84f0530a1d
This might not be a definitive solution to fix z-fighting issues, but it's a good solution meanwhile and can be implemented easily on any shader just by adding a few lines.
299 lines
8.7 KiB
GLSL
299 lines
8.7 KiB
GLSL
// This shader is mostly an adaptation of the shader found at
|
|
// http://www.bonzaisoftware.com/water_tut.html and its glsl conversion
|
|
// available at http://forum.bonzaisoftware.com/viewthread.php?tid=10
|
|
// © Michael Horsch - 2005
|
|
// Major update and revisions - 2011-10-07
|
|
// © Emilian Huminiuc and Vivian Meazza
|
|
|
|
#version 120
|
|
|
|
varying float flogz;
|
|
|
|
varying vec4 waterTex1;
|
|
varying vec4 waterTex2;
|
|
varying vec4 waterTex4;
|
|
varying vec3 relPos;
|
|
varying vec3 rawPos;
|
|
varying vec2 TopoUV;
|
|
|
|
varying vec3 viewerdir;
|
|
varying vec3 lightdir;
|
|
varying float steepness;
|
|
|
|
|
|
varying float earthShade;
|
|
varying float yprime_alt;
|
|
varying float mie_angle;
|
|
|
|
uniform float osg_SimulationTime;
|
|
uniform float WindE, WindN;
|
|
uniform float hazeLayerAltitude;
|
|
uniform float terminator;
|
|
uniform float terrain_alt;
|
|
uniform float avisibility;
|
|
uniform float visibility;
|
|
uniform float overcast;
|
|
uniform float ground_scattering;
|
|
|
|
uniform int ocean_flag;
|
|
|
|
uniform mat4 osg_ViewMatrixInverse;
|
|
|
|
// constants for the cartesian to geodetic conversion.
|
|
|
|
const float a = 6378137.0; //float a = equRad;
|
|
const float squash = 0.9966471893352525192801545;
|
|
const float latAdjust = 0.9999074159800018; //geotiff source for the depth map
|
|
const float lonAdjust = 0.9999537058469516; //actual extents: +-180.008333333333326/+-90.008333333333340
|
|
|
|
|
|
vec3 specular_light;
|
|
|
|
// This is the value used in the skydome scattering shader - use the same here for consistency?
|
|
const float EarthRadius = 5800000.0;
|
|
const float terminator_width = 200000.0;
|
|
|
|
float light_func (in float x, in float a, in float b, in float c, in float d, in float e)
|
|
{
|
|
//x = x - 0.5;
|
|
|
|
// use the asymptotics to shorten computations
|
|
if (x < -15.0) {return 0.0;}
|
|
|
|
return e / pow((1.0 + a * exp(-b * (x-c)) ),(1.0/d));
|
|
}
|
|
|
|
|
|
////fog "include"////////
|
|
// uniform int fogType;
|
|
//
|
|
// void fog_Func(int type);
|
|
/////////////////////////
|
|
|
|
/////// functions /////////
|
|
|
|
void rotationmatrix(in float angle, out mat4 rotmat)
|
|
{
|
|
rotmat = mat4( cos( angle ), -sin( angle ), 0.0, 0.0,
|
|
sin( angle ), cos( angle ), 0.0, 0.0,
|
|
0.0 , 0.0 , 1.0, 0.0,
|
|
0.0 , 0.0 , 0.0, 1.0 );
|
|
}
|
|
|
|
void main(void)
|
|
{
|
|
|
|
mat4 RotationMatrix;
|
|
|
|
|
|
vec3 shadedFogColor = vec3(0.55, 0.67, 0.88);
|
|
rawPos = (osg_ViewMatrixInverse *gl_ModelViewMatrix * gl_Vertex).xyz;
|
|
|
|
vec4 ecPosition = gl_ModelViewMatrix * gl_Vertex;
|
|
|
|
viewerdir = vec3(gl_ModelViewMatrixInverse[3]) - vec3(gl_Vertex);
|
|
lightdir = normalize(vec3(gl_ModelViewMatrixInverse * gl_LightSource[0].position));
|
|
if (ocean_flag == 1)
|
|
{steepness = dot(normalize(gl_Normal), vec3 (0.0, 0.0, 1.0));}
|
|
else
|
|
{steepness = 0.0;}
|
|
|
|
|
|
waterTex4 = vec4( ecPosition.xzy, 0.0 );
|
|
|
|
vec4 t1 = vec4(0.0, osg_SimulationTime * 0.005217, 0.0, 0.0);
|
|
vec4 t2 = vec4(0.0, osg_SimulationTime * -0.0012, 0.0, 0.0);
|
|
|
|
float Angle;
|
|
|
|
float windFactor = sqrt(WindE * WindE + WindN * WindN) * 0.05;
|
|
if (WindN == 0.0 && WindE == 0.0) {
|
|
Angle = 0.0;
|
|
}else{
|
|
Angle = atan(-WindN, WindE) - atan(1.0);
|
|
}
|
|
|
|
rotationmatrix(Angle, RotationMatrix);
|
|
waterTex1 = gl_MultiTexCoord0 * RotationMatrix - t1 * windFactor;
|
|
|
|
rotationmatrix(Angle, RotationMatrix);
|
|
waterTex2 = gl_MultiTexCoord0 * RotationMatrix - t2 * windFactor;
|
|
|
|
// fog_Func(fogType);
|
|
gl_Position = ftransform();
|
|
// logarithmic depth
|
|
flogz = 1.0 + gl_Position.w;
|
|
|
|
|
|
// here start computations for the haze layer
|
|
|
|
|
|
float yprime;
|
|
float lightArg;
|
|
float intensity;
|
|
float vertex_alt;
|
|
float scattering;
|
|
|
|
// we need several geometrical quantities
|
|
|
|
// first current altitude of eye position in model space
|
|
vec4 ep = gl_ModelViewMatrixInverse * vec4(0.0,0.0,0.0,1.0);
|
|
|
|
// and relative position to vector
|
|
relPos = gl_Vertex.xyz - ep.xyz;
|
|
|
|
// unfortunately, we need the distance in the vertex shader, although the more accurate version
|
|
// is later computed in the fragment shader again
|
|
float dist = length(relPos);
|
|
|
|
|
|
// altitude of the vertex in question, somehow zero leads to artefacts, so ensure it is at least 100m
|
|
vertex_alt = max(gl_Vertex.z,100.0);
|
|
scattering = 0.5 + 0.5 * ground_scattering + 0.5* (1.0 - ground_scattering) * smoothstep(hazeLayerAltitude -100.0, hazeLayerAltitude + 100.0, vertex_alt);
|
|
|
|
// branch dependent on daytime
|
|
|
|
if (terminator < 1000000.0) // the full, sunrise and sunset computation
|
|
{
|
|
|
|
|
|
// establish coordinates relative to sun position
|
|
|
|
//vec3 lightFull = (gl_ModelViewMatrixInverse * gl_LightSource[0].position).xyz;
|
|
//vec3 lightHorizon = normalize(vec3(lightFull.x,lightFull.y, 0.0));
|
|
vec3 lightHorizon = normalize(vec3(lightdir.x,lightdir.y, 0.0));
|
|
|
|
|
|
// yprime is the distance of the vertex into sun direction
|
|
yprime = -dot(relPos, lightHorizon);
|
|
|
|
// this gets an altitude correction, higher terrain gets to see the sun earlier
|
|
yprime_alt = yprime - sqrt(2.0 * EarthRadius * vertex_alt);
|
|
|
|
// two times terminator width governs how quickly light fades into shadow
|
|
// now the light-dimming factor
|
|
earthShade = 0.6 * (1.0 - smoothstep(-terminator_width+ terminator, terminator_width + terminator, yprime_alt)) + 0.4;
|
|
|
|
// parametrized version of the Flightgear ground lighting function
|
|
lightArg = (terminator-yprime_alt)/100000.0;
|
|
|
|
specular_light.b = light_func(lightArg, 1.330e-05, 0.264, 3.827, 1.08e-05, 1.0);
|
|
specular_light.g = light_func(lightArg, 3.931e-06, 0.264, 3.827, 7.93e-06, 1.0);
|
|
specular_light.r = light_func(lightArg, 8.305e-06, 0.161, 3.827, 3.04e-05, 1.0);
|
|
|
|
specular_light = max(specular_light * scattering, vec3 (0.05, 0.05, 0.05));
|
|
|
|
intensity = length(specular_light.rgb);
|
|
specular_light.rgb = intensity * normalize(mix(specular_light.rgb, shadedFogColor, 1.0 -smoothstep(0.1, 0.6,ground_scattering) ));
|
|
|
|
specular_light.rgb = intensity * normalize(mix(specular_light.rgb, shadedFogColor, 1.0 -smoothstep(0.5, 0.7,earthShade)));
|
|
|
|
// correct ambient light intensity and hue before sunrise - seems unnecessary and create artefacts though...
|
|
//if (earthShade < 0.5)
|
|
//{
|
|
//specular_light.rgb = intensity * normalize(mix(specular_light.rgb, shadedFogColor, 1.0 -smoothstep(0.1, 0.7,earthShade) ));
|
|
//}
|
|
|
|
// directional scattering for low sun
|
|
if (lightArg < 10.0)
|
|
{mie_angle = (0.5 * dot(normalize(relPos), lightdir) ) + 0.5;}
|
|
else
|
|
{mie_angle = 1.0;}
|
|
|
|
|
|
|
|
|
|
|
|
// the haze gets the light at the altitude of the haze top if the vertex in view is below
|
|
// but the light at the vertex if the vertex is above
|
|
|
|
vertex_alt = max(vertex_alt,hazeLayerAltitude);
|
|
|
|
if (vertex_alt > hazeLayerAltitude)
|
|
{
|
|
if (dist > 0.8 * avisibility)
|
|
{
|
|
vertex_alt = mix(vertex_alt, hazeLayerAltitude, smoothstep(0.8*avisibility, avisibility, dist));
|
|
yprime_alt = yprime -sqrt(2.0 * EarthRadius * vertex_alt);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
vertex_alt = hazeLayerAltitude;
|
|
yprime_alt = yprime -sqrt(2.0 * EarthRadius * vertex_alt);
|
|
}
|
|
|
|
}
|
|
else // the faster, full-day version without lightfields
|
|
{
|
|
//vertex_alt = max(gl_Vertex.z,100.0);
|
|
|
|
earthShade = 1.0;
|
|
mie_angle = 1.0;
|
|
|
|
if (terminator > 3000000.0)
|
|
{specular_light = vec3 (1.0, 1.0, 1.0);}
|
|
else
|
|
{
|
|
|
|
lightArg = (terminator/100000.0 - 10.0)/20.0;
|
|
specular_light.b = 0.78 + lightArg * 0.21;
|
|
specular_light.g = 0.907 + lightArg * 0.091;
|
|
specular_light.r = 0.904 + lightArg * 0.092;
|
|
}
|
|
|
|
specular_light = specular_light * scattering;
|
|
|
|
float shade_depth = 1.0 * smoothstep (0.6,0.95,ground_scattering) * (1.0-smoothstep(0.1,0.5,overcast)) * smoothstep(0.4,1.5,earthShade);
|
|
|
|
specular_light.rgb *= (1.0 + 1.2 * shade_depth);
|
|
|
|
yprime_alt = -sqrt(2.0 * EarthRadius * hazeLayerAltitude);
|
|
|
|
}
|
|
|
|
// Geodesy lookup for depth map
|
|
float e2 = abs(1.0 - squash * squash);
|
|
float ra2 = 1.0/(a * a);
|
|
float e4 = e2 * e2;
|
|
float XXpYY = rawPos.x * rawPos.x + rawPos.y * rawPos.y;
|
|
float Z = rawPos.z;
|
|
float sqrtXXpYY = sqrt(XXpYY);
|
|
float p = XXpYY * ra2;
|
|
float q = Z*Z*(1.0-e2)*ra2;
|
|
float r = 1.0/6.0*(p + q - e4);
|
|
float s = e4 * p * q/(4.0*r*r*r);
|
|
if ( s >= 2.0 && s <= 0.0)
|
|
s = 0.0;
|
|
float t = pow(1.0+s+sqrt(s*2.0+s*s), 1.0/3.0);
|
|
float u = r + r*t + r/t;
|
|
float v = sqrt(u*u + e4*q);
|
|
float w = (e2*u+ e2*v-e2*q)/(2.0*v);
|
|
float k = sqrt(u+v+w*w)-w;
|
|
float D = k*sqrtXXpYY/(k+e2);
|
|
|
|
vec2 NormPosXY = normalize(rawPos.xy);
|
|
vec2 NormPosXZ = normalize(vec2(D, rawPos.z));
|
|
float signS = sign(rawPos.y);
|
|
if (-0.00015 <= rawPos.y && rawPos.y<=.00015)
|
|
signS = 1.0;
|
|
float signT = sign(rawPos.z);
|
|
if (-0.0002 <= rawPos.z && rawPos.z<=.0002)
|
|
signT = 1.0;
|
|
float cosLon = dot(NormPosXY, vec2(1.0,0.0));
|
|
float cosLat = dot(abs(NormPosXZ), vec2(1.0,0.0));
|
|
TopoUV.s = signS * lonAdjust * degrees(acos(cosLon))/180.;
|
|
TopoUV.t = signT * latAdjust * degrees(acos(cosLat))/90.;
|
|
TopoUV.s = TopoUV.s * 0.5 + 0.5;
|
|
TopoUV.t = TopoUV.t * 0.5 + 0.5;
|
|
|
|
//
|
|
|
|
|
|
|
|
|
|
gl_FrontColor.rgb = specular_light;
|
|
gl_BackColor.rgb = gl_FrontColor.rgb;
|
|
|
|
|
|
}
|