
|
|
|
var esize = n_effectVolumeArray;
|
|
|
|
var viewpos = geo.aircraft_position();
|
|
var active_counter = n_active;
|
|
|
|
var i_max = index + n;
|
|
if (i_max > esize) {i_max = esize;}
|
|
|
|
for (var i = index; i < i_max; i = i+1)
|
|
{
|
|
var e = effectVolumeArray[i];
|
|
|
|
var flag = 0; # default assumption is that we're not in the volume
|
|
|
|
var ealt_min = e.alt_low * ft_to_m;
|
|
var ealt_max = e.alt_high * ft_to_m;
|
|
|
|
|
|
if ((viewpos.alt() > ealt_min) and (viewpos.alt() < ealt_max)) # we are in the correct alt range
|
|
{
|
|
# so we load geometry next
|
|
|
|
var geometry = e.geometry;
|
|
var elat = e.lat;
|
|
var elon = e.lon;
|
|
var rx = e.r1;
|
|
|
|
if (geometry == 1) # we have a cylinder
|
|
{
|
|
var d_sq = calc_d_sq(viewpos.lat(), viewpos.lon(), elat, elon);
|
|
if (d_sq < (rx*rx)) {flag =1;}
|
|
}
|
|
else if (geometry == 2) # we have an elliptic shape
|
|
{
|
|
# get orientation
|
|
|
|
var ry = e.r2;
|
|
var phi = e.phi;
|
|
|
|
phi = phi * math.pi/180.0;
|
|
|
|
|
|
# first get unrotated coordinates
|
|
var xx = (viewpos.lon() - elon) * lon_to_m;
|
|
var yy = (viewpos.lat() - elat) * lat_to_m;
|
|
|
|
# then rotate to align with the shape
|
|
var x = xx * math.cos(phi) - yy * math.sin(phi);
|
|
var y = yy * math.cos(phi) + xx * math.sin(phi);
|
|
|
|
# then check elliptic condition
|
|
if ((x*x)/(rx*rx) + (y*y)/(ry*ry) <1) {flag = 1;}
|
|
}
|
|
else if (geometry == 3) # we have a rectangular shape
|
|
{
|
|
# get orientation
|
|
|
|
var ry = e.r2;
|
|
var phi = e.phi;
|
|
|
|
phi = phi * math.pi/180.0;
|
|
# first get unrotated coordinates
|
|
var xx = (viewpos.lon() - elon) * lon_to_m;
|
|
var yy = (viewpos.lat() - elat) * lat_to_m;
|
|
# then rotate to align with the shape
|
|
var x = xx * math.cos(phi) - yy * math.sin(phi);
|
|
var y = yy * math.cos(phi) + xx * math.sin(phi);
|
|
# then check rectangle condition
|
|
if ((x>-rx) and (x<rx) and (y>-ry) and (y<ry)) {flag = 1;}
|
|
}
|
|
} # end if altitude
|
|
|
|
|
|
# if flag ==1 at this point, we are inside the effect volume
|
|
# but we only need to take action on entering and leaving, so we check also active_flag
|
|
|
|
# if (flag==1) {print("Inside volume");}
|
|
|
|
var active_flag = e.active_flag;
|
|
|
|
if ((flag==1) and (active_flag ==0)) # we just entered the node
|
|
{
|
|
#print("Entered volume");
|
|
e.active_flag = 1;
|
|
effect_volume_start(e);
|
|
}
|
|
else if ((flag==0) and (active_flag ==1)) # we left an active node
|
|
{
|
|
#print("Left volume!");
|
|
e.active_flag = 0;
|
|
effect_volume_stop(e);
|
|
}
|
|
if (flag==1) {active_counter = active_counter + 1;} # we still count the active volumes
|
|
|
|
} # end foreach
|
|
|
|
# at this point, all active effect counters should have been set to zero if we're outside all volumes
|
|
# however there seem to be rare configurations of overlapping volumes for which this doesn't happen
|
|
# therefore we zero them for redundancy here so that the interpolation loop can take over
|
|
# and set the properties correctly for outside
|
|
|
|
|
|
if (i == esize) # we check the number of actives and reset all counters
|
|
{
|
|
if (active_counter == 0)
|
|
{
|
|
var vNode = props.globals.getNode("local-weather/effect-volumes", 1);
|
|
vNode.getChild("number-active-vis").setValue(0);
|
|
vNode.getChild("number-active-snow").setValue(0);
|
|
vNode.getChild("number-active-rain").setValue(0);
|
|
vNode.getChild("number-active-lift").setValue(0);
|
|
vNode.getChild("number-active-turb").setValue(0);
|
|
vNode.getChild("number-active-sat").setValue(0);
|
|
}
|
|
#print("n_active: ", active_counter);
|
|
active_counter = 0; i = 0;
|
|
}
|
|
|
|
# and we repeat the loop as long as the control flag is set
|
|
|
|
|
|
if (getprop(lw~"effect-loop-flag") ==1) {settimer( func {effect_volume_loop(i, active_counter); },0);}
|
|
}
|
|
|
|
|
|
###################################
|
|
# assemble effect volume array
|
|
###################################
|
|
|
|
|
|
var assemble_effect_array = func {
|
|
|
|
n_effectVolumeArray = size(effectVolumeArray);
|
|
}
|
|
|
|
|
|
|
|
###################################
|
|
# vector addition
|
|
###################################
|
|
|
|
var add_vectors = func (phi1, r1, phi2, r2) {
|
|
|
|
phi1 = phi1 * math.pi/180.0;
|
|
phi2 = phi2 * math.pi/180.0;
|
|
|
|
var x1 = r1 * math.sin(phi1);
|
|
var x2 = r2 * math.sin(phi2);
|
|
|
|
var y1 = r1 * math.cos(phi1);
|
|
var y2 = r2 * math.cos(phi2);
|
|
|
|
var x = x1+x2;
|
|
var y = y1+y2;
|
|
|
|
var phi = math.atan2(x,y) * 180.0/math.pi;
|
|
var r = math.sqrt(x*x + y*y);
|
|
|
|
var vec = [];
|
|
|
|
append(vec, phi);
|
|
append(vec,r);
|
|
|
|
return vec;
|
|
}
|
|
|
|
|
|
###################################
|
|
# windfield altitude interpolation
|
|
###################################
|
|
|
|
|
|
var wind_altitude_interpolation = func (altitude, w) {
|
|
|
|
if (altitude < wind_altitude_array[0]) {var alt_wind = wind_altitude_array[0];}
|
|
else if (altitude > wind_altitude_array[8]) {var alt_wind = 0.99* wind_altitude_array[8];}
|
|
else {alt_wind = altitude;}
|
|
|
|
for (var i = 0; i<9; i=i+1)
|
|
{if (alt_wind < wind_altitude_array[i]) {break;}}
|
|
|
|
|
|
var altNodeMin = w.getChild("altitude",i-1);
|
|
var altNodeMax = w.getChild("altitude",i);
|
|
|
|
var vmin = altNodeMin.getNode("windspeed-kt").getValue();
|
|
var vmax = altNodeMax.getNode("windspeed-kt").getValue();
|
|
|
|
var dir_min = altNodeMin.getNode("wind-from-heading-deg").getValue();
|
|
var dir_max = altNodeMax.getNode("wind-from-heading-deg").getValue();
|
|
|
|
var f = (alt_wind - wind_altitude_array[i-1])/(wind_altitude_array[i] - wind_altitude_array[i-1]);
|
|
|
|
var res = add_vectors(dir_min, (1-f) * vmin, dir_max, f * vmax);
|
|
|
|
return res;
|
|
}
|
|
|
|
var wind_interpolation = func (lat, lon, alt) {
|
|
|
|
var windNodes = props.globals.getNode(lw~"interpolation").getChildren("wind");
|
|
var sum_norm = 0;
|
|
var sum_wind = [0,0];
|
|
|
|
|
|
foreach (var w; windNodes) {
|
|
|
|
var wlat = w.getNode("latitude-deg").getValue();
|
|
var wlon = w.getNode("longitude-deg").getValue();
|
|
|
|
var wpos = geo.Coord.new();
|
|
wpos.set_latlon(wlat,wlon,1000.0);
|
|
|
|
var ppos = geo.Coord.new();
|
|
ppos.set_latlon(lat,lon,1000.0);
|
|
|
|
var d = ppos.distance_to(wpos);
|
|
if (d <100.0) {d = 100.0;} # to prevent singularity at zero
|
|
|
|
sum_norm = sum_norm + 1./d;
|
|
|
|
var res = wind_altitude_interpolation(alt,w);
|
|
sum_wind = add_vectors(sum_wind[0], sum_wind[1], res[0], res[1]/d);
|
|
|
|
}
|
|
|
|
sum_wind[1] = sum_wind[1] /sum_norm;
|
|
|
|
return sum_wind;
|
|
}
|
|
|
|
|
|
###################################
|
|
# boundary layer computations
|
|
###################################
|
|
|
|
|
|
var get_slowdown_fraction = func {
|
|
|
|
var tile_index = getprop(lw~"tiles/tile[4]/tile-index");
|
|
var altitude_agl = getprop("/position/altitude-agl-ft");
|
|
var altitude = getprop("/position/altitude-ft");
|
|
|
|
|
|
|
|
if (presampling_flag == 0)
|
|
{
|
|
var base_layer_thickness = 600.0;
|
|
var f_slow = 1.0/3.0;
|
|
}
|
|
else
|
|
{
|
|
var alt_median = alt_50_array[tile_index - 1];
|
|
var alt_difference = alt_median - (altitude - altitude_agl);
|
|
var base_layer_thickness = 150.0;
|
|
|
|
# get the boundary layer size dependent on terrain altitude above terrain median
|
|
|
|
if (alt_difference > 0.0) # we're low and the boundary layer grows
|
|
{var boundary_alt = base_layer_thickness + 0.3 * alt_difference;}
|
|
else # the boundary layer shrinks
|
|
{var boundary_alt = base_layer_thickness + 0.1 * alt_difference;}
|
|
|
|
if (boundary_alt < 50.0){boundary_alt = 50.0;}
|
|
if (boundary_alt > 3000.0) {boundary_alt = 3000.0;}
|
|
|
|
# get the boundary effect as a function of bounday layer size
|
|
|
|
var f_slow = 1.0 - (0.2 + 0.17 * math.ln(boundary_alt/base_layer_thickness));
|
|
}
|
|
|
|
print("Boundary layer thickness: ",base_layer_thickness);
|
|
print("Boundary layer slowdown: ", f_slow);
|
|
|
|
return f_slow;
|
|
}
|
|
|
|
|
|
###################################
|
|
# interpolation management loop
|
|
###################################
|
|
|
|
var interpolation_loop = func {
|
|
|
|
var iNode = props.globals.getNode(lw~"interpolation", 1);
|
|
var cNode = props.globals.getNode(lw~"current", 1);
|
|
var viewpos = geo.aircraft_position();
|
|
|
|
var sum_vis = 0.0;
|
|
var sum_T = 0.0;
|
|
var sum_p = 0.0;
|
|
var sum_D = 0.0;
|
|
var sum_norm = 0.0;
|
|
|
|
|
|
# get an inverse distance weighted average from all defined weather stations
|
|
|
|
|
|
var n_stations = size(weatherStationArray);
|
|
|
|
for (var i = 0; i < n_stations; i=i+1) {
|
|
|
|
s = weatherStationArray[i];
|
|
|
|
|
|
var stpos = geo.Coord.new();
|
|
stpos.set_latlon(s.lat,s.lon,0.0);
|
|
|
|
var d = viewpos.distance_to(stpos);
|
|
if (d <100.0) {d = 100.0;} # to prevent singularity at zero
|
|
|
|
sum_norm = sum_norm + 1./d * s.weight;
|
|
|
|
|
|
sum_vis = sum_vis + (s.vis/d) * s.weight;
|
|
sum_T = sum_T + (s.T/d) * s.weight;
|
|
sum_D = sum_D + (s.D/d) * s.weight;
|
|
sum_p = sum_p + (s.p/d) * s.weight;
|
|
|
|
# gradually fade in the interpolation weight of newly added stations to
|
|
# avoid sudden jumps
|
|
|
|
if (s.weight < 1.0) {s.weight = s.weight + 0.1;}
|
|
|
|
# automatically delete stations out of range
|
|
# take care not to unload if weird values appear for a moment
|
|
# never unload if only one station left
|
|
if ((d > 120000.0) and (d<140000.0) and (n_stations > 1))
|
|
{
|
|
if (debug_output_flag == 1)
|
|
{print("Distance to weather station ", d, " m, unloading ...", i);}
|
|
weatherStationArray = weather_tile_management.delete_from_vector(weatherStationArray,i);
|
|
i = i-1; n_stations = n_stations -1;
|
|
}
|
|
}
|
|
|
|
setprop(lwi~"station-number", i);
|
|
|
|
|
|
|
|
var vis = sum_vis/sum_norm;
|
|
var p = sum_p/sum_norm;
|
|
var D = sum_D/sum_norm;
|
|
var T = sum_T/sum_norm;
|
|
|
|
|
|
# a simple altitude model for visibility - increase it with increasing altitude
|
|
|
|
var altitude = getprop("position/altitude-ft");
|
|
|
|
vis = vis + 0.5 * altitude;
|
|
|
|
if (vis > 0.0) {iNode.getNode("visibility-m",1).setValue(vis);} # a redundancy check
|
|
iNode.getNode("temperature-degc",1).setValue(T);
|
|
iNode.getNode("dewpoint-degc",1).setValue(D);
|
|
if (p>0.0) {iNode.getNode("pressure-sea-level-inhg",1).setValue(p);} # a redundancy check
|
|
iNode.getNode("turbulence",1).setValue(0.0);
|
|
|
|
# now check if an effect volume writes the property and set only if not
|
|
|
|
flag = props.globals.getNode("local-weather/effect-volumes/number-active-vis").getValue();
|
|
if ((flag ==0) and (vis > 0.0))
|
|
{
|
|
cNode.getNode("visibility-m").setValue(vis);
|
|
compat_layer.setVisibility(vis);
|
|
}
|
|
|
|
flag = props.globals.getNode("local-weather/effect-volumes/number-active-turb").getValue();
|
|
if ((flag ==0))
|
|
{
|
|
cNode.getNode("turbulence").setValue(0.0);
|
|
compat_layer.setTurbulence(0.0);
|
|
}
|
|
|
|
|
|
flag = props.globals.getNode("local-weather/effect-volumes/number-active-lift").getValue();
|
|
if (flag ==0)
|
|
{
|
|
cNode.getNode("thermal-lift").setValue(0.0);
|
|
}
|
|
|
|
# no need to check for these, as they are not modelled in effect volumes
|
|
|
|
cNode.getNode("temperature-degc",1).setValue(T);
|
|
compat_layer.setTemperature(T);
|
|
|
|
cNode.getNode("dewpoint-degc",1).setValue(D);
|
|
compat_layer.setDewpoint(D);
|
|
|
|
if (p>0.0) {cNode.getNode("pressure-sea-level-inhg",1).setValue(p); compat_layer.setPressure(p);}
|
|
|
|
|
|
# now determine the local wind
|
|
|
|
var tile_index = props.globals.getNode(lw~"tiles").getChild("tile",4).getNode("tile-index").getValue();
|
|
|
|
if (wind_model_flag ==1) # constant
|
|
{
|
|
var winddir = weather_dynamics.tile_wind_direction[0];
|
|
var windspeed = weather_dynamics.tile_wind_speed[0];
|
|
}
|
|
else if (wind_model_flag ==2) # constant in tile
|
|
{
|
|
var winddir = weather_dynamics.tile_wind_direction[tile_index-1];
|
|
var windspeed = weather_dynamics.tile_wind_speed[tile_index-1];
|
|
}
|
|
else if (wind_model_flag ==3) # aloft interpolated, constant in tiles
|
|
{
|
|
var w = props.globals.getNode(lw~"interpolation").getChild("wind",0);
|
|
var res = wind_altitude_interpolation(altitude,w);
|
|
var winddir = res[0];
|
|
var windspeed = res[1];
|
|
}
|
|
else if (wind_model_flag == 5) # aloft waypoint interpolated
|
|
{
|
|
var res = wind_interpolation(viewpos.lat(), viewpos.lon(), viewpos.alt());
|
|
|
|
var winddir = res[0];
|
|
var windspeed = res[1];
|
|
}
|
|
|
|
|
|
# now do the boundary layer computations
|
|
|
|
var altitude_agl = getprop("/position/altitude-agl-ft");
|
|
|
|
|
|
if (presampling_flag == 0)
|
|
{
|
|
var boundary_alt = 600.0;
|
|
var windspeed_ground = windspeed/3.0;
|
|
|
|
if (altitude_agl < boundary_alt)
|
|
{var windspeed_current = windspeed_ground + 2.0 * windspeed_ground * (altitude_agl/boundary_alt);}
|
|
else
|
|
{var windspeed_current = windspeed;}
|
|
}
|
|
else
|
|
{
|
|
var alt_median = alt_50_array[tile_index - 1];
|
|
var alt_difference = alt_median - (altitude - altitude_agl);
|
|
var base_layer_thickness = 150.0;
|
|
|
|
# get the boundary layer size dependent on terrain altitude above terrain median
|
|
|
|
if (alt_difference > 0.0) # we're low and the boundary layer grows
|
|
{var boundary_alt = base_layer_thickness + 0.3 * alt_difference;}
|
|
else # the boundary layer shrinks
|
|
{var boundary_alt = base_layer_thickness + 0.1 * alt_difference;}
|
|
|
|
if (boundary_alt < 50.0){boundary_alt = 50.0;}
|
|
if (boundary_alt > 3000.0) {boundary_alt = 3000.0;}
|
|
|
|
# get the boundary effect as a function of bounday layer size
|
|
|
|
var f_min = 0.2 + 0.17 * math.ln(boundary_alt/base_layer_thickness);
|
|
|
|
|
|
if (altitude_agl < boundary_alt)
|
|
{
|
|
var windspeed_current = (1-f_min) * windspeed + f_min * windspeed * (altitude_agl/boundary_alt);
|
|
}
|
|
else
|
|
{var windspeed_current = windspeed;}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
compat_layer.setWindSmoothly(winddir, windspeed_current);
|
|
|
|
iNode.getNode("wind-from-heading-deg").setValue(winddir);
|
|
iNode.getNode("wind-speed-kt").setValue(windspeed_current);
|
|
|
|
cNode.getNode("wind-from-heading-deg").setValue(winddir);
|
|
cNode.getNode("wind-speed-kt").setValue(windspeed_current);
|
|
|
|
|
|
if (getprop(lw~"interpolation-loop-flag") ==1) {settimer(interpolation_loop, 1.0);}
|
|
|
|
}
|
|
|
|
###################################
|
|
# thermal lift loop startup
|
|
###################################
|
|
|
|
var thermal_lift_start = func (ev) {
|
|
|
|
# copy the properties from effect volume to the lift object
|
|
|
|
l = thermalLift.new(ev.lat, ev.lon, ev.radius, ev.height, ev.cn, ev.sh, ev.max_lift, ev.f_lift_radius);
|
|
|
|
l.index = ev.index;
|
|
|
|
if (dynamics_flag == 1)
|
|
{
|
|
l.timestamp = weather_dynamics.time_lw;
|
|
if (dynamical_convection_flag == 1)
|
|
{
|
|
l.flt = ev.flt;
|
|
l.evolution_timestamp = ev.evolution_timestamp;
|
|
}
|
|
}
|
|
|
|
|
|
|
|
thermal = l;
|
|
|
|
if (debug_output_flag == 1)
|
|
{
|
|
print("Entering thermal lift...");
|
|
print("strength: ", thermal.max_lift, " radius: ", thermal.radius);
|
|
if (dynamical_convection_flag ==1)
|
|
{print("fractional lifetime: ", thermal.flt);}
|
|
|
|
}
|
|
|
|
# and start the lift loop, unless another one is already running
|
|
# so we block overlapping calls
|
|
|
|
if (getprop(lw~"lift-loop-flag") == 0)
|
|
{setprop(lw~"lift-loop-flag",1); settimer(thermal_lift_loop,0);}
|
|
|
|
}
|
|
|
|
###################################
|
|
# thermal lift loop
|
|
###################################
|
|
|
|
var thermal_lift_loop = func {
|
|
|
|
var apos = geo.aircraft_position();
|
|
|
|
var tlat = thermal.lat;
|
|
var tlon = thermal.lon;
|
|
|
|
var tpos = geo.Coord.new();
|
|
tpos.set_latlon(tlat,tlon,0.0);
|
|
|
|
var d = apos.distance_to(tpos);
|
|
var alt = getprop("position/altitude-ft");
|
|
|
|
if (dynamical_convection_flag == 1)
|
|
{var flt = thermal.flt;}
|
|
else
|
|
{var flt = 0.5;}
|
|
|
|
var lift = calcLift(d, alt, thermal.radius, thermal.height, thermal.cn, thermal.sh, thermal.max_lift, thermal.f_lift_radius, flt);
|
|
|
|
if (getprop(lw~"wave-loop-flag") ==1)
|
|
{
|
|
lift = lift + getprop(lw~"current/wave-lift");
|
|
}
|
|
|
|
|
|
setprop(lw~"current/thermal-lift",lift);
|
|
compat_layer.setLift(lift);
|
|
|
|
# if dynamics is on, move the thermal and occasionally compute altitude and age
|
|
|
|
if (dynamics_flag == 1)
|
|
{
|
|
thermal.move();
|
|
|
|
if ((rand() < 0.01) and (presampling_flag == 1)) # check every 100 frames
|
|
{
|
|
if (dynamical_convection_flag == 1)
|
|
{
|
|
thermal.correct_altitude_and_age();
|
|
if (thermal.flt > 1.1)
|
|
{thermal_lift_stop();}
|
|
}
|
|
else
|
|
{
|
|
thermal.correct_altitude();
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
if (getprop(lw~"lift-loop-flag") ==1) {settimer(thermal_lift_loop, 0);}
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
###################################
|
|
# thermal lift loop stop
|
|
###################################
|
|
|
|
var thermal_lift_stop = func {
|
|
|
|
setprop(lw~"lift-loop-flag",0);
|
|
setprop(lw~"current/thermal-lift",0.0);
|
|
compat_layer.setLift(0.0);
|
|
|
|
if (debug_output_flag == 1)
|
|
{
|
|
print("Leaving thermal lift...");
|
|
}
|
|
|
|
}
|
|
|
|
|
|
###################################
|
|
# wave lift loop startup
|
|
###################################
|
|
|
|
var wave_lift_start = func (ev) {
|
|
|
|
# copy the properties from effect volume to the wave object
|
|
|
|
|
|
w = waveLift.new (ev.lat, ev.lon, ev.r1, ev.r2, ev.phi, ev.height, ev.max_lift);
|
|
w.index = ev.index;
|
|
wave = w;
|
|
|
|
# and start the lift loop, unless another one is already running
|
|
# so we block overlapping calls
|
|
|
|
if (getprop(lw~"wave-loop-flag") == 0)
|
|
{setprop(lw~"wave-loop-flag",1); settimer(wave_lift_loop,0);}
|
|
|
|
}
|
|
|
|
###################################
|
|
# wave lift loop
|
|
###################################
|
|
|
|
var wave_lift_loop = func {
|
|
|
|
var lat = getprop("position/latitude-deg");
|
|
var lon = getprop("position/longitude-deg");
|
|
var alt = getprop("position/altitude-ft");
|
|
|
|
|
|
var phi = wave.phi * math.pi/180.0;
|
|
|
|
var xx = (lon - wave.lon) * lon_to_m;
|
|
var yy = (lat - wave.lat) * lat_to_m;
|
|
|
|
var x = xx * math.cos(phi) - yy * math.sin(phi);
|
|
var y = yy * math.cos(phi) + xx * math.sin(phi);
|
|
|
|
var lift = calcWaveLift(x,y,alt);
|
|
|
|
# check if we are in a thermal, if so set wave lift and let the thermal lift loop add that
|
|
|
|
if (getprop(lw~"lift-loop-flag") ==1)
|
|
{
|
|
setprop(lw~"current/wave-lift",lift);
|
|
}
|
|
else
|
|
{
|
|
setprop(lw~"current/thermal-lift",lift);
|
|
}
|
|
|
|
if (getprop(lw~"wave-loop-flag") ==1) {settimer(wave_lift_loop, 0);}
|
|
}
|
|
|
|
|
|
|
|
|
|
###################################
|
|
# wave lift loop stop
|
|
###################################
|
|
|
|
var wave_lift_stop = func {
|
|
|
|
setprop(lw~"wave-loop-flag",0);
|
|
setprop(lw~"current/thermal-lift",0.0);
|
|
}
|
|
|
|
|
|
|
|
####################################
|
|
# action taken when in effect volume
|
|
####################################
|
|
|
|
var effect_volume_start = func (ev) {
|
|
|
|
var cNode = props.globals.getNode(lw~"current");
|
|
|
|
|
|
if (ev.vis_flag ==1)
|
|
{
|
|
# first store the current setting in case we need to restore on leaving
|
|
|
|
var vis = ev.vis;
|
|
ev.vis_r = cNode.getNode("visibility-m").getValue();
|
|
|
|
# then set the new value in current and execute change
|
|
cNode.getNode("visibility-m").setValue(vis);
|
|
compat_layer.setVisibility(vis);
|
|
|
|
# then count the number of active volumes on entry (we need that to determine
|
|
# what to do on exit)
|
|
ev.n_entry_vis = getprop(lw~"effect-volumes/number-active-vis");
|
|
|
|
# and add to the counter
|
|
setprop(lw~"effect-volumes/number-active-vis",getprop(lw~"effect-volumes/number-active-vis")+1);
|
|
}
|
|
|
|
#if (ev.getNode("effects/rain-flag", 1).getValue()==1)
|
|
if (ev.rain_flag == 1)
|
|
{
|
|
var rain = ev.rain;
|
|
ev.rain_r = cNode.getNode("rain-norm").getValue();
|
|
cNode.getNode("rain-norm").setValue(rain);
|
|
compat_layer.setRain(rain);
|
|
ev.n_entry_rain = getprop(lw~"effect-volumes/number-active-rain");
|
|
setprop(lw~"effect-volumes/number-active-rain",getprop(lw~"effect-volumes/number-active-rain")+1);
|
|
}
|
|
if (ev.snow_flag == 1)
|
|
{
|
|
var snow = ev.snow;
|
|
ev.snow_r = cNode.getNode("snow-norm").getValue();
|
|
cNode.getNode("snow-norm").setValue(snow);
|
|
compat_layer.setSnow(snow);
|
|
ev.n_entry_snow = getprop(lw~"effect-volumes/number-active-snow");
|
|
setprop(lw~"effect-volumes/number-active-snow",getprop(lw~"effect-volumes/number-active-snow")+1);
|
|
}
|
|
if (ev.turb_flag == 1)
|
|
{
|
|
var turbulence = ev.turb;
|
|
ev.turb_r = cNode.getNode("turbulence").getValue();
|
|
cNode.getNode("turbulence").setValue(turbulence);
|
|
compat_layer.setTurbulence(turbulence);
|
|
ev.n_entry_turb = getprop(lw~"effect-volumes/number-active-turb");
|
|
setprop(lw~"effect-volumes/number-active-turb",getprop(lw~"effect-volumes/number-active-turb")+1);
|
|
}
|
|
if (ev.sat_flag == 1)
|
|
{
|
|
var saturation = ev.sat;
|
|
ev.sat_r = getprop("/rendering/scene/saturation");
|
|
compat_layer.setLight(saturation);
|
|
ev.n_entry_sat = getprop(lw~"effect-volumes/number-active-sat");
|
|
setprop(lw~"effect-volumes/number-active-sat",getprop(lw~"effect-volumes/number-active-sat")+1);
|
|
}
|
|
|
|
if (ev.lift_flag == 1)
|
|
{
|
|
var lift = ev.lift;
|
|
ev.lift_r = cNode.getNode("thermal-lift").getValue();
|
|
cNode.getNode("thermal-lift").setValue(lift);
|
|
compat_layer.setLift(lift);
|
|
ev.n_entry_lift = getprop(lw~"effect-volumes/number-active-lift");
|
|
setprop(lw~"effect-volumes/number-active-lift",getprop(lw~"effect-volumes/number-active-lift")+1);
|
|
}
|
|
else if (ev.lift_flag == 2)
|
|
{
|
|
ev.lift_r = cNode.getNode("thermal-lift").getValue();
|
|
ev.n_entry_lift = getprop(lw~"effect-volumes/number-active-lift");
|
|
setprop(lw~"effect-volumes/number-active-lift",getprop(lw~"effect-volumes/number-active-lift")+1);
|
|
thermal_lift_start(ev);
|
|
}
|
|
else if (ev.lift_flag == 3)
|
|
{
|
|
ev.lift_r = cNode.getNode("thermal-lift").getValue();
|
|
ev.n_entry_lift = getprop(lw~"effect-volumes/number-active-lift");
|
|
setprop(lw~"effect-volumes/number-active-lift",getprop(lw~"effect-volumes/number-active-lift")+1);
|
|
wave_lift_start(ev);
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
var effect_volume_stop = func (ev) {
|
|
|
|
var cNode = props.globals.getNode(lw~"current");
|
|
|
|
|
|
if (ev.vis_flag == 1)
|
|
{
|
|
|
|
var n_active = getprop(lw~"effect-volumes/number-active-vis");
|
|
|
|
|
|
var n_entry = ev.n_entry_vis;
|
|
|
|
# if no other nodes affecting property are active, restore to outside
|
|
# else restore settings as they have been when entering the volume when the number
|
|
# of active volumes is the same as on entry (i.e. volumes are nested), otherwise
|
|
# leave property at current because new definitions are already active and should not
|
|
# be cancelled
|
|
|
|
if (n_active ==1){var vis = props.globals.getNode(lw~"interpolation/visibility-m").getValue();}
|
|
else if ((n_active -1) == n_entry) #{var vis = ev.getNode("restore/visibility-m").getValue();}
|
|
{var vis = ev.vis_r;}
|
|
else {var vis = cNode.getNode("visibility-m").getValue();}
|
|
cNode.getNode("visibility-m").setValue(vis);
|
|
compat_layer.setVisibility(vis);
|
|
|
|
# and subtract from the counter
|
|
setprop(lw~"effect-volumes/number-active-vis",getprop(lw~"effect-volumes/number-active-vis")-1);
|
|
}
|
|
if (ev.rain_flag == 1)
|
|
{
|
|
var n_active = getprop(lw~"effect-volumes/number-active-rain");
|
|
var n_entry = ev.n_entry_rain;
|
|
|
|
if (n_active ==1){var rain = props.globals.getNode(lw~"interpolation/rain-norm").getValue();}
|
|
else if ((n_active -1) == n_entry)# {var rain = ev.getNode("restore/rain-norm").getValue();}
|
|
{var rain = ev.rain_r;}
|
|
else {var rain = cNode.getNode("rain-norm").getValue();}
|
|
cNode.getNode("rain-norm").setValue(rain);
|
|
compat_layer.setRain(rain);
|
|
setprop(lw~"effect-volumes/number-active-rain",getprop(lw~"effect-volumes/number-active-rain")-1);
|
|
}
|
|
|
|
if (ev.snow_flag == 1)
|
|
{
|
|
var n_active = getprop(lw~"effect-volumes/number-active-snow");
|
|
var n_entry = ev.n_entry_snow;
|
|
|
|
if (n_active ==1){var snow = props.globals.getNode(lw~"interpolation/snow-norm").getValue();}
|
|
else if ((n_active -1) == n_entry)
|
|
{var snow = ev.snow_r;}
|
|
else {var snow = cNode.getNode("snow-norm").getValue();}
|
|
cNode.getNode("snow-norm").setValue(snow);
|
|
compat_layer.setSnow(snow);
|
|
setprop(lw~"effect-volumes/number-active-snow",getprop(lw~"effect-volumes/number-active-snow")-1);
|
|
}
|
|
|
|
if (ev.turb_flag == 1)
|
|
{
|
|
var n_active = getprop(lw~"effect-volumes/number-active-turb");
|
|
var n_entry = ev.n_entry_turb;
|
|
if (n_active ==1){var turbulence = props.globals.getNode(lw~"interpolation/turbulence").getValue();}
|
|
else if ((n_active -1) == n_entry)
|
|
{var turbulence = ev.turb_r;}
|
|
else {var turbulence = cNode.getNode("turbulence").getValue();}
|
|
cNode.getNode("turbulence").setValue(turbulence);
|
|
compat_layer.setTurbulence(turbulence);
|
|
setprop(lw~"effect-volumes/number-active-turb",getprop(lw~"effect-volumes/number-active-turb")-1);
|
|
}
|
|
|
|
if (ev.sat_flag == 1)
|
|
{
|
|
var n_active = getprop(lw~"effect-volumes/number-active-sat");
|
|
var n_entry = ev.n_entry_sat;
|
|
if (n_active ==1){var saturation = 1.0;}
|
|
else if ((n_active -1) == n_entry)
|
|
{var saturation = ev.sat_r;}
|
|
else {var saturation = getprop("/rendering/scene/saturation");}
|
|
compat_layer.setLight(saturation);
|
|
setprop(lw~"effect-volumes/number-active-sat",getprop(lw~"effect-volumes/number-active-sat")-1);
|
|
}
|
|
|
|
if (ev.lift_flag == 1)
|
|
{
|
|
var n_active = getprop(lw~"effect-volumes/number-active-lift");
|
|
var n_entry = ev.n_entry_lift;
|
|
if (n_active ==1){var lift = props.globals.getNode(lw~"interpolation/thermal-lift").getValue();}
|
|
else if ((n_active -1) == n_entry)
|
|
{var lift = ev.lift_r;}
|
|
else {var lift = cNode.getNode("thermal-lift").getValue();}
|
|
cNode.getNode("thermal-lift").setValue(lift);
|
|
compat_layer.setLift(lift);
|
|
setprop(lw~"effect-volumes/number-active-lift",getprop(lw~"effect-volumes/number-active-lift")-1);
|
|
}
|
|
else if (ev.lift_flag == 2)
|
|
{
|
|
thermal_lift_stop();
|
|
setprop(lw~"effect-volumes/number-active-lift",getprop(lw~"effect-volumes/number-active-lift")-1);
|
|
}
|
|
else if (ev.lift_flag == 3)
|
|
{
|
|
wave_lift_stop();
|
|
setprop(lw~"effect-volumes/number-active-lift",getprop(lw~"effect-volumes/number-active-lift")-1);
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
#########################################
|
|
# compute thermal lift in detailed model
|
|
#########################################
|
|
|
|
var ts_factor = func (t, alt, height) {
|
|
|
|
var t1 = 0.1; # fractional time at which lift is fully developed
|
|
var t2 = 0.9; # fractional time at which lift starts to decay
|
|
var t3 = 1.0; # fractional time at which lift is gone
|
|
|
|
# no time dependence modelled yet
|
|
# return 1.0;
|
|
|
|
|
|
|
|
var t_a = t - (alt/height) * t1 - t1;
|
|
|
|
if (t_a<0) {return 0.0;}
|
|
else if (t_a<t1) {return 0.5 + 0.5 * math.cos((1.0-t_a/t1)* math.pi);}
|
|
else if (t_a < t2) {return 1.0;}
|
|
else {return 0.5 - 0.5 * math.cos((1.0-(t2-t_a)/(t3-t2))*math.pi);}
|
|
}
|
|
|
|
var tl_factor = func (t, alt, height) {
|
|
|
|
var t1 = 0.1; # fractional time at which lift is fully developed
|
|
var t2 = 0.9; # fractional time at which lift starts to decay
|
|
var t3 = 1.0; # fractional time at which lift is gone
|
|
|
|
# no time dependence modelled yet
|
|
# return 1.0;
|
|
|
|
var t_a = t - (alt/height) * t1;
|
|
|
|
if (t_a<0) {return 0.0;}
|
|
else if (t_a<t1) {return 0.5 + 0.5 * math.cos((1.0-t_a/t1)* math.pi);}
|
|
else if (t_a < t2) {return 1.0;}
|
|
else {return 0.5 - 0.5 * math.cos((1.0-(t2-t_a)/(t3-t2))*math.pi);}
|
|
}
|
|
|
|
|
|
var calcLift_max = func (alt, max_lift, height) {
|
|
|
|
alt_agl = getprop("/position/altitude-agl-ft");
|
|
|
|
# no lift below ground
|
|
if (alt_agl < 0.0) {return 0.0;}
|
|
|
|
# lift ramps up to full within 200 m
|
|
else if (alt_agl < 200.0*m_to_ft)
|
|
{return max_lift * 0.5 * (1.0 + math.cos((1.0-alt_agl/(200.0*m_to_ft))*math.pi));}
|
|
|
|
# constant max. lift in main body
|
|
else if ((alt_agl > 200.0*m_to_ft) and (alt < height))
|
|
{return max_lift;}
|
|
|
|
# decreasing lift from cloudbase to 10% above base
|
|
else if ((alt > height ) and (alt < height*1.1))
|
|
{return max_lift * 0.5 * (1.0 - math.cos((1.0-10.0*(alt-height)/height)*math.pi));}
|
|
|
|
# no lift available above
|
|
else {return 0.0;}
|
|
}
|
|
|
|
|
|
|
|
var calcLift = func (d, alt, R, height, cn, sh, max_lift, f_lift_radius, t) {
|
|
|
|
# radius of slice at given altitude
|
|
var r_total = (cn + alt/height*(1.0-cn)) * (R - R * (1.0- sh ) * (1.0 - ((2.0*alt/height)-1.0)*((2.0*alt/height)-1.0)));
|
|
|
|
|
|
# print("r_total: ", r_total, "d: ",d);
|
|
# print("alt: ", alt, "height: ",height);
|
|
|
|
# no lift if we're outside the radius or above the thermal
|
|
if ((d > r_total) or (alt > 1.1*height)) { return 0.0; }
|
|
|
|
# fraction of radius providing lift
|
|
var r_lift = f_lift_radius * r_total;
|
|
|
|
# print("r_lift: ", r_lift);
|
|
|
|
# if we are in the sink portion, get the max. sink for this time and altitude and adjust for actual position
|
|
if ((d < r_total ) and (d > r_lift))
|
|
{
|
|
var s_max = 0.5 * calcLift_max(alt, max_lift, height) * ts_factor(t, alt, height);
|
|
# print("s_max: ", s_max);
|
|
return s_max * math.sin(math.pi * (1.0 + (d-r_lift) * (1.0/(r_total - r_lift))));
|
|
}
|
|
# else we are in the lift portion, get the max. lift for this time and altitude and adjust for actual position
|
|
else
|
|
{
|
|
var l_max = calcLift_max(alt, max_lift, height) * tl_factor(t, alt, height);
|
|
# print("l_max: ", l_max);
|
|
return l_max * math.cos(math.pi * (d/(2.0 * r_lift)));
|
|
}
|
|
}
|
|
|
|
#########################################
|
|
# compute wave lift in detailed model
|
|
#########################################
|
|
|
|
var calcWaveLift = func (x,y, alt) {
|
|
|
|
var lift = wave.max_lift * math.cos((y/wave.y) * 1.5 * math.pi);
|
|
|
|
if (abs(x)/wave.x > 0.9)
|
|
{
|
|
lift = lift * (abs(x) - 0.9 * wave.x)/(0.1 * wave.x);
|
|
}
|
|
|
|
|
|
|
|
lift = lift * 2.71828 * math.exp(-alt/wave.height) * alt/wave.height;
|
|
|
|
var alt_agl = getprop("/position/altitude-agl-ft");
|
|
|
|
if (alt_agl < 1000.0)
|
|
{
|
|
lift = lift * (alt_agl/1000.0) * (alt_agl/1000.0);
|
|
}
|
|
|
|
return lift;
|
|
}
|
|
|
|
|
|
###########################################################
|
|
# select a cloud model
|
|
###########################################################
|
|
|
|
var select_cloud_model = func(type, subtype) {
|
|
|
|
var rn = rand();
|
|
var path="Models/Weather/blank.ac";
|
|
|
|
if (type == "Cumulus"){
|
|
if (subtype == "small") {
|
|
if (rn > 0.8) {path = "Models/Weather/cumulus_small_shader1.xml";}
|
|
else if (rn > 0.6) {path = "Models/Weather/cumulus_small_shader2.xml";}
|
|
else if (rn > 0.4) {path = "Models/Weather/cumulus_small_shader3.xml";}
|
|
else if (rn > 0.2) {path = "Models/Weather/cumulus_small_shader4.xml";}
|
|
else {path = "Models/Weather/cumulus_small_shader5.xml";}
|
|
}
|
|
else if (subtype == "large") {
|
|
if (rn > 0.83) {path = "Models/Weather/cumulus_shader1.xml";}
|
|
else if (rn > 0.664) {path = "Models/Weather/cumulus_shader2.xml";}
|
|
else if (rn > 0.498) {path = "Models/Weather/cumulus_shader3.xml";}
|
|
else if (rn > 0.332) {path = "Models/Weather/cumulus_shader4.xml";}
|
|
else if (rn > 0.166) {path = "Models/Weather/cumulus_shader5.xml";}
|
|
else {path = "Models/Weather/cumulus_shader6.xml";}
|
|
}
|
|
}
|
|
else if (type == "Cumulus (cloudlet)"){
|
|
if (subtype == "small") {
|
|
if (rn > 0.875) {path = "Models/Weather/cumulus_small_sl1.xml";}
|
|
else if (rn > 0.750) {path = "Models/Weather/cumulus_small_sl2.xml";}
|
|
else if (rn > 0.625) {path = "Models/Weather/cumulus_small_sl3.xml";}
|
|
else if (rn > 0.500) {path = "Models/Weather/cumulus_small_sl4.xml";}
|
|
else if (rn > 0.375) {path = "Models/Weather/cumulus_small_sl5.xml";}
|
|
else if (rn > 0.250) {path = "Models/Weather/cumulus_small_sl6.xml";}
|
|
else if (rn > 0.125) {path = "Models/Weather/cumulus_small_sl7.xml";}
|
|
else {path = "Models/Weather/cumulus_small_sl8.xml";}
|
|
}
|
|
else if (subtype == "large") {
|
|
if (rn > 0.9) {path = "Models/Weather/cumulus_sl1.xml";}
|
|
else if (rn > 0.8) {path = "Models/Weather/cumulus_sl2.xml";}
|
|
else if (rn > 0.7) {path = "Models/Weather/cumulus_sl3.xml";}
|
|
else if (rn > 0.6) {path = "Models/Weather/cumulus_sl4.xml";}
|
|
else if (rn > 0.5) {path = "Models/Weather/cumulus_sl5.xml";}
|
|
else if (rn > 0.4) {path = "Models/Weather/cumulus_sl6.xml";}
|
|
else if (rn > 0.3) {path = "Models/Weather/cumulus_sl7.xml";}
|
|
else if (rn > 0.2) {path = "Models/Weather/cumulus_sl8.xml";}
|
|
else if (rn > 0.1) {path = "Models/Weather/cumulus_sl9.xml";}
|
|
else {path = "Models/Weather/cumulus_sl10.xml";}
|
|
}
|
|
|
|
}
|
|
else if (type == "Congestus"){
|
|
if (subtype == "small") {
|
|
if (rn > 0.9) {path = "Models/Weather/cumulus_sl1.xml";}
|
|
else if (rn > 0.8) {path = "Models/Weather/cumulus_sl2.xml";}
|
|
else if (rn > 0.7) {path = "Models/Weather/cumulus_sl3.xml";}
|
|
else if (rn > 0.6) {path = "Models/Weather/cumulus_sl4.xml";}
|
|
else if (rn > 0.5) {path = "Models/Weather/cumulus_sl5.xml";}
|
|
else if (rn > 0.4) {path = "Models/Weather/cumulus_small_sl4.xml";}
|
|
else if (rn > 0.3) {path = "Models/Weather/cumulus_small_sl5.xml";}
|
|
else if (rn > 0.2) {path = "Models/Weather/cumulus_small_sl6.xml";}
|
|
else if (rn > 0.1) {path = "Models/Weather/cumulus_small_sl7.xml";}
|
|
else {path = "Models/Weather/cumulus_small_sl8.xml";}
|
|
}
|
|
else if (subtype == "large") {
|
|
if (rn > 0.8) {path = "Models/Weather/congestus_sl1.xml";}
|
|
else if (rn > 0.6) {path = "Models/Weather/congestus_sl2.xml";}
|
|
else if (rn > 0.4) {path = "Models/Weather/congestus_sl3.xml";}
|
|
else if (rn > 0.2) {path = "Models/Weather/congestus_sl4.xml";}
|
|
else {path = "Models/Weather/congestus_sl5.xml";}
|
|
}
|
|
|
|
}
|
|
else if (type == "Stratocumulus"){
|
|
if (subtype == "small") {
|
|
if (rn > 0.8) {path = "Models/Weather/stratocumulus_small1.xml";}
|
|
else if (rn > 0.6) {path = "Models/Weather/stratocumulus_small2.xml";}
|
|
else if (rn > 0.4) {path = "Models/Weather/stratocumulus_small3.xml";}
|
|
else if (rn > 0.2) {path = "Models/Weather/stratocumulus_small4.xml";}
|
|
else {path = "Models/Weather/stratocumulus_small5.xml";}
|
|
}
|
|
else if (subtype == "large") {
|
|
if (rn > 0.8) {path = "Models/Weather/stratocumulus_sl1.xml";}
|
|
else if (rn > 0.6) {path = "Models/Weather/stratocumulus_sl2.xml";}
|
|
else if (rn > 0.4) {path = "Models/Weather/stratocumulus_sl3.xml";}
|
|
else if (rn > 0.2) {path = "Models/Weather/stratocumulus_sl4.xml";}
|
|
else {path = "Models/Weather/stratocumulus_sl5.xml";}
|
|
}
|
|
|
|
}
|
|
else if (type == "Cumulus (whisp)"){
|
|
if (subtype == "small") {
|
|
if (rn > 0.8) {path = "Models/Weather/cumulus_whisp1.xml";}
|
|
else if (rn > 0.6) {path = "Models/Weather/cumulus_whisp2.xml";}
|
|
else if (rn > 0.4) {path = "Models/Weather/cumulus_whisp3.xml";}
|
|
else if (rn > 0.2) {path = "Models/Weather/cumulus_whisp4.xml";}
|
|
else {path = "Models/Weather/cumulus_whisp5.xml";}
|
|
}
|
|
else if (subtype == "large") {
|
|
if (rn > 0.8) {path = "Models/Weather/cumulus_whisp1.xml";}
|
|
else if (rn > 0.6) {path = "Models/Weather/cumulus_whisp2.xml";}
|
|
else if (rn > 0.4) {path = "Models/Weather/cumulus_whisp3.xml";}
|
|
else if (rn > 0.2) {path = "Models/Weather/cumulus_whisp4.xml";}
|
|
else {path = "Models/Weather/cumulus_whisp5.xml";}
|
|
}
|
|
|
|
}
|
|
else if (type == "Cumulus bottom"){
|
|
if (subtype == "small") {
|
|
if (rn > 0.0) {path = "Models/Weather/cumulus_bottom1.xml";}
|
|
}
|
|
else if (subtype == "large") {
|
|
if (rn > 0.0) {path = "Models/Weather/cumulus_bottom1.xml";}
|
|
}
|
|
|
|
}
|
|
else if (type == "Congestus bottom"){
|
|
if (subtype == "small") {
|
|
if (rn > 0.0) {path = "Models/Weather/congestus_bottom1.xml";}
|
|
}
|
|
else if (subtype == "large") {
|
|
if (rn > 0.0) {path = "Models/Weather/congestus_bottom1.xml";}
|
|
}
|
|
|
|
}
|
|
else if (type == "Stratocumulus bottom"){
|
|
if (subtype == "small") {
|
|
if (rn > 0.0) {path = "Models/Weather/stratocumulus_bottom1.xml";}
|
|
}
|
|
else if (subtype == "large") {
|
|
if (rn > 0.0) {path = "Models/Weather/stratocumulus_bottom1.xml";}
|
|
}
|
|
|
|
}
|
|
else if (type == "Cumulonimbus (cloudlet)"){
|
|
if (subtype == "small") {
|
|
if (rn > 0.8) {path = "Models/Weather/cumulonimbus_sl1.xml";}
|
|
else if (rn > 0.6) {path = "Models/Weather/cumulonimbus_sl2.xml";}
|
|
else if (rn > 0.4) {path = "Models/Weather/cumulonimbus_sl3.xml";}
|
|
else if (rn > 0.2) {path = "Models/Weather/cumulonimbus_sl4.xml";}
|
|
else {path = "Models/Weather/cumulonimbus_sl5.xml";}
|
|
}
|
|
else if (subtype == "large") {
|
|
if (rn > 0.8) {path = "Models/Weather/cumulonimbus_sl1.xml";}
|
|
else if (rn > 0.6) {path = "Models/Weather/cumulonimbus_sl2.xml";}
|
|
else if (rn > 0.4) {path = "Models/Weather/cumulonimbus_sl3.xml";}
|
|
else if (rn > 0.2) {path = "Models/Weather/cumulonimbus_sl4.xml";}
|
|
else {path = "Models/Weather/cumulonimbus_sl5.xml";}
|
|
}
|
|
|
|
}
|
|
|
|
else if (type == "Altocumulus"){
|
|
if (subtype == "small") {
|
|
if (rn > 0.8) {path = "Models/Weather/altocumulus_shader6.xml";}
|
|
else if (rn > 0.6) {path = "Models/Weather/altocumulus_shader7.xml";}
|
|
else if (rn > 0.4) {path = "Models/Weather/altocumulus_shader8.xml";}
|
|
else if (rn > 0.2) {path = "Models/Weather/altocumulus_shader9.xml";}
|
|
else {path = "Models/Weather/altocumulus_shader10.xml";}
|
|
}
|
|
else if (subtype == "large") {
|
|
if (rn > 0.8) {path = "Models/Weather/altocumulus_shader1.xml";}
|
|
else if (rn > 0.6) {path = "Models/Weather/altocumulus_shader2.xml";}
|
|
else if (rn > 0.4) {path = "Models/Weather/altocumulus_shader3.xml";}
|
|
else if (rn > 0.2) {path = "Models/Weather/altocumulus_shader4.xml";}
|
|
else {path = "Models/Weather/altocumulus_shader5.xml";}
|
|
}
|
|
}
|
|
|
|
else if (type == "Stratus (structured)"){
|
|
if (subtype == "small") {
|
|
if (rn > 0.8) {path = "Models/Weather/altocumulus_layer6.xml";}
|
|
else if (rn > 0.6) {path = "Models/Weather/altocumulus_layer7.xml";}
|
|
else if (rn > 0.4) {path = "Models/Weather/altocumulus_layer8.xml";}
|
|
else if (rn > 0.2) {path = "Models/Weather/altocumulus_layer9.xml";}
|
|
else {path = "Models/Weather/altocumulus_layer10.xml";}
|
|
}
|
|
else if (subtype == "large") {
|
|
if (rn > 0.8) {path = "Models/Weather/altocumulus_layer1.xml";}
|
|
else if (rn > 0.6) {path = "Models/Weather/altocumulus_layer2.xml";}
|
|
else if (rn > 0.4) {path = "Models/Weather/altocumulus_layer3.xml";}
|
|
else if (rn > 0.2) {path = "Models/Weather/altocumulus_layer4.xml";}
|
|
else {path = "Models/Weather/altocumulus_layer5.xml";}
|
|
}
|
|
}
|
|
else if (type == "Altocumulus perlucidus"){
|
|
if (subtype == "small") {
|
|
if (rn > 0.8) {path = "Models/Weather/altocumulus_thinlayer6.xml";}
|
|
else if (rn > 0.6) {path = "Models/Weather/altocumulus_thinlayer7.xml";}
|
|
else if (rn > 0.4) {path = "Models/Weather/altocumulus_thinlayer8.xml";}
|
|
else if (rn > 0.2) {path = "Models/Weather/altocumulus_thinlayer9.xml";}
|
|
else {path = "Models/Weather/altocumulus_thinlayer10.xml";}
|
|
}
|
|
else if (subtype == "large") {
|
|
if (rn > 0.8) {path = "Models/Weather/altocumulus_thinlayer1.xml";}
|
|
else if (rn > 0.6) {path = "Models/Weather/altocumulus_thinlayer2.xml";}
|
|
else if (rn > 0.4) {path = "Models/Weather/altocumulus_thinlayer3.xml";}
|
|
else if (rn > 0.2) {path = "Models/Weather/altocumulus_thinlayer4.xml";}
|
|
else {path = "Models/Weather/altocumulus_thinlayer5.xml";}
|
|
}
|
|
}
|
|
else if ((type == "Cumulonimbus") or (type == "Cumulonimbus (rain)")) {
|
|
if (subtype == "small") {
|
|
if (rn > 0.5) {path = "Models/Weather/cumulonimbus_small1.xml";}
|
|
else {path = "Models/Weather/cumulonimbus_small2.xml";}
|
|
}
|
|
else if (subtype == "large") {
|
|
if (rn > 0.5) {path = "Models/Weather/cumulonimbus_small1.xml";}
|
|
else {path = "Models/Weather/cumulonimbus_small2.xml";}
|
|
}
|
|
}
|
|
else if (type == "Cirrus") {
|
|
if (subtype == "large") {
|
|
if (rn > 0.833) {path = "Models/Weather/cirrus1.xml";}
|
|
else if (rn > 0.666) {path = "Models/Weather/cirrus2.xml";}
|
|
else if (rn > 0.5) {path = "Models/Weather/cirrus3.xml";}
|
|
else if (rn > 0.333) {path = "Models/Weather/cirrus4.xml";}
|
|
else if (rn > 0.166) {path = "Models/Weather/cirrus5.xml";}
|
|
else {path = "Models/Weather/cirrus6.xml";}
|
|
}
|
|
else if (subtype == "small") {
|
|
if (rn > 0.75) {path = "Models/Weather/cirrus_amorphous1.xml";}
|
|
else if (rn > 0.5) {path = "Models/Weather/cirrus_amorphous2.xml";}
|
|
else if (rn > 0.25) {path = "Models/Weather/cirrus_amorphous3.xml";}
|
|
else {path = "Models/Weather/cirrus_amorphous4.xml";}
|
|
}
|
|
}
|
|
else if (type == "Cirrocumulus") {
|
|
if (subtype == "small") {
|
|
if (rn > 0.5) {path = "Models/Weather/cirrocumulus1.xml";}
|
|
else {path = "Models/Weather/cirrocumulus2.xml";}
|
|
}
|
|
else if (subtype == "large") {
|
|
if (rn > 0.875) {path = "Models/Weather/cirrocumulus1.xml";}
|
|
else if (rn > 0.750){path = "Models/Weather/cirrocumulus4.xml";}
|
|
else if (rn > 0.625){path = "Models/Weather/cirrocumulus5.xml";}
|
|
else if (rn > 0.500){path = "Models/Weather/cirrocumulus6.xml";}
|
|
else if (rn > 0.385){path = "Models/Weather/cirrocumulus7.xml";}
|
|
else if (rn > 0.250){path = "Models/Weather/cirrocumulus8.xml";}
|
|
else if (rn > 0.125){path = "Models/Weather/cirrocumulus9.xml";}
|
|
else {path = "Models/Weather/cirrocumulus10.xml";}
|
|
}
|
|
}
|
|
else if (type == "Cirrocumulus (cloudlet)") {
|
|
if (subtype == "small") {
|
|
if (rn > 0.8) {path = "Models/Weather/cirrocumulus_cloudlet6.xml";}
|
|
else if (rn > 0.6) {path = "Models/Weather/cirrocumulus_cloudlet7.xml";}
|
|
else if (rn > 0.4) {path = "Models/Weather/cirrocumulus_cloudlet8.xml";}
|
|
else if (rn > 0.2) {path = "Models/Weather/cirrocumulus_cloudlet9.xml";}
|
|
else {path = "Models/Weather/cirrocumulus_cloudlet10.xml";}
|
|
}
|
|
else if (subtype == "large") {
|
|
if (rn > 0.8) {path = "Models/Weather/cirrocumulus_cloudlet1.xml";}
|
|
else if (rn > 0.6) {path = "Models/Weather/cirrocumulus_cloudlet2.xml";}
|
|
else if (rn > 0.4) {path = "Models/Weather/cirrocumulus_cloudlet3.xml";}
|
|
else if (rn > 0.2) {path = "Models/Weather/cirrocumulus_cloudlet4.xml";}
|
|
else {path = "Models/Weather/cirrocumulus_cloudlet5.xml";}
|
|
}
|
|
}
|
|
else if (type == "Nimbus") {
|
|
if (subtype == "small") {
|
|
if (rn > 0.8) {path = "Models/Weather/nimbus_sls1.xml";}
|
|
else if (rn > 0.6) {path = "Models/Weather/nimbus_sls2.xml";}
|
|
else if (rn > 0.4) {path = "Models/Weather/nimbus_sls3.xml";}
|
|
else if (rn > 0.2) {path = "Models/Weather/nimbus_sls4.xml";}
|
|
else {path = "Models/Weather/nimbus_sls5.xml";}
|
|
}
|
|
else if (subtype == "large") {
|
|
if (rn > 0.8) {path = "Models/Weather/nimbus_sl1.xml";}
|
|
else if (rn > 0.6) {path = "Models/Weather/nimbus_sl2.xml";}
|
|
else if (rn > 0.4) {path = "Models/Weather/nimbus_sl3.xml";}
|
|
else if (rn > 0.2) {path = "Models/Weather/nimbus_sl4.xml";}
|
|
else {path = "Models/Weather/nimbus_sl5.xml";}
|
|
}
|
|
}
|
|
else if (type == "Stratus") {
|
|
if (subtype == "small") {
|
|
if (rn > 0.8) {path = "Models/Weather/stratus_layer1.xml";}
|
|
else if (rn > 0.6) {path = "Models/Weather/stratus_layer2.xml";}
|
|
else if (rn > 0.4) {path = "Models/Weather/stratus_layer3.xml";}
|
|
else if (rn > 0.2) {path = "Models/Weather/stratus_layer4.xml";}
|
|
else {path = "Models/Weather/stratus_layer5.xml";}
|
|
}
|
|
else if (subtype == "large") {
|
|
if (rn > 0.8) {path = "Models/Weather/stratus_layer1.xml";}
|
|
else if (rn > 0.6) {path = "Models/Weather/stratus_layer2.xml";}
|
|
else if (rn > 0.4) {path = "Models/Weather/stratus_layer3.xml";}
|
|
else if (rn > 0.2) {path = "Models/Weather/stratus_layer4.xml";}
|
|
else {path = "Models/Weather/stratus_layer5.xml";}
|
|
}
|
|
}
|
|
else if (type == "Stratus (thin)") {
|
|
if (subtype == "small") {
|
|
if (rn > 0.8) {path = "Models/Weather/stratus_tlayer1.xml";}
|
|
else if (rn > 0.6) {path = "Models/Weather/stratus_tlayer2.xml";}
|
|
else if (rn > 0.4) {path = "Models/Weather/stratus_tlayer3.xml";}
|
|
else if (rn > 0.2) {path = "Models/Weather/stratus_tlayer4.xml";}
|
|
else {path = "Models/Weather/stratus_tlayer5.xml";}
|
|
}
|
|
else if (subtype == "large") {
|
|
if (rn > 0.8) {path = "Models/Weather/stratus_tlayer1.xml";}
|
|
else if (rn > 0.6) {path = "Models/Weather/stratus_tlayer2.xml";}
|
|
else if (rn > 0.4) {path = "Models/Weather/stratus_tlayer3.xml";}
|
|
else if (rn > 0.2) {path = "Models/Weather/stratus_tlayer4.xml";}
|
|
else {path = "Models/Weather/stratus_tlayer5.xml";}
|
|
}
|
|
}
|
|
else if (type == "Cirrostratus") {
|
|
if (subtype == "small") {
|
|
if (rn > 0.75) {path = "Models/Weather/cirrostratus1.xml";}
|
|
else if (rn > 0.5) {path = "Models/Weather/cirrostratus2.xml";}
|
|
else if (rn > 0.25) {path = "Models/Weather/cirrostratus3.xml";}
|
|
else {path = "Models/Weather/cirrostratus4.xml";}
|
|
}
|
|
else if (subtype == "large") {
|
|
if (rn > 0.75) {path = "Models/Weather/cirrostratus1.xml";}
|
|
else if (rn > 0.5) {path = "Models/Weather/cirrostratus2.xml";}
|
|
else if (rn > 0.25) {path = "Models/Weather/cirrostratus3.xml";}
|
|
else {path = "Models/Weather/cirrostratus4.xml";}
|
|
}
|
|
}
|
|
else if (type == "Fog (thin)") {
|
|
if (subtype == "small") {
|
|
if (rn > 0.8) {path = "Models/Weather/stratus_thin1.xml";}
|
|
else if (rn > 0.6) {path = "Models/Weather/stratus_thin2.xml";}
|
|
else if (rn > 0.4) {path = "Models/Weather/stratus_thin3.xml";}
|
|
else if (rn > 0.2) {path = "Models/Weather/stratus_thin4.xml";}
|
|
else {path = "Models/Weather/stratus_thin5.xml";}
|
|
}
|
|
else if (subtype == "large") {
|
|
if (rn > 0.8) {path = "Models/Weather/stratus_thin1.xml";}
|
|
else if (rn > 0.6) {path = "Models/Weather/stratus_thin2.xml";}
|
|
else if (rn > 0.4) {path = "Models/Weather/stratus_thin3.xml";}
|
|
else if (rn > 0.2) {path = "Models/Weather/stratus_thin4.xml";}
|
|
else {path = "Models/Weather/stratus_thin5.xml";}
|
|
}
|
|
}
|
|
else if (type == "Fog (thick)") {
|
|
if (subtype == "small") {
|
|
if (rn > 0.8) {path = "Models/Weather/stratus_thick1.xml";}
|
|
else if (rn > 0.6) {path = "Models/Weather/stratus_thick2.xml";}
|
|
else if (rn > 0.4) {path = "Models/Weather/stratus_thick3.xml";}
|
|
else if (rn > 0.2) {path = "Models/Weather/stratus_thick4.xml";}
|
|
else {path = "Models/Weather/stratus_thick5.xml";}
|
|
}
|
|
else if (subtype == "large") {
|
|
if (rn > 0.8) {path = "Models/Weather/stratus_thick1.xml";}
|
|
else if (rn > 0.6) {path = "Models/Weather/stratus_thick2.xml";}
|
|
else if (rn > 0.4) {path = "Models/Weather/stratus_thick3.xml";}
|
|
else if (rn > 0.2) {path = "Models/Weather/stratus_thick4.xml";}
|
|
else {path = "Models/Weather/stratus_thick5.xml";}
|
|
}
|
|
}
|
|
else if (type == "Test") {path="Models/Weather/single_cloud.xml";}
|
|
else if (type == "Box_test") {
|
|
if (subtype == "standard") {
|
|
if (rn > 0.8) {path = "Models/Weather/cloudbox1.xml";}
|
|
else if (rn > 0.6) {path = "Models/Weather/cloudbox2.xml";}
|
|
else if (rn > 0.4) {path = "Models/Weather/cloudbox3.xml";}
|
|
else if (rn > 0.2) {path = "Models/Weather/cloudbox4.xml";}
|
|
else {path = "Models/Weather/cloudbox5.xml";}
|
|
}
|
|
else if (subtype == "core") {
|
|
if (rn > 0.8) {path = "Models/Weather/cloudbox_core1.xml";}
|
|
else if (rn > 0.6) {path = "Models/Weather/cloudbox_core2.xml";}
|
|
else if (rn > 0.4) {path = "Models/Weather/cloudbox_core3.xml";}
|
|
else if (rn > 0.2) {path = "Models/Weather/cloudbox_core4.xml";}
|
|
else {path = "Models/Weather/cloudbox_core5.xml";}
|
|
}
|
|
else if (subtype == "bottom") {
|
|
if (rn > 0.66) {path = "Models/Weather/cloudbox_bottom1.xml";}
|
|
else if (rn > 0.33) {path = "Models/Weather/cloudbox_bottom2.xml";}
|
|
else if (rn > 0.0) {path = "Models/Weather/cloudbox_bottom3.xml";}
|
|
}
|
|
}
|
|
|
|
|
|
else {print("Cloud type ", type, " subtype ",subtype, " not available!");}
|
|
|
|
return path;
|
|
}
|
|
|
|
|
|
|
|
|
|
###########################################################
|
|
# place a single cloud into a vector to be processed
|
|
# separately
|
|
###########################################################
|
|
|
|
var create_cloud_vec = func(path, lat, long, alt, heading) {
|
|
|
|
append(clouds_path,path);
|
|
append(clouds_lat,lat);
|
|
append(clouds_lon,long);
|
|
append(clouds_alt,alt);
|
|
append(clouds_orientation,heading);
|
|
|
|
# globals (needed for Cumulus clouds) should be set if needed by the main cloud generating call
|
|
|
|
if (dynamics_flag ==1)
|
|
{
|
|
append(clouds_mean_alt, cloud_mean_altitude);
|
|
append(clouds_flt, cloud_fractional_lifetime);
|
|
append(clouds_evolution_timestamp,cloud_evolution_timestamp);
|
|
}
|
|
|
|
}
|
|
###########################################################
|
|
# clear all clouds and effects
|
|
###########################################################
|
|
|
|
var clear_all = func {
|
|
|
|
# clear the clouds and models
|
|
|
|
var cloudNode = props.globals.getNode(lw~"clouds", 1);
|
|
cloudNode.removeChildren("tile");
|
|
|
|
var modelNode = props.globals.getNode("models", 1).getChildren("model");
|
|
|
|
foreach (var m; modelNode)
|
|
{
|
|
var l = m.getNode("tile-index",1).getValue();
|
|
if (l != nil)
|
|
{
|
|
m.remove();
|
|
}
|
|
}
|
|
|
|
|
|
|
|
# clear effect volumes
|
|
|
|
#props.globals.getNode("local-weather/effect-volumes", 1).removeChildren("effect-volume");
|
|
|
|
|
|
|
|
# reset pressure continuity
|
|
|
|
weather_tiles.last_pressure = 0.0;
|
|
|
|
# stop all loops
|
|
|
|
setprop(lw~"effect-loop-flag",0);
|
|
setprop(lw~"interpolation-loop-flag",0);
|
|
setprop(lw~"tile-loop-flag",0);
|
|
setprop(lw~"lift-loop-flag",0);
|
|
setprop(lw~"wave-loop-flag",0);
|
|
setprop(lw~"dynamics-loop-flag",0);
|
|
setprop(lw~"timing-loop-flag",0);
|
|
setprop(lw~"buffer-loop-flag",0);
|
|
setprop(lw~"housekeeping-loop-flag",0);
|
|
setprop(lw~"convective-loop-flag",0);
|
|
|
|
weather_dynamics.convective_loop_kill_flag = 1; # long-running loop needs a different scheme to end
|
|
|
|
# also remove rain and snow effects
|
|
|
|
compat_layer.setRain(0.0);
|
|
compat_layer.setSnow(0.0);
|
|
|
|
# set placement indices to zero
|
|
|
|
setprop(lw~"clouds/placement-index",0);
|
|
setprop(lw~"clouds/model-placement-index",0);
|
|
setprop(lw~"effect-volumes/effect-placement-index",0);
|
|
setprop(lw~"effect-volumes/number",0);
|
|
setprop(lw~"tiles/tile-counter",0);
|
|
|
|
|
|
# remove any quadtrees and arrays
|
|
|
|
settimer ( func { setsize(weather_dynamics.cloudQuadtrees,0);},0.1); # to avoid error generation in this frame
|
|
setsize(effectVolumeArray,0);
|
|
n_effectVolumeArray = 0;
|
|
|
|
|
|
settimer ( func {
|
|
setsize(weather_tile_management.modelArrays,0);
|
|
setsize(weather_dynamics.tile_wind_direction,0);
|
|
setsize(weather_dynamics.tile_wind_speed,0);
|
|
setsize(weather_tile_management.cloudBufferArray,0);
|
|
setsize(weather_tile_management.cloudSceneryArray,0);
|
|
setsize(alt_20_array,0);
|
|
setsize(alt_50_array,0);
|
|
setsize(weather_dynamics.tile_convective_altitude,0);
|
|
setsize(weather_dynamics.tile_convective_strength,0);
|
|
setsize(weatherStationArray,0);
|
|
setprop(lw~"clouds/buffer-count",0);
|
|
setprop(lw~"clouds/cloud-scenery-count",0);
|
|
weather_tile_management.n_cloudSceneryArray = 0;
|
|
props.globals.getNode("local-weather/interpolation", 1).removeChildren("wind");
|
|
setprop(lwi~"ipoint-number",0);
|
|
},1.1);
|
|
|
|
setprop(lw~"tmp/presampling-status", "idle");
|
|
|
|
}
|
|
|
|
|
|
|
|
###########################################################
|
|
# detailed Cumulus clouds created from multiple cloudlets
|
|
###########################################################
|
|
|
|
var create_detailed_cumulus_cloud = func (lat, lon, alt, size) {
|
|
|
|
|
|
var edge_bias = convective_texture_mix;
|
|
|
|
var size_bias = 0.0;
|
|
|
|
if (size > 2.0)
|
|
{create_cumulonimbus_cloud(lat, lon, alt, size); return;}
|
|
|
|
else if (size>1.5)
|
|
{
|
|
var type = "Congestus";
|
|
var btype = "Congestus bottom";
|
|
var height = 400;
|
|
var n = 8;
|
|
var n_b = 4;
|
|
var x = 1000.0;
|
|
var y = 300.0;
|
|
var edge = 0.3;
|
|
}
|
|
|
|
else if (size>1.1)
|
|
{
|
|
var type = "Cumulus (cloudlet)";
|
|
var btype = "Cumulus bottom";
|
|
var height = 200;
|
|
var n = 8;
|
|
var n_b = 1;
|
|
var x = 400.0;
|
|
var y = 200.0;
|
|
var edge = 0.3;
|
|
}
|
|
else if (size>0.8)
|
|
{
|
|
var type = "Cumulus (cloudlet)";
|
|
var height = 150;
|
|
var n = 6;
|
|
var x = 300.0;
|
|
var y = 200.0;
|
|
var edge = 0.3;
|
|
}
|
|
else if (size>0.4)
|
|
{
|
|
var type = "Cumulus (cloudlet)";
|
|
var btype = "Cumulus bottom";
|
|
var height = 100;
|
|
var n = 4;
|
|
var x = 200.0;
|
|
var y = 200.0;
|
|
var edge = 1.0;
|
|
}
|
|
else
|
|
{
|
|
var type = "Cumulus (whisp)";
|
|
var btype = "Cumulus bottom";
|
|
var height = 100;
|
|
var n = 1;
|
|
var x = 100.0;
|
|
var y = 100.0;
|
|
var edge = 1.0;
|
|
}
|
|
|
|
var alpha = rand() * 180.0;
|
|
|
|
edge = edge + edge_bias;
|
|
|
|
create_streak(type,lat,lon, alt+ 0.5* (height +cloud_vertical_size_map["Cumulus"] * ft_to_m), height,n,0.0,edge,x,1,0.0,0.0,y,alpha,1.0);
|
|
|
|
# for large clouds, add a bottom
|
|
|
|
if ((size > 1.1) and (edge < 0.4))
|
|
{
|
|
create_streak(btype,lat,lon, alt, 100.0,n_b,0.0,edge,0.3*x,1,0.0,0.0,0.3*y,alpha,1.0);
|
|
}
|
|
|
|
}
|
|
|
|
###########################################################
|
|
# detailed small Cumulonimbus clouds created from multiple cloudlets
|
|
###########################################################
|
|
|
|
var create_cumulonimbus_cloud = func(lat, lon, alt, size) {
|
|
|
|
var height = 3000.0;
|
|
var alpha = rand() * 180.0;
|
|
|
|
create_streak("Cumulonimbus",lat,lon, alt+ 0.5* height, height,8,0.0,0.0,1600.0,1,0.0,0.0,800.0,alpha,1.0);
|
|
|
|
}
|
|
|
|
###########################################################
|
|
# wrappers for convective cloud system to distribute
|
|
# call across several frames if needed
|
|
###########################################################
|
|
|
|
var create_cumosys = func (blat, blon, balt, nc, size) {
|
|
|
|
# realistic Cumulus has somewhat larger models, so compensate to get the same coverage
|
|
if (detailed_clouds_flag == 1)
|
|
{nc = int(0.7 * nc);}
|
|
|
|
if (thread_flag == 1)
|
|
{setprop(lw~"tmp/convective-status", "computing");
|
|
cumulus_loop(blat, blon, balt, nc, size);}
|
|
|
|
else
|
|
{create_cumulus(blat, blon, balt, nc, size);
|
|
if (debug_output_flag == 1)
|
|
{print("Convective system done!");}
|
|
}
|
|
}
|
|
|
|
|
|
|
|
var cumulus_loop = func (blat, blon, balt, nc, size) {
|
|
|
|
var n = 25;
|
|
|
|
if (nc < 0)
|
|
{
|
|
if (debug_output_flag == 1)
|
|
{print("Convective system done!");}
|
|
setprop(lw~"tmp/convective-status", "idle");
|
|
assemble_effect_array();
|
|
return;
|
|
}
|
|
|
|
#print("nc is now: ",nc);
|
|
create_cumulus(blat, blon, balt, n, size);
|
|
|
|
settimer( func {cumulus_loop(blat, blon, balt, nc-n, size) },0);
|
|
}
|
|
|
|
###########################################################
|
|
# place a convective cloud system
|
|
###########################################################
|
|
|
|
var create_cumulus = func (blat, blon, balt, nc, size) {
|
|
|
|
|
|
|
|
var path = "Models/Weather/blank.ac";
|
|
var i = 0;
|
|
var p = 0.0;
|
|
var rn = 0.0;
|
|
var place_lift_flag = 0;
|
|
var strength = 0.0;
|
|
var detail_flag = detailed_clouds_flag;
|
|
|
|
var alpha = getprop(lw~"tmp/tile-orientation-deg") * math.pi/180.0; # the tile orientation
|
|
|
|
var sec_to_rad = 2.0 * math.pi/86400; # conversion factor for sinusoidal dependence on daytime
|
|
|
|
calc_geo(blat);
|
|
|
|
# get the local time of the day in seconds
|
|
|
|
var t = getprop("sim/time/utc/day-seconds");
|
|
t = t + getprop("sim/time/local-offset");
|
|
|
|
# print("t is now:", t);
|
|
|
|
# and make a simple sinusoidal model of thermal strength
|
|
|
|
# daily variation in number of thermals, peaks at noon
|
|
var t_factor1 = 0.5 * (1.0-math.cos((t * sec_to_rad)));
|
|
|
|
# daily variation in strength of thermals, peaks around 15:30
|
|
var t_factor2 = 0.5 * (1.0-math.cos((t * sec_to_rad)-0.9));
|
|
|
|
|
|
# number of possible thermals equals overall strength times daily variation times geographic variation
|
|
# this is a proxy for solar thermal energy
|
|
|
|
nc = t_factor1 * nc * math.cos(blat/180.0*math.pi);
|
|
|
|
var thermal_conditions = getprop(lw~"config/thermal-properties");
|
|
|
|
|
|
while (i < nc) {
|
|
|
|
p = 0.0;
|
|
place_lift_flag = 0;
|
|
strength = 0.0;
|
|
|
|
# pick a trial position inside the tile and rotate by tile orientation angle
|
|
var x = (2.0 * rand() - 1.0) * size;
|
|
var y = (2.0 * rand() - 1.0) * size;
|
|
|
|
var lat = blat + (y * math.cos(alpha) - x * math.sin(alpha)) * m_to_lat;
|
|
var lon = blon + (x * math.cos(alpha) + y * math.sin(alpha)) * m_to_lon;
|
|
|
|
# now check ground cover type on chosen spot
|
|
var info = geodinfo(lat, lon);
|
|
|
|
if (info != nil) {
|
|
var elevation = info[0] * m_to_ft;
|
|
if (info[1] != nil){
|
|
var landcover = info[1].names[0];
|
|
if (contains(landcover_map,landcover)) {p = p + landcover_map[landcover];}
|
|
else {print(p, " ", info[1].names[0]);}
|
|
}}
|
|
else {continue;}
|
|
|
|
# then decide if the thermal energy at the spot generates an updraft and a cloud
|
|
|
|
if (rand() < p) # we decide to place a cloud at this spot
|
|
{
|
|
strength = (1.5 * rand() + (2.0 * p)) * t_factor2; # the strength of thermal activity at the spot
|
|
if (strength > 1.0)
|
|
{
|
|
# we place a large cloud, and we generate lift
|
|
path = select_cloud_model("Cumulus","large"); place_lift_flag = 1;
|
|
}
|
|
else {path = select_cloud_model("Cumulus","small");}
|
|
|
|
# check if we have a terrain elevation analysis available and can use a
|
|
# detailed placement altitude correction
|
|
|
|
if (presampling_flag == 1)
|
|
{
|
|
var place_alt = get_convective_altitude(balt, elevation, getprop(lw~"tiles/tile-counter"));
|
|
}
|
|
else {var place_alt = balt;}
|
|
|
|
cloud_mean_altitude = place_alt;
|
|
cloud_fractional_lifetime = rand();
|
|
cloud_evolution_timestamp = weather_dynamics.time_lw;
|
|
|
|
if (generate_thermal_lift_flag != 3) # no clouds if we produce blue thermals
|
|
{
|
|
if (thread_flag == 1)
|
|
{
|
|
if (detail_flag == 0){create_cloud_vec(path,lat,lon, place_alt, 0.0);}
|
|
else {create_detailed_cumulus_cloud(lat, lon, place_alt, strength);}
|
|
}
|
|
else
|
|
{
|
|
if (detail_flag == 0){compat_layer.create_cloud(path, lat, lon, place_alt, 0.0);}
|
|
else {create_detailed_cumulus_cloud(lat, lon, place_alt, strength);}
|
|
}
|
|
}
|
|
|
|
# now see if we need to create a thermal - first check the flag
|
|
if (generate_thermal_lift_flag == 1) # thermal by constant
|
|
{
|
|
# now check if convection is strong
|
|
if (place_lift_flag == 1)
|
|
{
|
|
var lift = 3.0 + 10.0 * (strength -1.0);
|
|
var radius = 500 + 500 * rand();
|
|
#print("Lift: ", lift * ft_to_m - 1.0);
|
|
create_effect_volume(1, lat, lon, radius, radius, 0.0, 0.0, place_alt+500.0, -1, -1, -1, -1, lift, 1,-1);
|
|
} # end if place_lift_flag
|
|
} # end if generate-thermal-lift-flag
|
|
else if ((generate_thermal_lift_flag == 2) or (generate_thermal_lift_flag == 3)) # thermal by function
|
|
{
|
|
|
|
if (place_lift_flag == 1)
|
|
{
|
|
var lift = (3.0 + 10.0 * (strength -1.0))/thermal_conditions;
|
|
var radius = (500 + 500 * rand())*thermal_conditions;
|
|
|
|
create_effect_volume(1, lat, lon, 1.1*radius, 1.1*radius, 0.0, 0.0, place_alt*1.15, -1, -1, -1, lift*0.04, lift, -2,-1);
|
|
} # end if place_lift_flag
|
|
|
|
} # end if generate-thermal-lift-flag
|
|
|
|
|
|
} # end if rand < p
|
|
i = i + 1;
|
|
} # end while
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
#################################################################
|
|
# respawn convective clouds to compensate for decay
|
|
# the difference being that new clouds get zero fractional
|
|
# lifetime and are placed based on terrain with a different weight
|
|
##################################################################
|
|
|
|
var recreate_cumulus = func (blat, blon, balt, alpha, nc, size, tile_index) {
|
|
|
|
var path = "Models/Weather/blank.ac";
|
|
var i = 0;
|
|
var p = 0.0;
|
|
var rn = 0.0;
|
|
var place_lift_flag = 0;
|
|
var strength = 0.0;
|
|
var detail_flag = detailed_clouds_flag;
|
|
|
|
alpha = alpha * math.pi/180.0; # the tile orientation
|
|
|
|
var sec_to_rad = 2.0 * math.pi/86400; # conversion factor for sinusoidal dependence on daytime
|
|
|
|
# current aircraft position
|
|
|
|
var alat = getprop("position/latitude-deg");
|
|
var alon = getprop("position/longitude-deg");
|
|
|
|
# get the local time of the day in seconds
|
|
|
|
var t = getprop("sim/time/utc/day-seconds");
|
|
t = t + getprop("sim/time/local-offset");
|
|
|
|
|
|
# and make a simple sinusoidal model of thermal strength
|
|
|
|
# daily variation in number of thermals, peaks at noon
|
|
var t_factor1 = 0.5 * (1.0-math.cos((t * sec_to_rad)));
|
|
|
|
# daily variation in strength of thermals, peaks around 15:30
|
|
var t_factor2 = 0.5 * (1.0-math.cos((t * sec_to_rad)-0.9));
|
|
|
|
|
|
# number of possible thermals equals overall strength times daily variation times geographic variation
|
|
# this is a proxy for solar thermal energy
|
|
|
|
nc = t_factor1 * nc * math.cos(blat/180.0*math.pi);
|
|
|
|
var thermal_conditions = getprop(lw~"config/thermal-properties");
|
|
|
|
|
|
while (i < nc) {
|
|
|
|
p = 0.0;
|
|
place_lift_flag = 0;
|
|
strength = 0.0;
|
|
|
|
# pick a trial position inside the tile and rotate by tile orientation angle
|
|
var x = (2.0 * rand() - 1.0) * size;
|
|
var y = (2.0 * rand() - 1.0) * size;
|
|
|
|
var lat = blat + (y * math.cos(alpha) - x * math.sin(alpha)) * m_to_lat;
|
|
var lon = blon + (x * math.cos(alpha) + y * math.sin(alpha)) * m_to_lon;
|
|
|
|
# check if the cloud would be spawned in visual range, if not don't bother
|
|
var d_sq = calc_d_sq(alat, alon, lat, lon);
|
|
|
|
if (math.sqrt(d_sq) > weather_tile_management.cloud_view_distance)
|
|
{i = i+1; continue;}
|
|
|
|
# now check ground cover type on chosen spot
|
|
var info = geodinfo(lat, lon);
|
|
|
|
if (info != nil) {
|
|
var elevation = info[0] * m_to_ft;
|
|
if (info[1] != nil){
|
|
var landcover = info[1].names[0];
|
|
if (contains(landcover_map,landcover)) {p = p + landcover_map[landcover];}
|
|
else {print(p, " ", info[1].names[0]);}
|
|
}}
|
|
else {continue;}
|
|
|
|
# check if to place a cloud with weight sqrt(p), the lifetime gets another sqrt(p) factor
|
|
|
|
if (rand() > math.sqrt(p))
|
|
{i=i+1; continue;}
|
|
|
|
|
|
# then calculate the strength of the updraft
|
|
|
|
strength = (1.5 * rand() + (2.0 * p)) * t_factor2; # the strength of thermal activity at the spot
|
|
if (strength > 1.0)
|
|
{
|
|
path = select_cloud_model("Cumulus","large"); place_lift_flag = 1;
|
|
}
|
|
else {path = select_cloud_model("Cumulus","small");}
|
|
|
|
if (presampling_flag == 1)
|
|
{
|
|
var place_alt = get_convective_altitude(balt, elevation, tile_index);
|
|
}
|
|
else {var place_alt = balt;}
|
|
|
|
cloud_mean_altitude = place_alt;
|
|
cloud_fractional_lifetime = 0.0;
|
|
cloud_evolution_timestamp = weather_dynamics.time_lw;
|
|
|
|
compat_layer.cloud_mean_altitude = place_alt;
|
|
compat_layer.cloud_flt = cloud_fractional_lifetime;
|
|
compat_layer.cloud_evolution_timestamp = cloud_evolution_timestamp;
|
|
|
|
if (generate_thermal_lift_flag != 3) # no clouds if we produce blue thermals
|
|
{
|
|
if (thread_flag == 1)
|
|
{
|
|
thread_flag = 0; # create clouds immediately
|
|
if (detail_flag == 0){compat_layer.create_cloud(path,lat,lon, place_alt, 0.0);}
|
|
else {create_detailed_cumulus_cloud(lat, lon, place_alt, strength);}
|
|
thread_flag = 1; # and restore threading
|
|
}
|
|
else
|
|
{
|
|
if (detail_flag == 0){compat_layer.create_cloud(path, lat, lon, place_alt, 0.0);}
|
|
else {create_detailed_cumulus_cloud(lat, lon, place_alt, strength);}
|
|
}
|
|
}
|
|
|
|
if (generate_thermal_lift_flag == 1) # thermal by constant
|
|
{
|
|
if (place_lift_flag == 1)
|
|
{
|
|
var lift = 3.0 + 10.0 * (strength -1.0);
|
|
var radius = 500 + 500 * rand();
|
|
create_effect_volume(1, lat, lon, radius, radius, 0.0, 0.0, place_alt+500.0, -1, -1, -1, -1, lift, 1,-1);
|
|
} # end if place_lift_flag
|
|
} # end if generate-thermal-lift-flag
|
|
else if ((generate_thermal_lift_flag == 2) or (generate_thermal_lift_flag == 3)) # thermal by function
|
|
{
|
|
if (place_lift_flag == 1)
|
|
{
|
|
var lift = (3.0 + 10.0 * (strength -1.0))/thermal_conditions;
|
|
var radius = (500 + 500 * rand())*thermal_conditions;
|
|
|
|
create_effect_volume(1, lat, lon, 1.1*radius, 1.1*radius, 0.0, 0.0, place_alt*1.15, -1, -1, -1, lift*0.04, lift, -2,-1);
|
|
} # end if place_lift_flag
|
|
|
|
} # end if generate-thermal-lift-flag
|
|
|
|
|
|
i = i + 1;
|
|
} # end while
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
###########################################################
|
|
# place a Cumulus layer with excluded regions
|
|
# to avoid placing cumulus underneath a thunderstorm
|
|
###########################################################
|
|
|
|
var cumulus_exclusion_layer = func (blat, blon, balt, n, size_x, size_y, alpha, s_min, s_max, n_ex, exlat, exlon, exrad) {
|
|
|
|
|
|
var strength = 0;
|
|
var flag = 1;
|
|
var phi = alpha * math.pi/180.0;
|
|
|
|
var detail_flag = detailed_clouds_flag;
|
|
|
|
if (detail_flag == 1) {var i_max = int(0.25*n);} else {var i_max = int(1.0*n);}
|
|
|
|
|
|
|
|
for (var i =0; i< i_max; i=i+1)
|
|
{
|
|
var x = (2.0 * rand() - 1.0) * size_x;
|
|
var y = (2.0 * rand() - 1.0) * size_y;
|
|
|
|
var lat = blat + (y * math.cos(phi) - x * math.sin(phi)) * m_to_lat;
|
|
var lon = blon + (x * math.cos(phi) + y * math.sin(phi)) * m_to_lon;
|
|
|
|
flag = 1;
|
|
|
|
for (var j=0; j<n_ex; j=j+1)
|
|
{
|
|
if (calc_d_sq(lat, lon, exlat[j], exlon[j]) < (exrad[j] * exrad[j])) {flag = 0;}
|
|
}
|
|
if (flag == 1)
|
|
{
|
|
|
|
strength = s_min + rand() * (s_max - s_min);
|
|
|
|
if (strength > 1.0) {var path = select_cloud_model("Cumulus","large"); }
|
|
else {var path = select_cloud_model("Cumulus","small");}
|
|
|
|
if (thread_flag == 1)
|
|
{
|
|
if (detail_flag == 0){create_cloud_vec(path,lat,lon, balt, 0.0);}
|
|
else {create_detailed_cumulus_cloud(lat, lon, balt, strength);}
|
|
}
|
|
else
|
|
{
|
|
if (detail_flag == 0){compat_layer.create_cloud(path, lat, lon, balt, 0.0);}
|
|
else {create_detailed_cumulus_cloud(lat, lon, balt, strength);}
|
|
}
|
|
|
|
} # end if flag
|
|
|
|
} # end for i
|
|
|
|
}
|
|
|
|
|
|
###########################################################
|
|
# place a barrier cloud system
|
|
###########################################################
|
|
|
|
var create_rise_clouds = func (blat, blon, balt, nc, size, winddir, dist) {
|
|
|
|
var path = "Models/Weather/blank.ac";
|
|
var i = 0;
|
|
var p = 0.0;
|
|
var rn = 0.0;
|
|
var nsample = 10;
|
|
var counter = 0;
|
|
var dir = (winddir + 180.0) * math.pi/180.0;
|
|
var step = dist/nsample;
|
|
|
|
calc_geo(blat);
|
|
|
|
while (i < nc) {
|
|
|
|
counter = counter + 1;
|
|
p = 0.0;
|
|
|
|
var x = (2.0 * rand() - 1.0) * size;
|
|
var y = (2.0 * rand() - 1.0) * size;
|
|
|
|
var lat = blat + y * m_to_lat;
|
|
var lon = blon + x * m_to_lon;
|
|
|
|
var elevation = compat_layer.get_elevation(lat, lon);
|
|
|
|
#print("elevation: ", elevation, "balt: ", balt);
|
|
|
|
if ((elevation < balt) and (elevation != -1.0))
|
|
{
|
|
for (var j = 0; j<nsample; j=j+1)
|
|
{
|
|
d = j * step;
|
|
x = d * math.sin(dir);
|
|
y = d * math.cos(dir);
|
|
var tlat = lat + y * m_to_lat;
|
|
var tlon = lon + x * m_to_lon;
|
|
|
|
#print("x: ", x, "y: ", y);
|
|
|
|
var elevation1 = compat_layer.get_elevation(tlat,tlon);
|
|
#print("elevation1: ", elevation1, "balt: ", balt);
|
|
|
|
if (elevation1 > balt)
|
|
{
|
|
p = 1.0 - j * (1.0/nsample);
|
|
#p = 1.0;
|
|
break;
|
|
}
|
|
|
|
}
|
|
}
|
|
if (counter > 500) {print("Cannot place clouds - exiting..."); i = nc;}
|
|
if (rand() < p)
|
|
{
|
|
path = select_cloud_model("Stratus (structured)","large");
|
|
compat_layer.create_cloud(path, lat, lon, balt, 0.0);
|
|
counter = 0;
|
|
i = i+1;
|
|
}
|
|
|
|
} # end while
|
|
|
|
}
|
|
|
|
|
|
###########################################################
|
|
# place a cloud streak
|
|
###########################################################
|
|
|
|
var create_streak = func (type, blat, blong, balt, alt_var, nx, xoffset, edgex, x_var, ny, yoffset, edgey, y_var, direction, tri) {
|
|
|
|
var flag = 0;
|
|
var path = "Models/Weather/blank.ac";
|
|
calc_geo(blat);
|
|
var dir = direction * math.pi/180.0;
|
|
|
|
var ymin = -0.5 * ny * yoffset;
|
|
var xmin = -0.5 * nx * xoffset;
|
|
var xinc = xoffset * (tri-1.0) /ny;
|
|
|
|
var jlow = int(nx*edgex);
|
|
var ilow = int(ny*edgey);
|
|
|
|
|
|
for (var i=0; i<ny; i=i+1)
|
|
{
|
|
var y = ymin + i * yoffset;
|
|
|
|
for (var j=0; j<nx; j=j+1)
|
|
{
|
|
var y0 = y + y_var * 2.0 * (rand() -0.5);
|
|
var x = xmin + j * (xoffset + i * xinc) + x_var * 2.0 * (rand() -0.5);
|
|
var lat = blat + m_to_lat * (y0 * math.cos(dir) - x * math.sin(dir));
|
|
var long = blong + m_to_lon * (x * math.cos(dir) + y0 * math.sin(dir));
|
|
|
|
var alt = balt + alt_var * 2 * (rand() - 0.5);
|
|
|
|
flag = 0;
|
|
var rn = 6.0 * rand();
|
|
|
|
if (((j<jlow) or (j>(nx-jlow-1))) and ((i<ilow) or (i>(ny-ilow-1)))) # select a small or no cloud
|
|
{
|
|
if (rn > 2.0) {flag = 1;} else {path = select_cloud_model(type,"small");}
|
|
}
|
|
if ((j<jlow) or (j>(nx-jlow-1)) or (i<ilow) or (i>(ny-ilow-1)))
|
|
{
|
|
if (rn > 5.0) {flag = 1;} else {path = select_cloud_model(type,"small");}
|
|
}
|
|
else { # select a large cloud
|
|
if (rn > 5.0) {flag = 1;} else {path = select_cloud_model(type,"large");}
|
|
}
|
|
|
|
|
|
if (flag==0){
|
|
if (thread_flag == 1)
|
|
{create_cloud_vec(path, lat, long, alt, 0.0);}
|
|
else
|
|
{compat_layer.create_cloud(path, lat, long, alt, 0.0);}
|
|
|
|
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
###########################################################
|
|
# place a cloud layer
|
|
###########################################################
|
|
|
|
var create_layer = func (type, blat, blon, balt, bthick, rx, ry, phi, density, edge, rainflag, rain_density) {
|
|
|
|
|
|
var i = 0;
|
|
var area = math.pi * rx * ry;
|
|
var circ = math.pi * (rx + ry); # that's just an approximation
|
|
var n = int(area/80000000.0 * 100 * density);
|
|
var m = int(circ/63000.0 * 40 * rain_density);
|
|
var path = "Models/Weather/blank.ac";
|
|
|
|
phi = phi * math.pi/180.0;
|
|
|
|
if (contains(cloud_vertical_size_map, type))
|
|
{var alt_offset = cloud_vertical_size_map[type]/2.0 * m_to_ft;}
|
|
else {var alt_offset = 0.0;}
|
|
|
|
while(i<n)
|
|
{
|
|
var x = rx * (2.0 * rand() - 1.0);
|
|
var y = ry * (2.0 * rand() - 1.0);
|
|
var alt = balt + bthick * rand() + 0.8 * alt_offset;
|
|
var res = (x*x)/(rx*rx) + (y*y)/(ry*ry);
|
|
|
|
if (res < 1.0)
|
|
{
|
|
var lat = blat + m_to_lat * (y * math.cos(phi) - x * math.sin(phi));
|
|
var lon = blon + m_to_lon * (x * math.cos(phi) + y * math.sin(phi));
|
|
if (res > ((1.0 - edge) * (1.0- edge)))
|
|
{
|
|
if (rand() > 0.4) {
|
|
path = select_cloud_model(type,"small");
|
|
compat_layer.create_cloud(path, lat, lon, alt, 0.0);
|
|
}
|
|
}
|
|
else {
|
|
path = select_cloud_model(type,"large");
|
|
if (thread_flag == 1)
|
|
{create_cloud_vec(path, lat, lon, alt, 0.0);}
|
|
else
|
|
{compat_layer.create_cloud(path, lat, lon, alt, 0.0);}
|
|
}
|
|
i = i + 1;
|
|
}
|
|
}
|
|
|
|
i = 0;
|
|
|
|
if (rainflag ==1){
|
|
|
|
while(i<m)
|
|
{
|
|
var alpha = rand() * 2.0 * math.pi;
|
|
x = 0.8 * (1.0 - edge) * (1.0-edge) * rx * math.cos(alpha);
|
|
y = 0.8 * (1.0 - edge) * (1.0-edge) * ry * math.sin(alpha);
|
|
|
|
lat = blat + m_to_lat * (y * math.cos(phi) - x * math.sin(phi));
|
|
lon = blon + m_to_lon * (x * math.cos(phi) + y * math.sin(phi));
|
|
|
|
path = "Models/Weather/rain1.xml";
|
|
if (contains(cloud_vertical_size_map,type)) {var alt_shift = cloud_vertical_size_map[type];}
|
|
else {var alt_shift = 0.0;}
|
|
|
|
if (thread_flag == 1)
|
|
{create_cloud_vec(path, lat, lon,balt +0.5*bthick+ alt_shift, 0.0);}
|
|
else
|
|
{compat_layer.create_cloud(path, lat, lon, balt + 0.5 * bthick + alt_shift, 0.0);}
|
|
i = i + 1;
|
|
} # end while
|
|
} # end if (rainflag ==1)
|
|
}
|
|
|
|
|
|
###########################################################
|
|
# place a cloud layer with a gap in the middle
|
|
# (useful to reduce cloud count in large thunderstorms)
|
|
###########################################################
|
|
|
|
var create_hollow_layer = func (type, blat, blon, balt, bthick, rx, ry, phi, density, edge, gap_fraction) {
|
|
|
|
|
|
var i = 0;
|
|
var area = math.pi * rx * ry;
|
|
var n = int(area/80000000.0 * 100 * density);
|
|
var path = "Models/Weather/blank.ac";
|
|
|
|
phi = phi * math.pi/180.0;
|
|
|
|
if (contains(cloud_vertical_size_map, type))
|
|
{var alt_offset = cloud_vertical_size_map[type]/2.0 * m_to_ft;}
|
|
else {var alt_offset = 0.0;}
|
|
|
|
while(i<n)
|
|
{
|
|
var x = rx * (2.0 * rand() - 1.0);
|
|
var y = ry * (2.0 * rand() - 1.0);
|
|
var alt = balt + bthick * rand() + 0.8 * alt_offset;
|
|
var res = (x*x)/(rx*rx) + (y*y)/(ry*ry);
|
|
|
|
|
|
if ((res < 1.0) and (res > (gap_fraction * gap_fraction)))
|
|
{
|
|
var lat = blat + m_to_lat * (y * math.cos(phi) - x * math.sin(phi));
|
|
var lon = blon + m_to_lon * (x * math.cos(phi) + y * math.sin(phi));
|
|
if (res > ((1.0 - edge) * (1.0- edge)))
|
|
{
|
|
if (rand() > 0.4) {
|
|
path = select_cloud_model(type,"small");
|
|
compat_layer.create_cloud(path, lat, lon, alt, 0.0);
|
|
}
|
|
}
|
|
else {
|
|
path = select_cloud_model(type,"large");
|
|
if (thread_flag == 1)
|
|
{create_cloud_vec(path, lat, lon, alt, 0.0);}
|
|
else
|
|
{compat_layer.create_cloud(path, lat, lon, alt, 0.0);}
|
|
}
|
|
i = i + 1;
|
|
}
|
|
else # we are in the central gap region
|
|
{
|
|
i = i + 1;
|
|
}
|
|
}
|
|
|
|
i = 0;
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
###########################################################
|
|
# place a cloud box
|
|
###########################################################
|
|
|
|
|
|
var create_cloudbox = func (type, blat, blon, balt, dx,dy,dz,n, f_core, r_core, h_core, n_core, f_bottom, h_bottom, n_bottom) {
|
|
|
|
var phi = 0;
|
|
|
|
# first get core coordinates
|
|
|
|
var core_dx = dx * f_core;
|
|
var core_dy = dy * f_core;
|
|
var core_dz = dz * h_core;
|
|
|
|
var core_x_offset = (1.0 * rand() - 0.5) * ((dx - core_dx) * r_core);
|
|
var core_y_offset = (1.0 * rand() - 0.5) * ((dy - core_dy) * r_core);
|
|
|
|
# get the bottom geometry
|
|
|
|
var bottom_dx = dx * f_bottom;
|
|
var bottom_dy = dy * f_bottom;
|
|
var bottom_dz = dz * h_bottom;
|
|
|
|
var bottom_offset = 400.0; # in practice, need a small shift
|
|
|
|
# fill the main body of the box
|
|
|
|
for (var i=0; i<n; i=i+1)
|
|
{
|
|
|
|
var x = 0.5 * dx * (2.0 * rand() - 1.0);
|
|
var y = 0.5 * dy * (2.0 * rand() - 1.0);
|
|
|
|
# veto in core region
|
|
if ((x > core_x_offset - 0.5 * core_dx) and (x < core_x_offset + 0.5 * core_dx))
|
|
{
|
|
if ((y > core_y_offset - 0.5 * core_dy) and (y < core_y_offset + 0.5 * core_dy))
|
|
{
|
|
i = i -1;
|
|
continue;
|
|
}
|
|
}
|
|
|
|
var alt = balt + bottom_dz + bottom_offset + dz * rand();
|
|
|
|
var lat = blat + m_to_lat * (y * math.cos(phi) - x * math.sin(phi));
|
|
var lon = blon + m_to_lon * (x * math.cos(phi) + y * math.sin(phi));
|
|
|
|
var path = select_cloud_model(type,"standard");
|
|
|
|
if (thread_flag == 1)
|
|
{create_cloud_vec(path, lat, lon, alt, 0.0);}
|
|
else
|
|
{compat_layer.create_cloud(path, lat, lon, alt, 0.0);}
|
|
|
|
}
|
|
|
|
# fill the core region
|
|
|
|
for (var i=0; i<n_core; i=i+1)
|
|
{
|
|
var x = 0.5 * core_dx * (2.0 * rand() - 1.0);
|
|
var y = 0.5 * core_dy * (2.0 * rand() - 1.0);
|
|
var alt = balt + bottom_dz + bottom_offset + core_dz * rand();
|
|
|
|
|
|
var lat = blat + m_to_lat * (y * math.cos(phi) - x * math.sin(phi));
|
|
var lon = blon + m_to_lon * (x * math.cos(phi) + y * math.sin(phi));
|
|
|
|
var path = select_cloud_model(type,"core");
|
|
|
|
if (thread_flag == 1)
|
|
{create_cloud_vec(path, lat, lon, alt, 0.0);}
|
|
else
|
|
{compat_layer.create_cloud(path, lat, lon, alt, 0.0);}
|
|
|
|
}
|
|
|
|
# fill the bottom region
|
|
|
|
|
|
for (var i=0; i<n_bottom; i=i+1)
|
|
{
|
|
var x = 0.5 * bottom_dx * (2.0 * rand() - 1.0);
|
|
var y = 0.5 * bottom_dy * (2.0 * rand() - 1.0);
|
|
var alt = balt + bottom_dz * rand();
|
|
|
|
|
|
var lat = blat + m_to_lat * (y * math.cos(phi) - x * math.sin(phi));
|
|
var lon = blon + m_to_lon * (x * math.cos(phi) + y * math.sin(phi));
|
|
|
|
var path = select_cloud_model(type,"bottom");
|
|
|
|
if (thread_flag == 1)
|
|
{create_cloud_vec(path, lat, lon, alt, 0.0);}
|
|
else
|
|
{compat_layer.create_cloud(path, lat, lon, alt, 0.0);}
|
|
|
|
}
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
###########################################################
|
|
# terrain presampling initialization
|
|
###########################################################
|
|
|
|
var terrain_presampling_start = func (blat, blon, nc, size, alpha) {
|
|
|
|
|
|
# initialize the result vector
|
|
|
|
setsize(terrain_n,20);
|
|
for(var j=0;j<20;j=j+1){terrain_n[j]=0;}
|
|
|
|
if (thread_flag == 1)
|
|
{
|
|
var status = getprop(lw~"tmp/presampling-status");
|
|
if (status != "idle") # we try a second later
|
|
{
|
|
settimer( func {terrain_presampling_start(blat, blon, nc, size, alpha);},1.00);
|
|
return;
|
|
}
|
|
else
|
|
{
|
|
setprop(lw~"tmp/presampling-status", "sampling");
|
|
terrain_presampling_loop (blat, blon, nc, size, alpha);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
terrain_presampling(blat, blon, nc, size, alpha);
|
|
terrain_presampling_analysis();
|
|
setprop(lw~"tmp/presampling-status", "finished");
|
|
}
|
|
}
|
|
|
|
###########################################################
|
|
# terrain presampling loop
|
|
###########################################################
|
|
|
|
var terrain_presampling_loop = func (blat, blon, nc, size, alpha) {
|
|
|
|
|
|
var n = 25;
|
|
|
|
var n_out = 25;
|
|
|
|
# dynamically drop accuracy if framerate is low
|
|
|
|
var dt = getprop("/sim/time/delta-sec");
|
|
|
|
if (dt > 0.2) # we have below 20 fps
|
|
{n = 5;}
|
|
else if (dt > 0.1) # we have below 10 fps
|
|
{n = 10;}
|
|
else if (dt > 0.05) # we have below 5 fps
|
|
{n = 15;}
|
|
|
|
|
|
if (nc <= 0) # we're done and may analyze the result
|
|
{
|
|
terrain_presampling_analysis();
|
|
if (debug_output_flag == 1)
|
|
{print("Presampling done!");}
|
|
setprop(lw~"tmp/presampling-status", "finished");
|
|
return;
|
|
}
|
|
|
|
terrain_presampling(blat, blon, n, size, alpha);
|
|
|
|
settimer( func {terrain_presampling_loop(blat, blon, nc-n_out, size, alpha) },0);
|
|
}
|
|
|
|
|
|
###########################################################
|
|
# terrain presampling routine
|
|
###########################################################
|
|
|
|
var terrain_presampling = func (blat, blon, ntries, size, alpha) {
|
|
|
|
var phi = alpha * math.pi/180.0;
|
|
var elevation = 0.0;
|
|
|
|
var lat_vec = [];
|
|
var lon_vec = [];
|
|
var lat_lon_vec = [];
|
|
|
|
|
|
for (var i=0; i<ntries; i=i+1)
|
|
{
|
|
var x = (2.0 * rand() - 1.0) * size;
|
|
var y = (2.0 * rand() - 1.0) * size;
|
|
|
|
append(lat_vec, blat + (y * math.cos(phi) - x * math.sin(phi)) * m_to_lat);
|
|
append(lon_vec, blon + (x * math.cos(phi) + y * math.sin(phi)) * m_to_lon);
|
|
}
|
|
|
|
|
|
var elevation_vec = compat_layer.get_elevation_array(lat_vec, lon_vec);
|
|
|
|
|
|
for (i=0; i<ntries;i=i+1)
|
|
{
|
|
for(j=0;j<20;j=j+1)
|
|
{
|
|
if ((elevation_vec[i] != -1.0) and (elevation_vec[i] < 500.0 * (j+1)))
|
|
{terrain_n[j] = terrain_n[j]+1; break;}
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
}
|
|
|
|
###########################################################
|
|
# terrain presampling analysis
|
|
###########################################################
|
|
|
|
var terrain_presampling_analysis = func {
|
|
|
|
var sum = 0;
|
|
var alt_mean = 0;
|
|
var alt_med = 0;
|
|
var alt_20 = 0;
|
|
var alt_min = 0;
|
|
var alt_low_min = 0;
|
|
var alt_offset = 0;
|
|
|
|
# for (var i=0;i<20;i=i+1){print(500.0*i," ",terrain_n[i]);}
|
|
|
|
for (var i=0; i<20;i=i+1)
|
|
{sum = sum + terrain_n[i];}
|
|
|
|
var n_tot = sum;
|
|
|
|
sum = 0;
|
|
for (var i=0; i<20;i=i+1)
|
|
{
|
|
sum = sum + terrain_n[i];
|
|
if (sum > int(0.5 *n_tot)) {alt_med = i * 500.0; break;}
|
|
}
|
|
|
|
sum = 0;
|
|
for (var i=0; i<20;i=i+1)
|
|
{
|
|
sum = sum + terrain_n[i];
|
|
if (sum > int(0.3 *n_tot)) {alt_20 = i * 500.0; break;}
|
|
}
|
|
|
|
|
|
for (var i=0; i<20;i=i+1) {alt_mean = alt_mean + terrain_n[i] * i * 500.0;}
|
|
alt_mean = alt_mean/n_tot;
|
|
|
|
for (var i=0; i<20;i=i+1) {if (terrain_n[i] > 0) {alt_min = i * 500.0; break;}}
|
|
|
|
var n_max = 0;
|
|
sum = 0;
|
|
|
|
for (var i=0; i<19;i=i+1)
|
|
{
|
|
sum = sum + terrain_n[i];
|
|
if (terrain_n[i] > n_max) {n_max = terrain_n[i];}
|
|
if ((n_max > terrain_n[i+1]) and (sum > int(0.3*n_tot)))
|
|
{alt_low_min = i * 500; break;}
|
|
}
|
|
|
|
if (debug_output_flag == 1)
|
|
{print("Terrain presampling analysis results:");
|
|
print("total: ",n_tot," mean: ",alt_mean," median: ",alt_med," min: ",alt_min, " alt_20: ", alt_20);}
|
|
|
|
#if (alt_low_min < alt_med) {alt_offset = alt_low_min;}
|
|
#else {alt_offset = alt_med;}
|
|
|
|
setprop(lw~"tmp/tile-alt-offset-ft",alt_20);
|
|
setprop(lw~"tmp/tile-alt-median-ft",alt_med);
|
|
setprop(lw~"tmp/tile-alt-min-ft",alt_min);
|
|
setprop(lw~"tmp/tile-alt-layered-ft",0.5 * (alt_min + alt_offset));
|
|
|
|
append(alt_50_array, alt_med);
|
|
append(alt_20_array, alt_20);
|
|
}
|
|
|
|
|
|
|
|
###########################################################
|
|
# wave conditions search
|
|
###########################################################
|
|
|
|
var wave_detection_loop = func (blat, blon, nx, alpha) {
|
|
|
|
var phi = alpha * math.pi/180.0;
|
|
var elevation = 0.0;
|
|
var ny = 20;
|
|
|
|
|
|
for (var i=0; i<ny; i=i+1)
|
|
{
|
|
var x = 5000.0;
|
|
var y = -20000.0 + i * 2000.0;
|
|
|
|
var lat = blat + (y * math.cos(phi) - x * math.sin(phi)) * m_to_lat;
|
|
var lon = blon + (x * math.cos(phi) + y * math.sin(phi)) * m_to_lon;
|
|
|
|
elevation = compat_layer.get_elevation(lat, lon);
|
|
|
|
print(elevation);
|
|
|
|
}
|
|
|
|
|
|
}
|
|
|
|
###########################################################
|
|
# detailed altitude determination for convective calls
|
|
# clouds follow the terrain to some degree, but not excessively so
|
|
###########################################################
|
|
|
|
var get_convective_altitude = func (balt, elevation, tile_index) {
|
|
|
|
|
|
var alt_offset = alt_20_array[tile_index - 1];
|
|
var alt_median = alt_50_array[tile_index - 1];
|
|
|
|
# get the maximal shift
|
|
var alt_variation = alt_median - alt_offset;
|
|
|
|
# get the difference between offset and foot point
|
|
var alt_diff = elevation - alt_offset;
|
|
|
|
# now get the elevation-induced shift
|
|
|
|
var fraction = alt_diff / alt_variation;
|
|
|
|
if (fraction > 1.0) {fraction = 1.0;} # no placement above maximum shift
|
|
if (fraction < 0.0) {fraction = 0.0;} # no downward shift
|
|
|
|
# get the cloud base
|
|
|
|
var cloudbase = balt - alt_offset;
|
|
|
|
var alt_above_terrain = balt - elevation;
|
|
|
|
# the shift strength is weakened if the layer is high above base elevation
|
|
# the reference altitude is 1000 ft, anything higher has less sensitivity to terrain
|
|
|
|
var shift_strength = 1000.0/alt_above_terrain;
|
|
|
|
if (shift_strength > 1.0) {shift_strength = 1.0;} # no enhancement for very low layers
|
|
if (shift_strength < 0.0) {shift_strength = 1.0;} # this shouldn't happen, but just in case...
|
|
|
|
if (alt_diff > alt_variation) {alt_diff = alt_variation;} # maximal shift is given by alt_variation
|
|
|
|
return balt + shift_strength * alt_diff * fraction;
|
|
|
|
}
|
|
|
|
###########################################################
|
|
# terrain presampling listener dispatcher
|
|
###########################################################
|
|
|
|
var manage_presampling = func {
|
|
|
|
var status = getprop(lw~"tmp/presampling-status");
|
|
|
|
# we only take action when the analysis is done
|
|
if (status != "finished") {return;}
|
|
|
|
if (getprop(lw~"tiles/tile-counter") == 0) # we deal with a tile setup call from the menu
|
|
{
|
|
set_tile();
|
|
}
|
|
else # the tile setup call came from weather_tile_management
|
|
{
|
|
var lat = getprop(lw~"tiles/tmp/latitude-deg");
|
|
var lon = getprop(lw~"tiles/tmp/longitude-deg");
|
|
var code = getprop(lw~"tiles/tmp/code");
|
|
var dir_index = getprop(lw~"tiles/tmp/dir-index");
|
|
|
|
weather_tile_management.generate_tile(code, lat, lon, dir_index);
|
|
}
|
|
|
|
|
|
# set status to idle again
|
|
|
|
setprop(lw~"tmp/presampling-status", "idle");
|
|
|
|
}
|
|
|
|
###########################################################
|
|
# set wind model flag
|
|
###########################################################
|
|
|
|
var set_wind_model_flag = func {
|
|
|
|
var wind_model = getprop(lw~"config/wind-model");
|
|
|
|
if (wind_model == "constant") {wind_model_flag = 1;}
|
|
else if (wind_model == "constant in tile") {wind_model_flag =2;}
|
|
else if (wind_model == "aloft interpolated") {wind_model_flag =3; }
|
|
else if (wind_model == "airmass interpolated") {wind_model_flag =4;}
|
|
else if (wind_model == "aloft waypoints") {wind_model_flag =5;}
|
|
else {print("Wind model not implemented!"); wind_model_flag =1;}
|
|
|
|
|
|
}
|
|
|
|
|
|
###########################################################
|
|
# set texture mix for convective clouds
|
|
###########################################################
|
|
|
|
var set_texture_mix = func {
|
|
|
|
var thermal_properties = getprop(lw~"config/thermal-properties");
|
|
|
|
|
|
convective_texture_mix = -(thermal_properties - 1.0) * 0.4;
|
|
|
|
if (convective_texture_mix < -0.2) {convective_texture_mix = -0.2;}
|
|
if (convective_texture_mix > 0.2) {convective_texture_mix = 0.2;}
|
|
}
|
|
|
|
###########################################################
|
|
# create an effect volume
|
|
###########################################################
|
|
|
|
var create_effect_volume = func (geometry, lat, lon, r1, r2, phi, alt_low, alt_high, vis, rain, snow, turb, lift, lift_flag, sat) {
|
|
|
|
|
|
var ev = effectVolume.new (geometry, lat, lon, r1, r2, phi, alt_low, alt_high, vis, rain, snow, turb, lift, lift_flag, sat);
|
|
ev.index = getprop(lw~"tiles/tile-counter");
|
|
ev.active_flag = 0;
|
|
|
|
|
|
if (vis < 0.0) {ev.vis_flag = 0;} else {ev.vis_flag = 1;}
|
|
if (rain < 0.0) {ev.rain_flag = 0;} else {ev.rain_flag = 1;}
|
|
if (snow < 0.0) {ev.snow_flag = 0;} else {ev.snow_flag = 1;}
|
|
if (turb < 0.0) {ev.turb_flag = 0;} else {ev.turb_flag = 1;}
|
|
if (lift_flag == 0.0) {ev.lift_flag = 0;} else {ev.lift_flag = 1;}
|
|
if (sat < 0.0) {ev.sat_flag = 0;} else {ev.sat_flag = 1;}
|
|
if (sat > 1.0) {sat = 1.0;}
|
|
|
|
if (lift_flag == -2) # we create a thermal by function
|
|
{
|
|
ev.lift_flag = 2;
|
|
ev.radius = 0.8 * r1;
|
|
ev.height = alt_high * 0.87;
|
|
ev.cn = 0.7 + rand() * 0.2;
|
|
ev.sh = 0.7 + rand() * 0.2;
|
|
ev.max_lift = lift;
|
|
ev.f_lift_radius = 0.7 + rand() * 0.2;
|
|
if (dynamics_flag == 1) # globals set by the convective system
|
|
{
|
|
ev.flt = cloud_fractional_lifetime;
|
|
ev.evolution_timestamp = cloud_evolution_timestamp;
|
|
}
|
|
}
|
|
|
|
if (lift_flag == -3) # we create a wave lift
|
|
{
|
|
ev.lift_flag = 3;
|
|
ev.height = 10000.0; # scale height in ft
|
|
ev.max_lift = lift;
|
|
ev.index = 0; # static objects are assigned tile id zero
|
|
}
|
|
|
|
# set a timestamp if needed
|
|
|
|
if (dynamics_flag == 1)
|
|
{
|
|
ev.timestamp = weather_dynamics.time_lw;
|
|
}
|
|
|
|
# and add to the counter
|
|
setprop(lw~"effect-volumes/number",getprop(lw~"effect-volumes/number")+1);
|
|
|
|
append(effectVolumeArray,ev);
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
###########################################################
|
|
# set a weather station for interpolation
|
|
###########################################################
|
|
|
|
var set_weather_station = func (lat, lon, vis, T, D, p) {
|
|
|
|
var s = weatherStation.new (lat, lon, vis, T, D, p);
|
|
s.index = getprop(lw~"tiles/tile-counter");
|
|
s.weight = 0.1;
|
|
|
|
# set a timestamp if needed
|
|
|
|
if (dynamics_flag == 1)
|
|
{
|
|
s.timestamp = weather_dynamics.time_lw;
|
|
}
|
|
append(weatherStationArray,s);
|
|
|
|
}
|
|
|
|
|
|
###########################################################
|
|
# set a wind interpolation point
|
|
###########################################################
|
|
|
|
var set_wind_ipoint = func (lat, lon, d0, v0, d1, v1, d2, v2, d3, v3, d4, v4, d5, v5, d6, v6, d7, v7, d8, v8) {
|
|
|
|
var n = props.globals.getNode(lwi, 1);
|
|
for (var i = 0; 1; i += 1)
|
|
if (n.getChild("wind", i, 0) == nil)
|
|
break;
|
|
|
|
s = n.getChild("wind", i, 1);
|
|
|
|
s.getNode("latitude-deg",1).setValue(lat);
|
|
s.getNode("longitude-deg",1).setValue(lon);
|
|
|
|
s.getChild("altitude",0,1).getNode("wind-from-heading-deg",1).setValue(d0);
|
|
s.getChild("altitude",0,1).getNode("windspeed-kt",1).setValue(v0);
|
|
|
|
s.getChild("altitude",1,1).getNode("wind-from-heading-deg",1).setValue(d1);
|
|
s.getChild("altitude",1,1).getNode("windspeed-kt",1).setValue(v1);
|
|
|
|
s.getChild("altitude",2,1).getNode("wind-from-heading-deg",1).setValue(d2);
|
|
s.getChild("altitude",2,1).getNode("windspeed-kt",1).setValue(v2);
|
|
|
|
s.getChild("altitude",3,1).getNode("wind-from-heading-deg",1).setValue(d3);
|
|
s.getChild("altitude",3,1).getNode("windspeed-kt",1).setValue(v3);
|
|
|
|
s.getChild("altitude",4,1).getNode("wind-from-heading-deg",1).setValue(d4);
|
|
s.getChild("altitude",4,1).getNode("windspeed-kt",1).setValue(v4);
|
|
|
|
s.getChild("altitude",5,1).getNode("wind-from-heading-deg",1).setValue(d5);
|
|
s.getChild("altitude",5,1).getNode("windspeed-kt",1).setValue(v5);
|
|
|
|
s.getChild("altitude",6,1).getNode("wind-from-heading-deg",1).setValue(d6);
|
|
s.getChild("altitude",6,1).getNode("windspeed-kt",1).setValue(v6);
|
|
|
|
s.getChild("altitude",7,1).getNode("wind-from-heading-deg",1).setValue(d7);
|
|
s.getChild("altitude",7,1).getNode("windspeed-kt",1).setValue(v7);
|
|
|
|
s.getChild("altitude",8,1).getNode("wind-from-heading-deg",1).setValue(d8);
|
|
s.getChild("altitude",8,1).getNode("windspeed-kt",1).setValue(v8);
|
|
|
|
}
|
|
|
|
###########################################################
|
|
# helper to show additional dialogs
|
|
###########################################################
|
|
|
|
var showDialog = func (name) {
|
|
|
|
fgcommand("dialog-show", props.Node.new({"dialog-name":name}));
|
|
|
|
}
|
|
|
|
|
|
###########################################################
|
|
# helper to transfer configuration flags in menu to Nasal
|
|
###########################################################
|
|
|
|
var readFlags = func {
|
|
|
|
# thermal lift must be 1 for constant thermals (obsolete), 2 for thermals by model (menu default)
|
|
# and 3 for blue thermals (set internally inside the tile only)
|
|
|
|
if (getprop(lw~"config/generate-thermal-lift-flag") ==1) {generate_thermal_lift_flag = 2;}
|
|
else {generate_thermal_lift_flag = 0};
|
|
|
|
thread_flag = getprop(lw~"config/thread-flag");
|
|
dynamics_flag = getprop(lw~"config/dynamics-flag");
|
|
presampling_flag = getprop(lw~"tmp/presampling-flag");
|
|
detailed_clouds_flag = getprop(lw~"config/detailed-clouds-flag");
|
|
dynamical_convection_flag = getprop(lw~"config/dynamical-convection-flag");
|
|
debug_output_flag = getprop(lw~"config/debug-output-flag");
|
|
|
|
|
|
}
|
|
|
|
###########################################################
|
|
# wrappers to call functions from the local weather menu bar
|
|
###########################################################
|
|
|
|
var streak_wrapper = func {
|
|
|
|
thread_flag = 0;
|
|
dynamics_flag = 0;
|
|
presampling_flag = 0;
|
|
|
|
var array = [];
|
|
append(weather_tile_management.modelArrays,array);
|
|
setprop(lw~"tiles/tile-counter",getprop(lw~"tiles/tile-counter")+1);
|
|
|
|
var lat = getprop("position/latitude-deg");
|
|
var lon = getprop("position/longitude-deg");
|
|
var type = getprop("/local-weather/tmp/cloud-type");
|
|
var alt = getprop("/local-weather/tmp/alt");
|
|
var nx = getprop("/local-weather/tmp/nx");
|
|
var xoffset = getprop("/local-weather/tmp/xoffset");
|
|
var xedge = getprop("/local-weather/tmp/xedge");
|
|
var ny = getprop("/local-weather/tmp/ny");
|
|
var yoffset = getprop("/local-weather/tmp/yoffset");
|
|
var yedge = getprop("/local-weather/tmp/yedge");
|
|
var dir = getprop("/local-weather/tmp/dir");
|
|
var tri = getprop("/local-weather/tmp/tri");
|
|
var rnd_alt = getprop("/local-weather/tmp/rnd-alt");
|
|
var rnd_pos_x = getprop("/local-weather/tmp/rnd-pos-x");
|
|
var rnd_pos_y = getprop("/local-weather/tmp/rnd-pos-y");
|
|
|
|
create_streak(type,lat,lon,alt,rnd_alt,nx,xoffset,xedge,rnd_pos_x,ny,yoffset,yedge,rnd_pos_y,dir,tri);
|
|
}
|
|
|
|
|
|
var convection_wrapper = func {
|
|
|
|
thread_flag = 0;
|
|
dynamics_flag = 0;
|
|
presampling_flag = 0;
|
|
|
|
|
|
var array = [];
|
|
append(weather_tile_management.modelArrays,array);
|
|
setprop(lw~"tiles/tile-counter",getprop(lw~"tiles/tile-counter")+1);
|
|
|
|
var lat = getprop("position/latitude-deg");
|
|
var lon = getprop("position/longitude-deg");
|
|
var alt = getprop("/local-weather/tmp/conv-alt");
|
|
var size = getprop("/local-weather/tmp/conv-size");
|
|
var strength = getprop("/local-weather/tmp/conv-strength");
|
|
|
|
var n = int(10 * size * size * strength);
|
|
create_cumosys(lat,lon,alt,n, size*1000.0);
|
|
|
|
}
|
|
|
|
var barrier_wrapper = func {
|
|
|
|
|
|
thread_flag = 0;
|
|
dynamics_flag = 0;
|
|
presampling_flag = 0;
|
|
|
|
|
|
var array = [];
|
|
append(weather_tile_management.modelArrays,array);
|
|
setprop(lw~"tiles/tile-counter",getprop(lw~"tiles/tile-counter")+1);
|
|
|
|
var lat = getprop("position/latitude-deg");
|
|
var lon = getprop("position/longitude-deg");
|
|
var alt = getprop("/local-weather/tmp/bar-alt");
|
|
var n = getprop("/local-weather/tmp/bar-n");
|
|
var dir = getprop("/local-weather/tmp/bar-dir");
|
|
var dist = getprop("/local-weather/tmp/bar-dist") * 1000.0;
|
|
var size = getprop("/local-weather/tmp/bar-size") * 1000.0;
|
|
|
|
create_rise_clouds(lat, lon, alt, n, size, dir, dist);
|
|
|
|
}
|
|
|
|
var single_cloud_wrapper = func {
|
|
|
|
thread_flag = 0;
|
|
dynamics_flag = 0;
|
|
presampling_flag = 0;
|
|
|
|
|
|
|
|
var array = [];
|
|
append(weather_tile_management.modelArrays,array);
|
|
setprop(lw~"tiles/tile-counter",getprop(lw~"tiles/tile-counter")+1);
|
|
|
|
var type = getprop("/local-weather/tmp/scloud-type");
|
|
var subtype = getprop("/local-weather/tmp/scloud-subtype");
|
|
var lat = getprop("/local-weather/tmp/scloud-lat");
|
|
var lon = getprop("/local-weather/tmp/scloud-lon");
|
|
var alt = getprop("/local-weather/tmp/scloud-alt");
|
|
var heading = getprop("/local-weather/tmp/scloud-dir");
|
|
|
|
var path = select_cloud_model(type,subtype);
|
|
|
|
compat_layer.create_cloud(path, lat, lon, alt, heading);
|
|
|
|
}
|
|
|
|
var layer_wrapper = func {
|
|
|
|
thread_flag = 0;
|
|
dynamics_flag = 0;
|
|
presampling_flag = 0;
|
|
|
|
|
|
var array = [];
|
|
append(weather_tile_management.modelArrays,array);
|
|
setprop(lw~"tiles/tile-counter",getprop(lw~"tiles/tile-counter")+1);
|
|
|
|
var lat = getprop("position/latitude-deg");
|
|
var lon = getprop("position/longitude-deg");
|
|
var type = getprop(lw~"tmp/layer-type");
|
|
var rx = getprop(lw~"tmp/layer-rx") * 1000.0;
|
|
var ry = getprop(lw~"tmp/layer-ry") * 1000.0;
|
|
var phi = getprop(lw~"tmp/layer-phi");
|
|
var alt = getprop(lw~"tmp/layer-alt");
|
|
var thick = getprop(lw~"tmp/layer-thickness");
|
|
var density = getprop(lw~"tmp/layer-density");
|
|
var edge = getprop(lw~"tmp/layer-edge");
|
|
var rain_flag = getprop(lw~"tmp/layer-rain-flag");
|
|
var rain_density = getprop(lw~"tmp/layer-rain-density");
|
|
|
|
create_layer(type, lat, lon, alt, thick, rx, ry, phi, density, edge, rain_flag, rain_density);
|
|
|
|
}
|
|
|
|
var box_wrapper = func {
|
|
|
|
thread_flag = 0;
|
|
dynamics_flag = 0;
|
|
presampling_flag = 0;
|
|
|
|
|
|
setprop(lw~"tiles/tile-counter",getprop(lw~"tiles/tile-counter")+1);
|
|
|
|
var lat = getprop("position/latitude-deg");
|
|
var lon = getprop("position/longitude-deg");
|
|
var alt = getprop("position/altitude-ft");
|
|
var x = getprop(lw~"tmp/box-x-m");
|
|
var y = getprop(lw~"tmp/box-y-m");
|
|
var z = getprop(lw~"tmp/box-alt-ft");
|
|
var n = getprop(lw~"tmp/box-n");
|
|
var f_core = getprop(lw~"tmp/box-core-fraction");
|
|
var r_core = getprop(lw~"tmp/box-core-offset");
|
|
var h_core = getprop(lw~"tmp/box-core-height");
|
|
var n_core = getprop(lw~"tmp/box-core-n");
|
|
var f_bottom = getprop(lw~"tmp/box-bottom-fraction");
|
|
var h_bottom = getprop(lw~"tmp/box-bottom-thickness");
|
|
var n_bottom = getprop(lw~"tmp/box-bottom-n");
|
|
|
|
var type = "Box_test";
|
|
|
|
|
|
#create_cloudbox(type,subtype,lat, lon, alt, x,y,z,n);
|
|
|
|
create_cloudbox(type, lat, lon, alt, x,y,z,n, f_core, r_core, h_core, n_core, f_bottom, h_bottom, n_bottom);
|
|
|
|
}
|
|
|
|
|
|
var set_aloft_wrapper = func {
|
|
|
|
|
|
|
|
var lat = getprop(lw~"tmp/ipoint-latitude-deg");
|
|
var lon = getprop(lw~"tmp/ipoint-longitude-deg");
|
|
|
|
var d0 = getprop(lw~"tmp/FL0-wind-from-heading-deg");
|
|
var v0 = getprop(lw~"tmp/FL0-windspeed-kt");
|
|
|
|
var d1 = getprop(lw~"tmp/FL50-wind-from-heading-deg");
|
|
var v1 = getprop(lw~"tmp/FL50-windspeed-kt");
|
|
|
|
var d2 = getprop(lw~"tmp/FL100-wind-from-heading-deg");
|
|
var v2 = getprop(lw~"tmp/FL100-windspeed-kt");
|
|
|
|
var d3 = getprop(lw~"tmp/FL180-wind-from-heading-deg");
|
|
var v3 = getprop(lw~"tmp/FL180-windspeed-kt");
|
|
|
|
var d4 = getprop(lw~"tmp/FL240-wind-from-heading-deg");
|
|
var v4 = getprop(lw~"tmp/FL240-windspeed-kt");
|
|
|
|
var d5 = getprop(lw~"tmp/FL300-wind-from-heading-deg");
|
|
var v5 = getprop(lw~"tmp/FL300-windspeed-kt");
|
|
|
|
var d6 = getprop(lw~"tmp/FL340-wind-from-heading-deg");
|
|
var v6 = getprop(lw~"tmp/FL340-windspeed-kt");
|
|
|
|
var d7 = getprop(lw~"tmp/FL390-wind-from-heading-deg");
|
|
var v7 = getprop(lw~"tmp/FL390-windspeed-kt");
|
|
|
|
var d8 = getprop(lw~"tmp/FL450-wind-from-heading-deg");
|
|
var v8 = getprop(lw~"tmp/FL450-windspeed-kt");
|
|
|
|
set_wind_ipoint(lat, lon, d0, v0, d1, v1, d2, v2, d3, v3, d4, v4, d5, v5, d6, v6, d7, v7, d8, v8);
|
|
|
|
if (wind_model_flag == 5)
|
|
{setprop(lwi~"ipoint-number", getprop(lwi~"ipoint-number") + 1);}
|
|
|
|
}
|
|
|
|
####################################
|
|
# tile setup call wrapper
|
|
####################################
|
|
|
|
var set_tile = func {
|
|
|
|
|
|
var type = getprop("/local-weather/tmp/tile-type");
|
|
|
|
# set tile center coordinates to current position
|
|
|
|
var lat = getprop("position/latitude-deg");
|
|
var lon = getprop("position/longitude-deg");
|
|
|
|
setprop(lw~"tiles/tmp/latitude-deg",lat);
|
|
setprop(lw~"tiles/tmp/longitude-deg",lon);
|
|
setprop(lw~"tiles/tmp/dir-index",4);
|
|
|
|
readFlags();
|
|
|
|
# check consistency of flags
|
|
|
|
if (dynamical_convection_flag == 1)
|
|
{
|
|
if (dynamics_flag == 0)
|
|
{
|
|
print("Dynamical convection needs weather dynamics to run! Aborting...");
|
|
setprop("/sim/messages/pilot", "Local weather: dynamical convection needs weather dynamics to run! Aborting...");
|
|
return;
|
|
}
|
|
if (presampling_flag == 0)
|
|
{
|
|
print("Dynamical convection needs terrain presampling to run! Aborting...");
|
|
setprop("/sim/messages/pilot", "Local weather: dynamical convection needs terrain presampling to run! Aborting...");
|
|
return;
|
|
}
|
|
}
|
|
|
|
|
|
# if we can do so, we switch global weather and METAR parsing in environment off at this point
|
|
|
|
if (compat_layer.features.can_disable_environment ==1)
|
|
{
|
|
props.globals.getNode("/environment/config/enabled").setBoolValue(0);
|
|
props.globals.getNode("/environment/params/metar-updates-environment").setBoolValue(0);
|
|
}
|
|
|
|
|
|
|
|
# now see if we need to presample the terrain
|
|
|
|
if ((presampling_flag == 1) and (getprop(lw~"tmp/presampling-status") == "idle"))
|
|
{
|
|
terrain_presampling_start(lat, lon, 1000, 40000, getprop(lw~"tmp/tile-orientation-deg"));
|
|
return;
|
|
}
|
|
|
|
|
|
# see if we use METAR for weather setup
|
|
|
|
if ((getprop("/environment/metar/valid") == 1) and (getprop(lw~"tmp/tile-management") == "METAR"))
|
|
{
|
|
type = "METAR";
|
|
metar_flag = 1;
|
|
|
|
setprop(lw~"METAR/station-id","METAR");
|
|
|
|
# switch off normal 3d clouds
|
|
|
|
var layers = props.globals.getNode("/environment/clouds").getChildren("layer");
|
|
|
|
foreach (l; layers)
|
|
{
|
|
l.getNode("coverage-type").setValue(5);
|
|
}
|
|
|
|
}
|
|
else if ((getprop("/environment/metar/valid") == 0) and (getprop(lw~"tmp/tile-management") == "METAR"))
|
|
{
|
|
print("No METAR available, aborting...");
|
|
setprop("/sim/messages/pilot", "Local weather: No METAR available! Aborting...");
|
|
return;
|
|
}
|
|
|
|
|
|
# see if we need to create an aloft wind interpolation structure
|
|
|
|
if ((wind_model_flag == 3) or ((wind_model_flag ==5) and (getprop(lwi~"ipoint-number") == 0)))
|
|
{set_aloft_wrapper();}
|
|
|
|
|
|
# prepare the first tile wind field
|
|
|
|
if (metar_flag == 1) # the winds from current METAR are used
|
|
{
|
|
if ((wind_model_flag == 1) or (wind_model_flag == 2))
|
|
{
|
|
# METAR reports ground winds, we want to set aloft, so we need to compute the local boundary layer
|
|
# need to set the tile index for this
|
|
setprop(lw~"tiles/tile[4]/tile-index",1);
|
|
|
|
var boundary_correction = 1.0/get_slowdown_fraction();
|
|
|
|
append(weather_dynamics.tile_wind_direction, getprop("environment/metar/base-wind-dir-deg"));
|
|
append(weather_dynamics.tile_wind_speed, boundary_correction * getprop("environment/metar/base-wind-speed-kt"));
|
|
setprop(lw~"tmp/tile-orientation-deg",getprop("environment/metar/base-wind-dir-deg"));
|
|
}
|
|
else
|
|
{
|
|
print("Wind model currently not supported with live data!");
|
|
setprop("/sim/messages/pilot", "Local weather: Wind model currently not supported with live data! Aborting...");
|
|
return;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
|
|
if (wind_model_flag == 5) # it needs to be interpolated
|
|
{
|
|
var res = wind_interpolation(lat,lon,0.0);
|
|
|
|
append(weather_dynamics.tile_wind_direction,res[0]);
|
|
append(weather_dynamics.tile_wind_speed,res[1]);
|
|
}
|
|
else if (wind_model_flag == 3) # it comes from a different menu
|
|
{
|
|
append(weather_dynamics.tile_wind_direction, getprop(lw~"tmp/FL0-wind-from-heading-deg"));
|
|
append(weather_dynamics.tile_wind_speed, getprop(lw~"tmp/FL0-windspeed-kt"));
|
|
}
|
|
else # it comes from the standard menu
|
|
{
|
|
append(weather_dynamics.tile_wind_direction, getprop(lw~"tmp/tile-orientation-deg"));
|
|
append(weather_dynamics.tile_wind_speed, getprop(lw~"tmp/windspeed-kt"));
|
|
}
|
|
|
|
# when the aloft wind menu is used, the lowest winds should be taken from there
|
|
# so we need to overwrite the setting from the tile generating menu in this case
|
|
# otherwise the wrong orientation is built
|
|
|
|
|
|
if (wind_model_flag ==3)
|
|
{
|
|
setprop(lw~"tmp/tile-orientation-deg", getprop(lw~"tmp/FL0-wind-from-heading-deg"));
|
|
}
|
|
else if (wind_model_flag == 5)
|
|
{
|
|
setprop(lw~"tmp/tile-orientation-deg", weather_dynamics.tile_wind_direction[0]);
|
|
}
|
|
}
|
|
|
|
# create all the neighbouring tile coordinate sets
|
|
|
|
weather_tile_management.create_neighbours(lat,lon,getprop(lw~"tmp/tile-orientation-deg"));
|
|
|
|
|
|
|
|
|
|
setprop(lw~"tiles/tile-counter",getprop(lw~"tiles/tile-counter")+1);
|
|
|
|
|
|
# see if we need to generate a quadtree structure for clouds
|
|
|
|
if (dynamics_flag ==1)
|
|
{
|
|
var quadtree = [];
|
|
weather_dynamics.generate_quadtree_structure(0, quadtree);
|
|
append(weather_dynamics.cloudQuadtrees,quadtree);
|
|
}
|
|
|
|
|
|
|
|
|
|
if (type == "High-pressure-core")
|
|
{weather_tiles.set_high_pressure_core_tile();}
|
|
else if (type == "High-pressure")
|
|
{weather_tiles.set_high_pressure_tile();}
|
|
else if (type == "High-pressure-border")
|
|
{weather_tiles.set_high_pressure_border_tile();}
|
|
else if (type == "Low-pressure-border")
|
|
{weather_tiles.set_low_pressure_border_tile();}
|
|
else if (type == "Low-pressure")
|
|
{weather_tiles.set_low_pressure_tile();}
|
|
else if (type == "Low-pressure-core")
|
|
{weather_tiles.set_low_pressure_core_tile();}
|
|
else if (type == "Cold-sector")
|
|
{weather_tiles.set_cold_sector_tile();}
|
|
else if (type == "Warm-sector")
|
|
{weather_tiles.set_warm_sector_tile();}
|
|
else if (type == "Tropical")
|
|
{weather_tiles.set_tropical_weather_tile();}
|
|
else if (type == "Coldfront")
|
|
{weather_tiles.set_coldfront_tile();}
|
|
else if (type == "Warmfront")
|
|
{weather_tiles.set_warmfront1_tile();}
|
|
else if (type == "Warmfront-2")
|
|
{weather_tiles.set_warmfront2_tile();}
|
|
else if (type == "Warmfront-3")
|
|
{weather_tiles.set_warmfront3_tile();}
|
|
else if (type == "Warmfront-4")
|
|
{weather_tiles.set_warmfront4_tile();}
|
|
else if (type == "METAR")
|
|
{weather_tiles.set_METAR_tile();}
|
|
else if (type == "Altocumulus sky")
|
|
{weather_tiles.set_altocumulus_tile();setprop(lw~"tiles/code","altocumulus_sky");}
|
|
else if (type == "Broken layers")
|
|
{weather_tiles.set_broken_layers_tile();setprop(lw~"tiles/code","broken_layers");}
|
|
else if (type == "Cold front")
|
|
{weather_tiles.set_coldfront_tile();setprop(lw~"tiles/code","coldfront");}
|
|
else if (type == "Cirrus sky")
|
|
{weather_tiles.set_cirrus_sky_tile();setprop(lw~"tiles/code","cirrus_sky");}
|
|
else if (type == "Fair weather")
|
|
{setprop(lw~"tiles/code","cumulus_sky");weather_tiles.set_fair_weather_tile();}
|
|
else if (type == "Glider's sky")
|
|
{setprop(lw~"tiles/code","gliders_sky");weather_tiles.set_gliders_sky_tile();}
|
|
else if (type == "Blue thermals")
|
|
{setprop(lw~"tiles/code","blue_thermals");weather_tiles.set_blue_thermals_tile();}
|
|
else if (type == "Incoming rainfront")
|
|
{weather_tiles.set_rainfront_tile();setprop(lw~"tiles/code","rainfront");}
|
|
else if (type == "8/8 stratus sky")
|
|
{weather_tiles.set_overcast_stratus_tile();setprop(lw~"tiles/code","overcast_stratus");}
|
|
else if (type == "Test tile")
|
|
{weather_tiles.set_4_8_stratus_tile();setprop(lw~"tiles/code","test");}
|
|
else if (type == "Summer rain")
|
|
{weather_tiles.set_summer_rain_tile();setprop(lw~"tiles/code","summer_rain");}
|
|
else
|
|
{print("Tile not implemented.");setprop(lw~"tiles/tile-counter",getprop(lw~"tiles/tile-counter")-1);return();}
|
|
|
|
|
|
# mark tile as active
|
|
|
|
append(weather_tile_management.active_tile_list,1);
|
|
|
|
# start tile management loop if needed
|
|
|
|
if (getprop(lw~"tmp/tile-management") != "single tile") {
|
|
if (getprop(lw~"tile-loop-flag") == 0)
|
|
{
|
|
setprop(lw~"tiles/tile[4]/code",getprop(lw~"tiles/code"));
|
|
setprop(lw~"tile-loop-flag",1);
|
|
weather_tile_management.tile_management_loop();}
|
|
}
|
|
|
|
# start the interpolation loop
|
|
|
|
if (getprop(lw~"interpolation-loop-flag") == 0)
|
|
{setprop(lw~"interpolation-loop-flag",1); local_weather.interpolation_loop();}
|
|
|
|
# start the effect volume loop
|
|
|
|
if (getprop(lw~"effect-loop-flag") == 0)
|
|
{setprop(lw~"effect-loop-flag",1); local_weather.effect_volume_loop(0,0);}
|
|
|
|
# start weather dynamics loops if needed
|
|
|
|
|
|
if (dynamics_flag ==1)
|
|
{
|
|
if (getprop(lw~"timing-loop-flag") == 0)
|
|
{setprop(lw~"timing-loop-flag",1); weather_dynamics.timing_loop();}
|
|
|
|
if (getprop(lw~"dynamics-loop-flag") == 0)
|
|
{
|
|
setprop(lw~"dynamics-loop-flag",1);
|
|
weather_dynamics.quadtree_loop();
|
|
weather_dynamics.weather_dynamics_loop(0,0);
|
|
}
|
|
if ((getprop(lw~"convective-loop-flag") == 0) and (getprop(lw~"config/dynamical-convection-flag") ==1))
|
|
{
|
|
setprop(lw~"convective-loop-flag",1);
|
|
weather_dynamics.convective_loop();
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
# and start the buffer loop and housekeeping loop if needed
|
|
|
|
if (getprop(lw~"config/buffer-flag") ==1)
|
|
{
|
|
if (getprop(lw~"buffer-loop-flag") == 0)
|
|
{
|
|
setprop(lw~"buffer-loop-flag",1); weather_tile_management.buffer_loop(0);
|
|
setprop(lw~"housekeeping-loop-flag",1); weather_tile_management.housekeeping_loop(0);
|
|
}
|
|
}
|
|
|
|
# weather_tile_management.watchdog_loop();
|
|
|
|
}
|
|
|
|
|
|
#################################################
|
|
# Anything that needs to run at startup goes here
|
|
#################################################
|
|
|
|
var startup = func {
|
|
print("Loading local weather routines...");
|
|
|
|
# get local Cartesian geometry
|
|
|
|
var lat = getprop("position/latitude-deg");
|
|
var lon = getprop("position/longitude-deg");
|
|
calc_geo(lat);
|
|
|
|
|
|
# copy weather properties at startup to local weather
|
|
|
|
setprop(lw~"interpolation/visibility-m",getprop(ec~"boundary/entry[0]/visibility-m"));
|
|
setprop(lw~"interpolation/pressure-sea-level-inhg",getprop(ec~"boundary/entry[0]/pressure-sea-level-inhg"));
|
|
setprop(lw~"interpolation/temperature-degc",getprop(ec~"boundary/entry[0]/temperature-degc"));
|
|
setprop(lw~"interpolation/wind-from-heading-deg",getprop(ec~"boundary/entry[0]/wind-from-heading-deg"));
|
|
setprop(lw~"interpolation/wind-speed-kt",getprop(ec~"boundary/entry[0]/wind-speed-kt"));
|
|
setprop(lw~"interpolation/turbulence",getprop(ec~"boundary/entry[0]/turbulence/magnitude-norm"));
|
|
|
|
setprop(lw~"interpolation/rain-norm",0.0);
|
|
setprop(lw~"interpolation/snow-norm",0.0);
|
|
setprop(lw~"interpolation/thermal-lift",0.0);
|
|
|
|
|
|
# before interpolation starts, these are also initially current
|
|
|
|
setprop(lw~"current/visibility-m",getprop(lwi~"visibility-m"));
|
|
setprop(lw~"current/pressure-sea-level-inhg",getprop(lw~"interpolation/pressure-sea-level-inhg"));
|
|
setprop(lw~"current/temperature-degc",getprop(lw~"interpolation/temperature-degc"));
|
|
setprop(lw~"current/wind-from-heading-deg",getprop(lw~"interpolation/wind-from-heading-deg"));
|
|
setprop(lw~"current/wind-speed-kt",getprop(lw~"interpolation/wind-speed-kt"));
|
|
setprop(lw~"current/rain-norm",getprop(lw~"interpolation/rain-norm"));
|
|
setprop(lw~"current/snow-norm",getprop(lw~"interpolation/snow-norm"));
|
|
setprop(lw~"current/thermal-lift",getprop(lw~"interpolation/thermal-lift"));
|
|
setprop(lw~"current/turbulence",getprop(lwi~"turbulence"));
|
|
|
|
# create default properties for METAR system, should be overwritten by real-weather-fetch
|
|
|
|
setprop(lw~"METAR/latitude-deg",lat);
|
|
setprop(lw~"METAR/longitude-deg",lon);
|
|
setprop(lw~"METAR/altitude-ft",0.0);
|
|
setprop(lw~"METAR/wind-direction-deg",0.0);
|
|
setprop(lw~"METAR/wind-strength-kt",10.0);
|
|
setprop(lw~"METAR/visibility-m",17000.0);
|
|
setprop(lw~"METAR/rain-norm",0.0);
|
|
setprop(lw~"METAR/snow-norm",0.0);
|
|
setprop(lw~"METAR/temperature-degc",10.0);
|
|
setprop(lw~"METAR/dewpoint-degc",7.0);
|
|
setprop(lw~"METAR/pressure-inhg",29.92);
|
|
setprop(lw~"METAR/thunderstorm-flag",0);
|
|
setprop(lw~"METAR/layer[0]/cover-oct",4);
|
|
setprop(lw~"METAR/layer[0]/alt-agl-ft", 3000.0);
|
|
setprop(lw~"METAR/layer[1]/cover-oct",0);
|
|
setprop(lw~"METAR/layer[1]/alt-agl-ft", 20000.0);
|
|
setprop(lw~"METAR/layer[2]/cover-oct",0);
|
|
setprop(lw~"METAR/layer[2]/alt-agl-ft", 20000.0);
|
|
setprop(lw~"METAR/layer[3]/cover-oct",0);
|
|
setprop(lw~"METAR/layer[3]/alt-agl-ft", 20000.0);
|
|
setprop(lw~"METAR/available-flag",1);
|
|
|
|
|
|
# set listener for worker threads
|
|
|
|
setlistener(lw~"tmp/thread-status", func {var s = size(clouds_path); compat_layer.create_cloud_array(s, clouds_path, clouds_lat, clouds_lon, clouds_alt, clouds_orientation); });
|
|
setlistener(lw~"tmp/convective-status", func {var s = size(clouds_path); compat_layer.create_cloud_array(s, clouds_path, clouds_lat, clouds_lon, clouds_alt, clouds_orientation); });
|
|
setlistener(lw~"tmp/effect-thread-status", func {var s = size(effects_geo); effect_placement_loop(s); });
|
|
setlistener(lw~"tmp/presampling-status", func {manage_presampling(); });
|
|
|
|
setlistener(lw~"config/wind-model", func {set_wind_model_flag();});
|
|
setlistener(lw~"config/thermal-properties", func {set_texture_mix();});
|
|
|
|
setlistener(lw~"config/clouds-in-dynamics-loop", func {weather_dynamics.max_clouds_in_loop = int(getprop(lw~"config/clouds-in-dynamics-loop"));});
|
|
|
|
setlistener(lw~"config/clouds-visible-range-m", func {weather_tile_management.cloud_view_distance = getprop(lw~"config/clouds-visible-range-m");});
|
|
setlistener(lw~"config/distance-to-load-tile-m", func {setprop(lw~"config/distance-to-remove-tile-m",getprop(lw~"config/distance-to-load-tile-m") + 500.0);});
|
|
}
|
|
|
|
|
|
#####################################################
|
|
# Standard test call (for development and debug only)
|
|
#####################################################
|
|
|
|
var test = func {
|
|
|
|
var lat = getprop("position/latitude-deg");
|
|
var lon = getprop("position/longitude-deg");
|
|
|
|
var pos = geo.aircraft_position();
|
|
|
|
props.globals.getNode("/environment/terrain/area/enabled",1).setBoolValue(1);
|
|
|
|
setprop("/environment/terrain/area/input/analyse-every",200);
|
|
setprop("/environment/terrain/area/input/elevation-histogram-count",20);
|
|
setprop("/environment/terrain/area/input/elevation-histogram-max-ft",10000);
|
|
setprop("/environment/terrain/area/input/elevation-histogram-step-ft",500);
|
|
setprop("/environment/terrain/area/input/heading-deg",0.0);
|
|
setprop("/environment/terrain/area/input/speed-kt",-.0);
|
|
setprop("/environment/terrain/area/input/latitude-deg",lat);
|
|
setprop("/environment/terrain/area/input/longitude-deg",lon);
|
|
setprop("/environment/terrain/area/input/max-samples",1000);
|
|
setprop("/environment/terrain/area/input/max-samples-per-frame",20);
|
|
setprop("/environment/terrain/area/input/orientation-deg",0);
|
|
setprop("/environment/terrain/area/input/radius-m",40000);
|
|
|
|
props.globals.getNode("/environment/terrain/area/input/use-aircraft-position",1).setBoolValue(0);
|
|
|
|
|
|
fgcommand("reinit", props.Node.new({subsystem:"environment"}));
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
#################################################################
|
|
# object classes
|
|
#################################################################
|
|
|
|
var weatherStation = {
|
|
new: func (lat, lon, vis, T, D, p) {
|
|
var s = { parents: [weatherStation] };
|
|
s.lat = lat;
|
|
s.lon = lon;
|
|
s.vis = vis;
|
|
s.T = T;
|
|
s.D = D;
|
|
s.p = p;
|
|
return s;
|
|
},
|
|
move: func {
|
|
var windfield = weather_dynamics.get_windfield(me.index);
|
|
var dt = weather_dynamics.time_lw - me.timestamp;
|
|
me.lat = me.lat + windfield[1] * dt * local_weather.m_to_lat;
|
|
me.lon = me.lon + windfield[0] * dt * local_weather.m_to_lon;
|
|
me.timestamp = weather_dynamics.time_lw;
|
|
},
|
|
};
|
|
|
|
var effectVolume = {
|
|
new: func (geometry, lat, lon, r1, r2, phi, alt_low, alt_high, vis, rain, snow, turb, lift, lift_flag, sat) {
|
|
var e = { parents: [effectVolume] };
|
|
e.geometry = geometry;
|
|
e.lat = lat;
|
|
e.lon = lon;
|
|
e.r1 = r1;
|
|
e.r2 = r2;
|
|
e.phi = phi;
|
|
e.alt_low = alt_low;
|
|
e.alt_high = alt_high;
|
|
e.vis = vis;
|
|
e.rain = rain;
|
|
e.snow = snow;
|
|
e.turb = turb;
|
|
e.lift = lift;
|
|
e.lift_flag = lift_flag;
|
|
e.sat = sat;
|
|
return e;
|
|
},
|
|
move: func {
|
|
var windfield = weather_dynamics.get_windfield(me.index);
|
|
var dt = weather_dynamics.time_lw - me.timestamp;
|
|
me.lat = me.lat + windfield[1] * dt * local_weather.m_to_lat;
|
|
me.lon = me.lon + windfield[0] * dt * local_weather.m_to_lon;
|
|
me.timestamp = weather_dynamics.time_lw;
|
|
},
|
|
correct_altitude: func {
|
|
var convective_alt = weather_dynamics.tile_convective_altitude[me.index-1] + alt_20_array[me.index-1];
|
|
var elevation = compat_layer.get_elevation(me.lat, me.lon);
|
|
me.alt_high = local_weather.get_convective_altitude(convective_alt, elevation, me.index) *1.15;
|
|
me.height = me.alt_high * 0.87;
|
|
},
|
|
correct_altitude_and_age: func {
|
|
var convective_alt = weather_dynamics.tile_convective_altitude[me.index-1] + local_weather.alt_20_array[me.index-1];
|
|
var elevation = -1.0; var p_cover = 0.2;
|
|
var info = geodinfo(me.lat, me.lon);
|
|
if (info != nil)
|
|
{
|
|
elevation = info[0] * local_weather.m_to_ft;
|
|
if (info[1] != nil)
|
|
{
|
|
var landcover = info[1].names[0];
|
|
if (contains(landcover_map,landcover)) {p_cover = landcover_map[landcover];}
|
|
else {p_cover = 0.2;}
|
|
}
|
|
}
|
|
me.alt_high = get_convective_altitude(convective_alt, elevation, me.index) * 1.15;
|
|
me.height = me.alt_high * 0.87;
|
|
var current_lifetime = math.sqrt(p_cover)/math.sqrt(0.35) * weather_dynamics.cloud_convective_lifetime_s;
|
|
var fractional_increase = (weather_dynamics.time_lw - me.evolution_timestamp)/current_lifetime;
|
|
me.flt = me.flt + fractional_increase;
|
|
me.evolution_timestamp = weather_dynamics.time_lw;
|
|
},
|
|
get_distance: func {
|
|
var lat = getprop("position/latitude-deg");
|
|
var lon = getprop("position/longitude-deg");
|
|
return math.sqrt(calc_d_sq(lat, lon, me.lat, me.lon));
|
|
},
|
|
};
|
|
|
|
|
|
var thermalLift = {
|
|
new: func (lat, lon, radius, height, cn, sh, max_lift, f_lift_radius) {
|
|
var l = { parents: [thermalLift] };
|
|
l.lat = lat;
|
|
l.lon = lon;
|
|
l.radius = radius;
|
|
l.height = height;
|
|
l.cn = cn;
|
|
l.sh = sh;
|
|
l.max_lift = max_lift;
|
|
l.f_lift_radius = f_lift_radius;
|
|
return l;
|
|
},
|
|
move: func {
|
|
var windfield = weather_dynamics.get_windfield(me.index);
|
|
var dt = weather_dynamics.time_lw - me.timestamp;
|
|
me.lat = me.lat + windfield[1] * dt * local_weather.m_to_lat;
|
|
me.lon = me.lon + windfield[0] * dt * local_weather.m_to_lon;
|
|
me.timestamp = weather_dynamics.time_lw;
|
|
},
|
|
correct_altitude: func {
|
|
var convective_alt = weather_dynamics.tile_convective_altitude[me.index-1] + alt_20_array[me.index-1];
|
|
var elevation = compat_layer.get_elevation(me.lat, me.lon);
|
|
me.height = local_weather.get_convective_altitude(convective_alt, elevation, me.index);
|
|
},
|
|
correct_altitude_and_age: func {
|
|
var convective_alt = weather_dynamics.tile_convective_altitude[me.index-1] + local_weather.alt_20_array[me.index-1];
|
|
var elevation = -1.0; var p_cover = 0.2;
|
|
var info = geodinfo(me.lat, me.lon);
|
|
if (info != nil)
|
|
{
|
|
elevation = info[0] * local_weather.m_to_ft;
|
|
if (info[1] != nil)
|
|
{
|
|
var landcover = info[1].names[0];
|
|
if (contains(landcover_map,landcover)) {p_cover = landcover_map[landcover];}
|
|
else {p_cover = 0.2;}
|
|
}
|
|
}
|
|
me.height = get_convective_altitude(convective_alt, elevation, me.index);
|
|
var current_lifetime = math.sqrt(p_cover)/math.sqrt(0.35) * weather_dynamics.cloud_convective_lifetime_s;
|
|
var fractional_increase = (weather_dynamics.time_lw - me.evolution_timestamp)/current_lifetime;
|
|
me.flt = me.flt + fractional_increase;
|
|
me.evolution_timestamp = weather_dynamics.time_lw;
|
|
},
|
|
|
|
};
|
|
|
|
|
|
var waveLift = {
|
|
new: func (lat, lon, x, y, phi, height, max_lift) {
|
|
var w = { parents: [waveLift] };
|
|
w.lat = lat;
|
|
w.lon = lon;
|
|
w.x = x;
|
|
w.y = y;
|
|
w.phi = phi;
|
|
w.height = height;
|
|
w.max_lift = max_lift;
|
|
w.phi = getprop(lw~"tmp/tile-orientation-deg");
|
|
return w;
|
|
},
|
|
|
|
};
|
|
|
|
|
|
|
|
#################################################################
|
|
# global variable, property creation and the startup listener
|
|
#################################################################
|
|
|
|
var rad_E = 6378138.12; # earth radius
|
|
var lat_to_m = 110952.0; # latitude degrees to meters
|
|
var m_to_lat = 9.01290648208234e-06; # meters to latitude degrees
|
|
var ft_to_m = 0.30480;
|
|
var m_to_ft = 1.0/ft_to_m;
|
|
|
|
var lon_to_m = 0.0; # needs to be calculated dynamically
|
|
var m_to_lon = 0.0; # we do this on startup
|
|
|
|
# some common abbreviations
|
|
|
|
var lw = "/local-weather/";
|
|
var lwi = "/local-weather/interpolation/";
|
|
var ec = "/environment/config/";
|
|
|
|
# a hash map of the strength for convection associated with terrain types
|
|
|
|
var landcover_map = {BuiltUpCover: 0.35, Town: 0.35, Freeway:0.35, BarrenCover:0.3, HerbTundraCover: 0.25, GrassCover: 0.2, CropGrassCover: 0.2, EvergreenBroadCover: 0.2, Sand: 0.25, Grass: 0.2, Ocean: 0.01, Marsh: 0.05, Lake: 0.01, ShrubCover: 0.15, Landmass: 0.2, CropWoodCover: 0.15, MixedForestCover: 0.1, DryCropPastureCover: 0.25, MixedCropPastureCover: 0.2, IrrCropPastureCover: 0.15, DeciduousBroadCover: 0.1, pa_taxiway : 0.35, pa_tiedown: 0.35, pc_taxiway: 0.35, pc_tiedown: 0.35, Glacier: 0.01, DryLake: 0.3, IntermittentStream: 0.2};
|
|
|
|
# a hash map of average vertical cloud model sizes
|
|
|
|
var cloud_vertical_size_map = {Altocumulus: 700.0, Cumulus: 600.0, Nimbus: 1000.0, Stratus: 800.0, Stratus_structured: 600.0, Stratus_thin: 400.0, Cirrocumulus: 200.0};
|
|
|
|
# the array of aloft wind interpolation altitudes
|
|
|
|
var wind_altitude_array = [0.0, 5000.0, 10000.0, 18000.0, 24000.0, 30000.0, 34000.0, 39000.0, 45000.0];
|
|
|
|
# storage arrays for cloud generation
|
|
|
|
var clouds_path = [];
|
|
var clouds_lat = [];
|
|
var clouds_lon = [];
|
|
var clouds_alt = [];
|
|
var clouds_orientation = [];
|
|
|
|
# additional info needed for dynamical clouds: the base altitude around which cloudlets are distributed
|
|
# and the fractional lifetime
|
|
|
|
var clouds_mean_alt = [];
|
|
var clouds_flt = [];
|
|
var clouds_evolution_timestamp = [];
|
|
|
|
|
|
# storage arrays for terrain presampling and results by tile
|
|
|
|
var terrain_n = [];
|
|
var alt_50_array = [];
|
|
var alt_20_array = [];
|
|
|
|
# array of currently existing effect volumes
|
|
|
|
var effectVolumeArray = [];
|
|
var n_effectVolumeArray = 0;
|
|
|
|
# the thermal and the wave hash
|
|
|
|
var thermal = {};
|
|
var wave = {};
|
|
|
|
|
|
# array of currently existing weather stations
|
|
|
|
var weatherStationArray = [];
|
|
|
|
# a flag for the wind model (so we don't have to do string comparisons all the time)
|
|
# 1: constant 2: constant in tile 3: aloft interpolated 4: airmass interpolated
|
|
|
|
var wind_model_flag = 1;
|
|
|
|
# a global determining the relative amount of different textures in detailed convective clouds
|
|
|
|
var convective_texture_mix = 0.0;
|
|
|
|
# a global keeping track of the mean cloud altitude when building a Cumulus from individual cloudlets
|
|
|
|
var cloud_mean_altitude = 0.0;
|
|
|
|
# globals keeping track of the lifetime when building a Cumulus from individual cloudlets
|
|
|
|
var cloud_fractional_lifetime = 0.0;
|
|
var cloud_evolution_timestamp = 0.0;
|
|
|
|
# global flags mirroring property tree menu settings
|
|
|
|
var generate_thermal_lift_flag = 0;
|
|
var thread_flag = 1;
|
|
var dynamics_flag = 1;
|
|
var presampling_flag = 1;
|
|
var detailed_clouds_flag = 1;
|
|
var dynamical_convection_flag = 1;
|
|
var debug_output_flag = 1;
|
|
var metar_flag = 0;
|
|
|
|
|
|
# set all sorts of default properties for the menu
|
|
|
|
setprop(lw~"tmp/cloud-type", "Altocumulus");
|
|
setprop(lw~"tmp/alt", 12000.0);
|
|
setprop(lw~"tmp/nx",5);
|
|
setprop(lw~"tmp/xoffset",800.0);
|
|
setprop(lw~"tmp/xedge", 0.2);
|
|
setprop(lw~"tmp/ny",15);
|
|
setprop(lw~"tmp/yoffset",800.0);
|
|
setprop(lw~"tmp/yedge", 0.2);
|
|
setprop(lw~"tmp/dir",0.0);
|
|
setprop(lw~"tmp/tri", 1.0);
|
|
setprop(lw~"tmp/rnd-pos-x",400.0);
|
|
setprop(lw~"tmp/rnd-pos-y",400.0);
|
|
setprop(lw~"tmp/rnd-alt", 300.0);
|
|
setprop(lw~"tmp/conv-strength", 1);
|
|
setprop(lw~"tmp/conv-size", 15.0);
|
|
setprop(lw~"tmp/conv-alt", 2000.0);
|
|
setprop(lw~"tmp/bar-alt", 3500.0);
|
|
setprop(lw~"tmp/bar-n", 150.0);
|
|
setprop(lw~"tmp/bar-dir", 0.0);
|
|
setprop(lw~"tmp/bar-dist", 5.0);
|
|
setprop(lw~"tmp/bar-size", 10.0);
|
|
setprop(lw~"tmp/scloud-type", "Altocumulus");
|
|
setprop(lw~"tmp/scloud-subtype", "small");
|
|
setprop(lw~"tmp/scloud-lat",getprop("position/latitude-deg"));
|
|
setprop(lw~"tmp/scloud-lon",getprop("position/longitude-deg"));
|
|
setprop(lw~"tmp/scloud-alt", 5000.0);
|
|
setprop(lw~"tmp/scloud-dir", 0.0);
|
|
setprop(lw~"tmp/layer-type","Nimbus");
|
|
setprop(lw~"tmp/layer-rx",10.0);
|
|
setprop(lw~"tmp/layer-ry",10.0);
|
|
setprop(lw~"tmp/layer-phi",0.0);
|
|
setprop(lw~"tmp/layer-alt",3000.0);
|
|
setprop(lw~"tmp/layer-thickness",500.0);
|
|
setprop(lw~"tmp/layer-density",1.0);
|
|
setprop(lw~"tmp/layer-edge",0.2);
|
|
setprop(lw~"tmp/layer-rain-flag",1);
|
|
setprop(lw~"tmp/layer-rain-density",1.0);
|
|
setprop(lw~"tmp/box-x-m",600.0);
|
|
setprop(lw~"tmp/box-y-m",600.0);
|
|
setprop(lw~"tmp/box-alt-ft",300.0);
|
|
setprop(lw~"tmp/box-n",10);
|
|
setprop(lw~"tmp/box-core-fraction",0.4);
|
|
setprop(lw~"tmp/box-core-offset",0.2);
|
|
setprop(lw~"tmp/box-core-height",1.4);
|
|
setprop(lw~"tmp/box-core-n",3);
|
|
setprop(lw~"tmp/box-bottom-fraction",0.9);
|
|
setprop(lw~"tmp/box-bottom-thickness",0.5);
|
|
setprop(lw~"tmp/box-bottom-n",12);
|
|
setprop(lw~"tmp/tile-type", "High-pressure");
|
|
setprop(lw~"tmp/tile-orientation-deg", 260.0);
|
|
setprop(lw~"tmp/windspeed-kt", 8.0);
|
|
setprop(lw~"tmp/tile-alt-offset-ft", 0.0);
|
|
setprop(lw~"tmp/tile-alt-median-ft",0.0);
|
|
setprop(lw~"tmp/tile-alt-min-ft",0.0);
|
|
setprop(lw~"tmp/tile-management", "single tile");
|
|
setprop(lw~"tmp/presampling-flag", 1);
|
|
setprop(lw~"tmp/asymmetric-tile-loading-flag", 0);
|
|
setprop(lw~"tmp/last-reading-pos-del",0);
|
|
setprop(lw~"tmp/last-reading-pos-mod",0);
|
|
setprop(lw~"tmp/thread-status", "idle");
|
|
setprop(lw~"tmp/convective-status", "idle");
|
|
setprop(lw~"tmp/presampling-status", "idle");
|
|
setprop(lw~"tmp/buffer-status", "idle");
|
|
setprop(lw~"tmp/buffer-tile-index", 0);
|
|
setprop(lw~"tmp/FL0-wind-from-heading-deg",260.0);
|
|
setprop(lw~"tmp/FL0-windspeed-kt",8.0);
|
|
setprop(lw~"tmp/FL50-wind-from-heading-deg",262.0);
|
|
setprop(lw~"tmp/FL50-windspeed-kt",11.0);
|
|
setprop(lw~"tmp/FL100-wind-from-heading-deg",264.0);
|
|
setprop(lw~"tmp/FL100-windspeed-kt",16.0);
|
|
setprop(lw~"tmp/FL180-wind-from-heading-deg",265.0);
|
|
setprop(lw~"tmp/FL180-windspeed-kt",24.0);
|
|
setprop(lw~"tmp/FL240-wind-from-heading-deg",269.0);
|
|
setprop(lw~"tmp/FL240-windspeed-kt",35.0);
|
|
setprop(lw~"tmp/FL300-wind-from-heading-deg",273.0);
|
|
setprop(lw~"tmp/FL300-windspeed-kt",45.0);
|
|
setprop(lw~"tmp/FL340-wind-from-heading-deg",274.0);
|
|
setprop(lw~"tmp/FL340-windspeed-kt",50.0);
|
|
setprop(lw~"tmp/FL390-wind-from-heading-deg",273.0);
|
|
setprop(lw~"tmp/FL390-windspeed-kt",56.0);
|
|
setprop(lw~"tmp/FL450-wind-from-heading-deg",272.0);
|
|
setprop(lw~"tmp/FL450-windspeed-kt",65.0);
|
|
setprop(lw~"tmp/ipoint-latitude-deg",getprop("position/latitude-deg"));
|
|
setprop(lw~"tmp/ipoint-longitude-deg",getprop("position/longitude-deg"));
|
|
|
|
|
|
# set config values
|
|
|
|
setprop(lw~"config/distance-to-load-tile-m",39000.0);
|
|
setprop(lw~"config/distance-to-remove-tile-m",39500.0);
|
|
setprop(lw~"config/detailed-clouds-flag",1);
|
|
setprop(lw~"config/dynamics-flag",1);
|
|
setprop(lw~"config/thermal-properties",1.0);
|
|
setprop(lw~"config/wind-model","constant");
|
|
setprop(lw~"config/buffer-flag",1);
|
|
setprop(lw~"config/asymmetric-reduction",0.7);
|
|
setprop(lw~"config/clouds-visible-range-m",30000.0);
|
|
setprop(lw~"config/asymmetric-buffering-flag",0);
|
|
setprop(lw~"config/asymmetric-buffering-reduction",0.3);
|
|
setprop(lw~"config/asymmetric-buffering-angle-deg",90.0);
|
|
setprop(lw~"config/clouds-in-dynamics-loop",250);
|
|
setprop(lw~"config/debug-output-flag",1);
|
|
setprop(lw~"config/generate-thermal-lift-flag", 0);
|
|
setprop(lw~"config/dynamical-convection-flag", 1);
|
|
setprop(lw~"config/thread-flag", 1);
|
|
|
|
# set the default loop flags to loops inactive
|
|
|
|
|
|
setprop(lw~"effect-loop-flag",0);
|
|
setprop(lw~"interpolation-loop-flag",0);
|
|
setprop(lw~"tile-loop-flag",0);
|
|
setprop(lw~"lift-loop-flag",0);
|
|
setprop(lw~"wave-loop-flag",0);
|
|
setprop(lw~"buffer-loop-flag",0);
|
|
setprop(lw~"housekeeping-loop-flag",0);
|
|
setprop(lw~"convective-loop-flag",0);
|
|
|
|
# create other management properties
|
|
|
|
#setprop(lw~"clouds/cloud-number",0);
|
|
setprop(lw~"clouds/placement-index",0);
|
|
setprop(lw~"clouds/model-placement-index",0);
|
|
setprop(lw~"effect-volumes/effect-placement-index",0);
|
|
|
|
# create properties for effect volume management
|
|
|
|
setprop(lw~"effect-volumes/number",0);
|
|
setprop(lw~"effect-volumes/number-active-vis",0);
|
|
setprop(lw~"effect-volumes/number-active-rain",0);
|
|
setprop(lw~"effect-volumes/number-active-snow",0);
|
|
setprop(lw~"effect-volumes/number-active-turb",0);
|
|
setprop(lw~"effect-volumes/number-active-lift",0);
|
|
setprop(lw~"effect-volumes/number-active-sat",0);
|
|
|
|
|
|
# create properties for tile management
|
|
|
|
setprop(lw~"tiles/tile-counter",0);
|
|
|
|
# create properties for wind
|
|
|
|
setprop(lwi~"ipoint-number",0);
|
|
|
|
|
|
# wait for Nasal to be available and do what is in startup()
|
|
|
|
_setlistener("/sim/signals/nasal-dir-initialized", func {
|
|
startup();
|
|
});
|
|
|