1
0
Fork 0
fgdata/Shaders/ws30-ALS-landclass-search-functions.frag
2024-02-05 21:08:49 +00:00

1226 lines
42 KiB
C++

// WS30 FRAGMENT SHADER
// -*-C++-*-
#version 130
// WS30 terrain - Landclass search functions used by fragment shaders
// Split off from from ws30-ALS-ultra.frag
//////////////////////////////////////////////////////////////////
// TEST PHASE TOGGLES AND CONTROLS FOR PROFILING ON DIFFERENT GPUS
//
// Instructions for power users:
// Change the numbers for values and controls, save the file, and
// reload shaders to compare the difference.
// In-sim menu > debug > configure development extensions > reload shaders.
// It's safe to tinker with things in this section.
// At worst the terrain will look odd. If there's an error or a stray
// character, the shader will just not compile - the terrain changes
// appearance to black.
// Simply try again and hit reload shaders button. You can also save a backup
// of this file.
// "//" means everything on that line is a comment.
// Lines assigning numbers to variables end in a ";"
// Testing performance:
// Use the UFO or video assistant. Turn all scenery layers off (vegetation,
// buildings, random scenery objects etc.).
// The terrain quality shader level determines the shaders used. Set it to ultra.
// The view should be 100% terrain. No sky. Try to minimise parts of terrain
// or scenery rendered by other shaders, as the results will be inaccurate.
// Avoid clouds in view. Minimise water in view.
// WS3 OSM roads must be turned off to get accurate results:
// in-sim menu > view > adjust LoD ranges > set all "Minimum Line Feature
// Width" sliders to 50m (move sliders slightly if initial value = 9999).
// Going closer or reducing FoV works, but these also can change performance.
// Looking towards the horizon at high altitude may cause perfomance to be CPU
// bound due to OSG scene traveral.
// Remember to mention factors that change performance:
// resolution, the rough area (regional definitions at work), altitude,
// WS3 scenery package, AA settings, driver control panel settings and overrides
// - (you can set these to application controlled)
// Comparing performance:
// GPU bound: To use FPS to compare performance you must be bottlenecked by
// the GPU (GPU bound).
// When GPU bound (fragment bound), changing the window size slightly should
// result in a change in FPS.
// You can also tell if you are GPU bound, as GPU utilisation will be 100%.
// Change in performance = FPS2/FPS1.
// e.g. increase of 15 FPS to 30 FPS = 30/15 = 2x or 200% increase.
// Not GPU bound: If your bottleneck is not the GPU, you need to measure
// GPU utilisation.
// GPU utilisation is the GPU load - it will be less than 100%.
// Change in performance = utilisation1/utilisation2.
// e.g. Drop from 40% to 20% = 40/20 = 2x increase in performance or
// doubling of FPS. e.g 40% to 30% = 40/30 = 1.33x increase.
// CPU bound FPS limit: You can usually find your CPU bound FPS limit by
// reducing window size until FPS stops increasing. This depends on what's
// in view.
// To Compare performace with WS2: untick the WS3 tick box in render settings,
// and make sure both WS2 and WS3 are GPU bound, and not CPU bound.
//
// Note:
// Ensure in-sim menu > view > rendering options > throttle FPS is off.
// Ensure vsync is off.
// Ensure WS3 OSM roads are off (see testing performance section).
// Make sure your power plan is set to maximum or balanced in Windows, or
// results could be inaccurate - laptops may be on a power saving plan
// by default.
// To test: All transitions are off by default. Set both remove squareness and
// enable large scale transitions to 1 to get a quality with most features
// turned on.
// Maximum number of neighbor landclass textures to lookup if neighbors are found.
// The more landclass textures are looked up the more pressure on VRAM.
// Performance hit varies by altitude and how small the landclass blobs are.
// More ground texture lookups may run slower on older generation GPUs - test and see.
// Possible values: 0,1,2. Default: 2. To see texture mixing transitions you need 1 or 2.
const int max_neighbor_landclass_texture_lookups = 2;
// Small scale transition controls
// Remove squareness due to landclass texture by growing higher priority neighbors.
// This adds 2 extra lookups of the landclass texture, and one math/noise lookup.
// Large scale transition searches do not use this - as it triples the number of
// landclass texture acceses, as well as adding 1 noise lookup per search point.
// This should be expected to be used on old GPUs, except when running at the absolute
// lowest graphics quality. It's faster than large scale transition searches.
// Possible values: 1:enabled, 0:disabled. Default:0
const int remove_squareness_from_landclass_texture = 0;
// Transition at landclass texel scale
// Mix in neighbor textures so landclass boundaries are not hard at the
// landclass texel scale.
// Note: Disable enable large scale transition search, if using this.
// This needs extra ground texture lookups. It looks fine with 1 extra lookup.
// This can be combined with removing squareness by growing borders.
// Possible values: 1:enabled, 0:disabled
const int use_landclass_texel_scale_transition_only = 0;
// Large scale transition controls
// Enable large scale transitions: 1=on, 0=off
// Disable use landclass texel scale transition, if using this.
const int enable_large_scale_transition_search = 1;
// The search pattern is center + n points in four directions forming a cross.
// e.g. 1 search point = 1 + 4 * 1 = 5 points total.
// 4 search points: 17 total. 10 search points = 41
// The transition distance is the distance from the center to the furtherst
// point in any direction.
// Landclass transition search distance in meters
// Note: transitions occur on both sides of the landclass borders.
// The width of the transition is equal to 2x this value.
// Default: 100m
const float transition_search_distance_in_m = 25.0;
// Number of points to search in any direction, in addition to this fragment
// Default:4 points. Fewer points results in a less smooth transition (more banding)
// Choose the lowest number of points to get a desired transition quality.
const int num_search_points_in_a_direction = 4;
// Landclass transition weightings options
// More options mean slightly more GPU math load
//
// Use 2nd closest neighbour for transition weighting.
// Note this won't lookup a ground texture by itself, just sort through results
// Possible values: 1:enable, 0=disable. Default: 1
const int enable_2nd_closest_neighbor_for_large_scale_transition_weights = 0;
// Enable dithering to smooth transitions by reducing visible banding
// Possible values: 1=enable, 0=disable. Default = 1
const int enable_dithering_for_large_scale_transitions = 1;
// Scale of dithering as a faction of the size of the bands - distance between
// search points (=transition distance / number of steps)
// 0.2 seems to work ok - not real need to tinker with this.
// Different values won't change performance.
const float dithering_noise_wavelength_as_fraction_of_step_size = 0.2;
// Grow the borders of landclasses a bit when large scale transitions are used
// Higher priority landclasses grow onto lower priority ones.
// Landclass numbers are used as a placeholder for landclass priority.
// This works by changing the weighting in the transition region using a
// noise lookup
// Possibe values: 0=off, 1=on. Default:0
const int grow_landclass_borders_with_large_scale_transition = 1;
// Use the edge-hardness parameter from materials.xml to determine
// weighting of the landclass in transitions
const int use_edge_hardness_with_large_scale_transition = 1;
//////////////////////////////////////////////////////////////////
// Advanced controls - these are for testing scenery generation and rendering
// Landclass source:
// Possible values: Default=1;
// 0=Normal landclass texture, 1 = Random landclass squares along s and t axes.
// Choose 1 to test impact of searching a texture. You should normally leave
// it at default.
const int landclass_source = 0;
// Random landclass square size in meters. Remember to adjust transition search distance.
// Default: 200m
const float random_landclass_square_size_in_m = 3.3*transition_search_distance_in_m;
// Detiling noise source
// Possible values: 0 = texture source, 1 = math source
// The texture source still shows some tiling. The math source detiles better, but might
// be slightly slower.
const int detiling_noise_type = 1;
// Development tools - 2 controls, now located at the top of WS30-ALS-ultra.frag:
// 1. Reduce haze to almost zero, while preserving lighting. Useful for observing distant tiles.
// Keeps the calculation overhead. This can be used for profiling.
// 2. Remove haze and lighting and shows just the texture.
// Useful for checking texture rendering and scenery.
// The compiler will likely optimise out the haze and lighting calculations.
//
// Debugging: ground texture array lookup function
// Possible values:
// 0: Normal: TextureGrad() with partial derivatives. GLSL 1.30.
// 1: textureLod() using partial derivatives to manually calculate LoD. GLSL 1.20
// 2: texture() without partial derivatives. GLSL 1.20
const int tex_lookup_type = 0;
//
// End of test phase controls
//////////////////////////////////////////////////////////////////
//////////////////////////
// Test-phase code:
// Uniforms used by landclass search functions.
// If any uniforms change name or form, remember to update here and in fragment shaders.
uniform sampler2D landclass;
uniform sampler2DArray textureArray;
uniform sampler2D perlin;
// Passed from VPBTechnique, not the Effect
uniform float fg_tileWidth;
uniform float fg_tileHeight;
uniform bool fg_photoScenery;
uniform vec4 fg_dimensionsArray[128];
uniform vec4 fg_ambientArray[128];
uniform vec4 fg_diffuseArray[128];
uniform vec4 fg_specularArray[128];
uniform vec4 fg_textureLookup1[128];
uniform vec4 fg_textureLookup2[128];
uniform mat4 fg_zUpTransform;
uniform vec3 fg_modelOffset;
// These should be sent as uniforms
// Tile dimensions in meters
// vec2 tile_size = vec2(tile_width , tile_height);
// Testing: texture coords are sent flipped right now:
vec2 tile_size = vec2(fg_tileHeight , fg_tileWidth);
// These are defined in noise.frag
float rand2D(in vec2 co);
float Noise2D(in vec2 coord, in float wavelength);
// Generates a full precision 32 bit random number from 2 seeds
// as well as 6 random integers between 0 and factor that are rescaled 0.0-1.0
// by re-using the significant figures from the full precision number.
// This avoids having to generate 6 random numbers when
// limited variation is needed: say 6 numbers with 100 levels (i.e between 0 and 100).
// Seed 2 is incremented so the function can be called again to generate
// a different set of numbers
float get6_rand_nums(in float PRNGseed1, inout float PRNGseed2, float factor, out float [6] random_integers)
{
float r = fract(sin(dot(vec2(PRNGseed1,PRNGseed2),vec2(12.9898,78.233))) * 43758.5453);
// random number left over after extracting some decimal places
float rlo = r;
// To look at: can this be made simd friendly?
for (int i=0;i<6;i++)
{
rlo = (rlo*factor);
random_integers[i] = floor(rlo)/factor;
rlo = fract(rlo);
}
PRNGseed2+=1.0;
return r;
}
// Create random landclasses without a texture lookup to stress test.
// Each square of square_size in m is assigned a random landclass value.
int get_random_landclass(in vec2 co, in vec2 tile_size)
{
float r = rand2D( floor(vec2(co.s*tile_size.x, co.t*tile_size.y)/random_landclass_square_size_in_m) );
int lc = int(r*48.0); // only 48 landclasses mapped so far
return lc;
}
/*
// Look up stretching scale of ground textures for the base texture.
// Note terrain default effect only has controls for the texture stretching dimensions for the base texture.
// Non-base textures use hardcoded stretching of the ground texture coords, which are in units of meters.
vec2 get_ground_texture_scale(in int lc)
{
// Look up stretching dimensions of ground textures in m - scaled to
// fit in [0..1], so rescale
vec2 g_texture_stretch_dim = fg_dimensionsArray[lc].st;
return (tile_size.xy / g_texture_stretch_dim.xy);
}
*/
// Look up texture coordinates and stretching scale of ground textures for the base texture.
// Note terrain default effect only has controls for the texture stretching dimensions for the base texture.
// Non-base textures use hardcoded stretching of the ground texture coords, which are in units of meters.
void get_ground_texture_data(in int lc, in vec2 tile_coord,
out vec2 st, out vec2 g_texture_scale, inout vec4 dFdx_and_dFdy)
{
// Look up stretching dimensions of ground textures in m - scaled to
// fit in [0..1], so rescale
vec2 g_texture_stretch_dim = fg_dimensionsArray[lc].st;
g_texture_scale = tile_size.xy / g_texture_stretch_dim.xy;
// Correct partial derivatives to account for stretching of different textures
dFdx_and_dFdy = dFdx_and_dFdy * vec4(g_texture_scale.st, g_texture_scale.st);
// Ground texture coords
st = g_texture_scale * tile_coord.st;
}
// Rotate texture using the perlin texture as a mask to reduce tiling.
// type=0: use perlin texture, type = 1: use Noise2D to avoid texture lookup
// Testing: if this or get_ground_texture_data used in final WS3 to handle
// many base texture lookups, see if optimising to handle many inputs helps
// (vectorising Noise2D versus just many texture calls)
// To do: adjust for non-tile based ground coords.
vec2 detile_texcoords_with_perlin_noise(in vec2 st, in vec2 ground_texture_scale,
in vec2 tile_coord, inout vec4 dFdx_and_dFdy)
{
vec4 dxdy = dFdx_and_dFdy;
vec2 pnoise;
// Ratio tile dimensions are stretched relative to s.
// Tiles may not have equal dimensions.
vec2 stretch_r = tile_size.st/tile_size.s;
// Note: unresolved texture discontinuties (i.e. mipmap problems) with unequal stretch factors
const vec2 local_stretch_factors = vec2(8.0, 8.0 /*16.0*/);
if (detiling_noise_type==1)
{
pnoise[0] = texture(perlin, st / local_stretch_factors[0]).r;
pnoise[1] = texture(perlin, - st / local_stretch_factors[1]).r;
}
else
{
//Testing: Non texture alternative
// Estimate of wavelength in /Textures/perlin.png in normalised texture coords
const float ptex_wavelength = (1.0/7.0);
pnoise[0] = Noise2D(st / (local_stretch_factors[0]), ptex_wavelength);
pnoise[1] = Noise2D(-st / (local_stretch_factors[1]), ptex_wavelength);
}
if (pnoise[0] >= 0.5)
{
// To do: fix once ground coords are no longer tile based
st = ground_texture_scale.st * (tile_coord * stretch_r).ts;
// Get back original partial derivatives by undoing
// previous texture stretching adjustment done in get_ground_data
dxdy = dxdy / vec4(ground_texture_scale.st, ground_texture_scale.st);
// Recalculate new derivatives
vec2 factor = ground_texture_scale.st * stretch_r.ts;
dxdy.st = dxdy.ts * factor;
dxdy.pq = dxdy.qp * factor;
}
if (pnoise[1] >= 0.5)
{
st = -st; dxdy = -dxdy;
}
dFdx_and_dFdy = dxdy;
return st;
}
// Lookup a ground texture at a point based on the landclass at that point, without visible
// seams at coordinate discontinuities or at landclass boundaries where texture are switched.
// The partial derivatives of the tile_coord at the fragment is needed to adjust for
// the stretching of different textures, so that the correct mip-map level is looked
// up and there are no seams.
// Texture types: 0: base texture, 1: grain texture, 2: gradient texture, 3 dot texture,
// 4: mix texture, 5: detail texture.
vec4 lookup_ground_texture_array(in int texture_type, in vec2 ground_texture_coord, in int landclass_id,
in vec4 dFdx_and_dFdy)
{
// Testing: may be able to save 1 or 2 op slots by combining dx/dy in a vec4 and
// using swizzles which are free, but mostly operations are working independenly on s and t.
// Only 1 place so far that just multiplies everything by a scalar.
vec2 st;
vec2 g_tex_coord = ground_texture_coord;
vec2 g_texture_scale;
vec4 texel;
int lc = landclass_id;
vec4 dxdy = dFdx_and_dFdy;
// Find the index of the specified texture type (e.g. mix or gradient texture ) in
// the ground texture lookup array.
// Since texture_type is a constant in the fragment shader, there should be no performance hit for branching.
int tex_idx = 0;
int type = texture_type;
// Index for the base texture is contained fg_textureLookup1[lc].r
if (type == 0) tex_idx = int(uint(fg_textureLookup1[lc].r * 255.0 + 0.5));
// Grain texture is material texture slot 14, the index of which is mapped to the r channel of fg_textureLookup2
else if (type == 1) tex_idx = int(fg_textureLookup2[lc].r * 255.0 + 0.5);
// Gradient texture is material texture 13, the index of which is mapped to the a channel of fg_textureLookup1
else if (type == 2) tex_idx = int(fg_textureLookup1[lc].a * 255.0 + 0.5);
// Dot texture is material texture 15, the index of which is mapped to the g channel of fg_textureLookup2
else if (type == 3) tex_idx = int(fg_textureLookup2[lc].g * 255.0 + 0.5);
// Mix texture is material texture 12, the index of which is mapped to the b channel of fg_textureLookup1
else if (type == 4) tex_idx = int(fg_textureLookup1[lc].b * 255.0 + 0.5);
// Detail texture is material texture 11, the index of which is mapped to the g channel of fg_textureLookup1
else if (type == 5) tex_idx = int(fg_textureLookup1[lc].g * 255.0 + 0.5);
if (type == 0)
{
// Scale normalised tile coords by stretching factor, and get info
vec2 tile_coord = g_tex_coord;
get_ground_texture_data(lc, tile_coord, st, g_texture_scale, dxdy);
st = detile_texcoords_with_perlin_noise(st, g_texture_scale, tile_coord, dxdy);
}
else
{
st = g_tex_coord;
}
// Debugging: multiple texture lookup functions if there are issues
// with old GPUs and compilers.
if (tex_lookup_type == 0)
{
texel = textureGrad(textureArray, vec3(st, tex_idx), dxdy.st, dxdy.pq);
}
else if (tex_lookup_type == 1)
{
float lod = max(length(dxdy.sp), length(dxdy.tq));
lod = log2(lod);
texel = textureLod(textureArray, vec3(st, tex_idx), lod);
}
else texel = texture(textureArray, vec3(st, tex_idx));
//texel = textureGrad(textureArray, vec3(st, tex_idx), dxdy.st, dxdy.pq);
return texel;
}
// Look up the texel of the specified texture type (e.g. grain or detail textures) for this fragment
// and any neighbor texels, then mix.
vec4 get_mixed_texel(in int texture_type, in vec2 g_texture_coord,
in int landclass_id, in int num_unique_neighbors,
in ivec4 neighbor_texel_landclass_ids, in vec4 neighbor_mix_factors,
in vec4 dFdx_and_dFdy
)
{
vec2 st = g_texture_coord;
int lc = landclass_id;
ivec4 lc_n = neighbor_texel_landclass_ids;
// Not implemented yet
int type = texture_type;
vec4 dxdy = dFdx_and_dFdy;
vec4 mfact = neighbor_mix_factors;
vec4 texel = lookup_ground_texture_array(0, st, lc, dxdy);
// Mix texels - to work consistently it needs a more preceptual interpolation than mix()
if (num_unique_neighbors != 0)
{
// Closest neighbor landclass
vec4 texel_closest = lookup_ground_texture_array(0, st, lc_n[0], dxdy);
// Neighbor contributions
vec4 texel_nc=texel_closest;
if (num_unique_neighbors > 1)
{
// 2nd Closest neighbor landclass
vec4 texel_2nd_closest = lookup_ground_texture_array(0, st, lc_n[1], dxdy);
texel_nc = mix(texel_closest, texel_2nd_closest, mfact[1]);
}
texel = mix(texel, texel_nc, mfact[0]);
}
return texel;
}
// Landclass sources: texture or random
int read_landclass_id(in vec2 tile_coord)
{
int lc;
if (landclass_source == 0) lc = (int(texture2D(landclass, tile_coord.st).g * 255.0 + 0.5));
else lc = (get_random_landclass(tile_coord.st, tile_size));
return lc;
}
// Landclass sources: texture or random
ivec2 read_landclass_id_and_water(in vec2 tile_coord)
{
int lc = (int(texture2D(landclass, tile_coord.st).g * 255.0 + 0.5));
return ivec2(lc, (texture2D(landclass, tile_coord.st).b > 0.9) ? 1 : 0);
}
int read_landclass_id_non_pixelated(in vec2 tile_coord,
const in float landclass_texel_size_m)
{
vec2 c0 = tile_coord;
vec2 sz = tile_size;
vec2 tsz = vec2(landclass_texel_size_m)/tile_size;
// Landclass sources: texture or random
int lc = read_landclass_id(c0);
return lc;
}
// Determine whether to grow a neighbor landclass onto current.
// 1 = grow neighbor, 0 = don't grow neighbor
float get_growth_priority(in int current_landclass, in int neighbor_landclass)
{
int lc1 = current_landclass;
int lc2 = neighbor_landclass;
return ((lc1 < lc2)?1.0:0.0);
}
// Determine whether to grow a one of 2 neighbor landclasses onto current.
// 1 = grow neighbor, 0 = don't grow neighbor
float get_growth_priority(in int current_landclass, in int neighbor_landclass1, in int neighbor_landclass2)
{
int lc1 = current_landclass;
int lc2 = neighbor_landclass1;
int lc3 = neighbor_landclass2;
return ((lc1 < max(lc2,lc3))?1.0:0.0);
}
int lookup_landclass_id(in vec2 tile_coord, in vec4 dFdx_and_dFdy,
out ivec4 neighbor_texel_landclass_ids,
out int number_of_unique_neighbors_found, out vec4 landclass_neighbor_texel_weights)
{
// To do: fix landclass border artifacts, with all shaders.
vec4 dxdy = dFdx_and_dFdy;
// Number of unique neighbours found
int num_n = 0;
vec2 c0 = tile_coord;
vec2 sz = tile_size;
// Landclass sources: texture or random
int lc = read_landclass_id(c0);
int output_landclass = lc;
// Landclasses of up to 4 neighbor texels
ivec4 lc_n = ivec4(lc);
// Landclasses sorted
ivec4 lc_n_s;
// Combined weight from 2 neighbor texels
float w = 0.0;
// Landclass neighbor weights - for texel mixing only
vec4 lc_n_w = vec4(0.0);
// Test phase controls
if ( (remove_squareness_from_landclass_texture == 1) ||
( (use_landclass_texel_scale_transition_only == 1) &&
(enable_large_scale_transition_search == 0) )
)
{
// Remove squareness from the landclass texture due to nearest neighbour interpolation
// A landclass with higher growth priority grows on to an adjacent landclass
// with lower priority
// Landclass texture dimensions, in texels - Needs glsl 1.30+
// Probably best to just send as uniforms if texture sizes don't vary, or are fixed per terrain LoD level.
vec2 texture_dim_tx = vec2(textureSize(landclass, 0));
// Coordinates of current fragment, in texels
vec2 c0_tx = c0 * texture_dim_tx;
// Coordinates of the center of the current texel, in texels
// centers are n+(0.5,0.5) for n = 0,1,2...
vec2 ct_c0_tx = floor(c0_tx) + 0.5;
// center in normalised tex coords
vec2 ct_c0 = ct_c0_tx/texture_dim_tx;
// Landclass at center of current texel - same anywhere within a texel
int lc_ct = lc;
// Coords of centers of closest neighbors, in texels
vec2 c_n_tx[2];
// Coordinate of fragment relative to center of texel, in texels
vec2 c0_rel_ct_tx = c0_tx - ct_c0_tx;
float dist_ct = length(c0_rel_ct_tx);
// need to avoid division by 0?
if (dist_ct < 0.00001) dist_ct += 0.00001;
// Choose closest neighbor based on angle wrt. to
// c0, center of texel, and s & t axes.
// Choose the texel in the direction of the largest s & t component.
// NB: This method will select a diagonal neighbor if
// both components of c0_rel_ct_tx are equal to cos(45).
// Testing: look for a way that uses fewer instructions,
// maybe calculating 2 neighbors at once using a vec4.
//vec2 a = abs(c0_rel_ct_tx);
//offset_ct0 = ((a.s > a.t)?vec2(1.0,0.0):vec2(0.0,1.0))*sign(c0_rel_ct_tx);
// Vectorisable
const float cos45deg = cos(radians(45.0));
vec2 offset_ct0 = step(cos45deg, abs(c0_rel_ct_tx/dist_ct))
*sign(c0_rel_ct_tx);
c_n_tx[0] = (ct_c0_tx + offset_ct0);
// Landclass of closest neighbor
lc_n[0] = read_landclass_id(c_n_tx[0]/texture_dim_tx);
// Choose 2nd closest neighbor
// Choose texels in the direction of the smaller of s & t components
vec2 offset_ct1 = abs(offset_ct0.ts)*step(0.0, abs(c0_rel_ct_tx/dist_ct))
* sign(c0_rel_ct_tx);
c_n_tx[1] = (ct_c0_tx + offset_ct1);
// Land class of 2nd closest neighbor
lc_n[1] = read_landclass_id(c_n_tx[1]/texture_dim_tx);
// Distinct neighbors found
// Testing: possible optimisation, use booleans.
// Needs ivec4/1.30+, or vec4/1.20 - reliably supported by old compilers?
// bvec4 n_found = notEqual(lc_n, ivec4(lc));
ivec4 n_found = ivec4(((lc_n[0] != lc)?1:0), ((lc_n[1] != lc)?1:0), 0, 0);
num_n = n_found[0]+ n_found[1];
//if (any(n_found))
if ((n_found[0] == 1) || (n_found[1] == 1))
{
// Weights for influence from neighbor landclasses
// The distance away from the neighbor texel side is used to determine influence.
// w_n: 0.5 at minimum possible distance, 0.0 at maximum possible distance
// Neighbor weights
vec4 w_n = vec4(0.0);
// Method 1:
// Use distance from side of neighbor texel for mixing
// This is has some issues, including with corners
vec2 dir0 = offset_ct0;
vec2 dir1 = offset_ct1;
// Distance from side of neighbor texel, in texels
vec2 d0 = dir0*c0_rel_ct_tx;
vec2 d1 =dir1*c0_rel_ct_tx;
w_n[0] = max(d0.x, d0.y);
w_n[1] = max(d1.x, d1.y);
/*
//Method 2:
// use distance from center of neighbor texel for mixing
// This doesn't really give better results than 1
// Distance from center of neighbor texels, in texels
vec2 dist_n_tx = vec2(0.0);
dist_n_tx[0] = length(c0_tx - c_n_tx[0]);
dist_n_tx[1] = length(c0_tx - c_n_tx[1]);
// Weighting for closest neighbor - [0.5 to 0.0] as distance goes from [min to max]
const float max_dist = sqrt(0.5*0.5+1.0);
const float min_dist = 0.5;
w_n[0] = (dist_n_tx[0]-min_dist)/(max_dist - min_dist);
w_n[0] = mix(0.5, 0.0, w_n[0]);
// Weighting for 2nd closest neighbor - [0.5 to 0.0] as distance goes from [min to max]
//const float max_dist1 = sqrt(0.5*0.5+1.0);
//const float min_dist = 0.5;
w_n[1] = (dist_n_tx[1]-min_dist)/(max_dist-min_dist);
w_n[1] = mix(0.5, 0.0, w_n[1]);
*/
// Use weighting only if neighbour is different from landclass for this fragment
// Testing: Can be omitted if not doing texture mixing as it doesn't really
// make a difference.
w_n = w_n * vec4(n_found);
// Combined weighting - increase w_n[0] if the 2nd closest neigbour is
// different such that w_n[0] remains under 0.5
w = w_n[0];
w = w + (0.5-w)*2.0*w_n[1];
// Sort landclasses and weights
lc_n_s = lc_n;
// If closest neighbour is lc, move 2nd closest neighbour to closest slot, and
// clear the 2nd closest slot
if (n_found[0] == 0)
{
lc_n_s.xy = lc_n.yz;
w_n.xy = w_n.yz;
}
// Testing phase controls
if ( (use_landclass_texel_scale_transition_only == 1) &&
(max_neighbor_landclass_texture_lookups > 0) &&
(enable_large_scale_transition_search == 0)
)
{
// Assign mix factors for transitions by mixing texels
// [0]: 0 to 0.5
// [1]: split [0 to 1] between closest and 2nd closest landclass
lc_n_w[0] = w;
lc_n_w[1] = w_n[1]/(w_n[0]+w_n[1]);
}
} // Testing controls: End if ((remove_squareness_from_landclass_texture == 1) || (use_landclass_texel_scale_transition_only == 1))
if (remove_squareness_from_landclass_texture == 1)
{
// Turn neighbor growth off at longer ranges, otherwise there is flickering noise
// Testing: The exact cutoff could be done sooner to save some performance - needs
// to be part of a larger solution to similar issues. User should set a tolerance factor.
// Effectively: lod_factor = min(length(vec2(dFdx(..).s, dFdy(..).s)),length(vec2(dFdx(..).t, dFdy(..).t)));
float lod_factor = min(length(vec2(dxdy.s, dxdy.p)),length(vec2(dxdy.t, dxdy.q)));
// Estimate of frequency of growth noise in texels - i.e. how many peaks and troughs fit in one texel
const float frequency_g_n = 1000.0;
const float cutoff = 1.0/frequency_g_n;
if (lod_factor < cutoff)
{
// Decide whether to grow neighbor on to lc
float grow_n = get_growth_priority(lc,lc_n[0]);
// Noise on the scale of landclass texels in the texture
// Testing: reduce instructions if this method is to be used.
// To look at: corner visuals & sharp diagonals.
// Minimum wavelength of transition noise
const float wl_tn = (1.0/8.0);
float tn = Noise2D(c0*texture_dim_tx, wl_tn); // old val 1.6
float threshold = mix(1.0,0.0, w);
float neighbor_growth_weight = (0.3*2.0)*w*step(threshold-0.15, tn);
// Growth factor
float g = ((grow_n > 0.0)?neighbor_growth_weight:-neighbor_growth_weight);
//g = sqrt(abs(g))*sign(g);
// Neighbor growth value
float v;
//v=w+g;
v = w*(0.7+50.5*g);
// Whether or not to grow neighbour onto nearby pixel
// To do - mix factor between different neighbour lanclasses
// when using an extra ground texture lookup
if (v > 0.5) output_landclass = lc_n_s[0];
// Testing phase controls
if ( (use_landclass_texel_scale_transition_only == 1) &&
(max_neighbor_landclass_texture_lookups > 0) &&
(enable_large_scale_transition_search == 0)
)
{
lc_n_w[0] = 0.0;
/*
// Adjust mix factor weights and swap landclasses for extrusions
// Method 1:
lc_n_w[0] = (w-0.5*neighbor_growth_weight);
if (v > 0.5) lc_n_s[0] = lc;
*/
// Method 2:
// Mix in neighbour texel, instead of change output landclass.
// Undo previous output class assignment
output_landclass = lc;
// Reduce flickering noise due to small detail added when far away. Contrasting colors mean more visible issues.
// Fade 0 to 1 as lod_factor goes from 1.0 to 4.0
// The goal is to avoid flickering with worst case texture filtering and supersampling.
// Testing: However, the quicker the detil fades, the more square distant ladnclasses look.
// Right now the noise function generates too many high frequency components (small detail)
//const float mmax = 4000.0; const float mmin = mmax-1000.0; /* no flickering */
const float mmax = 3000.0; const float mmin = mmax-1000.0; /* bit of filckering */
float fade = smoothstep(mmin, mmax, 1.0/lod_factor);
lc_n_w[0] = (w-0.5*3.333*0.9*(neighbor_growth_weight*fade));
if (v > 0.5) lc_n_w[0] = w+0.4*fade;
}
} // End if (lod_factor > some value)
} // Testing code: End if (remove_squareness_from_landclass_texture == 1)
} // End if (nfound[0] == 1) || (n_found[1] == 1)
landclass_neighbor_texel_weights = lc_n_w;
neighbor_texel_landclass_ids = lc_n_s;
number_of_unique_neighbors_found = num_n;
return output_landclass;
}
// Look up the landclass id [0 .. 255] for this particular fragment.
// Lookup id of any neighbouring landclass that is within the search distance.
// Searches are performed in upto 4 directions right now, but only one landclass is looked up
// Create a mix factor werighting the influences of nearby landclasses
void get_landclass_id(in vec2 tile_coord, in vec4 dFdx_and_dFdy,
out int landclass_id, out ivec4 neighbor_landclass_ids,
out int num_unique_neighbors,out vec4 mix_factor
)
{
// Each tile has 1 texture containing landclass ids stetched over it
// Landclass source type: 0=texture, 1=random squares
// Controls are defined at global scope.
vec2 sz = tile_size;
vec4 dxdy = dFdx_and_dFdy;
// Number of unique neighbors found
int num_n = 0;
// Only used for mixing textures of neighboring texels:
// Landclass ids of neigbors in neighboring texels
ivec4 lc_n_tx;
// Weights of neighbour landclass texels
vec4 lc_n_w;
// Number of unique neighbors in neighboring texels
int num_n_tx = 0;
int lc = lookup_landclass_id(tile_coord, dxdy, lc_n_tx, num_n_tx, lc_n_w);
float edge_hardness = 0.0;
if (use_edge_hardness_with_large_scale_transition == 1) {
edge_hardness = fg_dimensionsArray[lc].a;
}
// Neighbor landclass ids
ivec4 lc_n = ivec4(lc);
// Mix factors: texels are mixed in from furthest, to closest
// mfact[1]: [0 to 1] mixing 1st and 2nd closest texels
// mfact[0]: [0 to 0.5] texel and previous neighbour contributions
vec4 mfact = vec4(0.0);
// Testing phase controls
if ( (use_landclass_texel_scale_transition_only == 1) &&
(max_neighbor_landclass_texture_lookups > 0) &&
(enable_large_scale_transition_search == 0)
)
{
// Use the ground texture lookups to do a transition on the scale of
// the landclass textures instead of doing a large scale transition
num_n = num_n_tx;
lc_n = lc_n_tx;
mfact = lc_n_w;
}
// Testing phase controls
if ( (enable_large_scale_transition_search == 1) &&
(max_neighbor_landclass_texture_lookups > 0) &&
(use_landclass_texel_scale_transition_only == 0)
)
{
// Transition search
const int n = num_search_points_in_a_direction;
const float search_dist = transition_search_distance_in_m;
vec2 step_size_m = vec2(search_dist/float(n));
// step size in tile coords. Modulated by the edge hardness which makes
// the step size smaller and hence the range of adjacent landclasses
// smaller.
vec2 steps = step_size_m.st / tile_size.st * (1.0 - edge_hardness);
vec2 c0 = tile_coord;
// Min number of points (loop counter value (i)) before
// a different landclass is found
ivec4 mi = ivec4(n+1);
// landclass - l can be accessed as an array e.g. l[0]=l.x
ivec4 l = ivec4(lc);
// Search in 4 directions. These for loops likely need unrolling,
// and optimising to use minimum instructions, if they are
// to be used outside of testing the search concept.
// The texture access patterns may be suboptimal as well.
// Travelling along s and t axes might work better.
// Note: this returns the closest neighbor. There could be blobs
// of multiple neighbors, or a tiny islands of neighbors among this
// landclass.
// Testing: breaking the loop once the closest neighbour is found
// results in very slightly lower FPS on a 10 series GPU for 100m search
// distance and 4 points. May be faster on old GPUs with slow caching.
// +s direction
vec2 dir = vec2(steps.s, 0.0);
for (int i=1;i<=n;i++) {
vec2 c = c0+float(i)*dir;
ivec2 v = read_landclass_id_and_water(c);
if ((v[0] != lc) && (v[1] != 1) && (mi[0] > n)) {l[0] = v[0]; mi[0] = i; }
}
// -s direction
dir = vec2(-steps.s, 0.0);
for (int i=1;i<=n;i++)
{
vec2 c = c0+float(i)*dir;
ivec2 v = read_landclass_id_and_water(c);
if ((v[0] != lc) && (v[1] != 1) && (mi[1] > n)) {l[1] = v[0]; mi[1] = i; }
}
// +t direction
dir = vec2(0.0, steps.t);
for (int i=1;i<=n;i++)
{
vec2 c = c0+float(i)*dir;
ivec2 v = read_landclass_id_and_water(c);
if ((v[0] != lc) && (v[1] != 1) && (mi[2] > n)) {l[2] = v[0]; mi[2] = i; }
}
// -t direction
dir = vec2(0.0, -steps.t);
for (int i=1;i<=n;i++)
{
vec2 c = c0+float(i)*dir;
ivec2 v = read_landclass_id_and_water(c);
if ((v[0] != lc) && (v[1] != 1) && (mi[3] > n)) {l[3] = v[0]; mi[3] = i; }
}
// Set neighbour landclass
// Choose closest neighbor
// min number of steps before a neighbor was found in any direction
int mns = n+1;
// index of mi[] with min number of steps
int idx1=-1;
for (int j=0;j<4;j++)
{
if (mi[j] < mns) {mns = mi[j]; idx1 = j; lc_n[0] = l[j]; num_n=1;}
}
// Transitions:
// Possible landclass property: Transition distance or weighting
// e.g. larger transition between sand/grass terrain compared to forest/agriculture
// Find mix factor and increase influence for 2, 3 or 4 nearby landclass blobs.
// If one neighbor landclass texture is looked up, even if the nearby landclasses
// are different only one texture will get prominence
// At the boundary between landclasses there should be 50% influence.
// If needed it's possible to add a dominance factor.
// mi ranges from n+1 to 1. Mix factor ranges from [0.0 to 0.5]
// 3 point search example:
// [Num steps=Mixfactor value]: [no neighbor found = 0.0], [1 = 0.25], [2 = 0.5]
// Calculate weights: map [n+1 to 1] to [0.0 to 0.5]
vec4 w = 0.5*(1.0-(vec4(mi-1)/float(n)));
// Calculate mix factor to draw one neighbor landclass
float mf1=0.0;
// Method 1:
float max_w = max(max(max(w[0],w[1]),w[2]),w[3]);
//mf1 = max_w;
// Method 2: add up the influence and clamp to 0.5
//mf1 = min(w.x+w.y+w.z+w.w, 0.5);
// Method 3: weight influence without going over limit or needing to clamp
// Example with influence [0 to 1]:
// 2 neighbors with 0.5 influence: 0.75 . 3 neighbors with 0.5 = 87.25
// of course influence is [0 to 0.5] but idea is the same
mf1 = w[0];
mf1 += (0.5-mf1)*w[1];
mf1 += (0.5-mf1)*w[2];
mf1 += (0.5-mf1)*w[3];
// Mix factors: texels are mixed in from furthest, to closest
// mfact[0]: [0 to 0.5] texel and previous neighbour contributions
// mfact[1]: [0 to 1] mixing 1st and 2nd closest texels
mfact[0] = mf1;
// Test phase controls:
if (enable_2nd_closest_neighbor_for_large_scale_transition_weights == 1)
{
// Calculate mix factor for the case of two neighbour landclasses
// index of mi[] with the 2nd lowest number of steps
int idx2=-1;
if (idx1 != -1) {
// Choose 2nd closest neighbor
// Testing: look at a way to find 2 closest neighbors with less instructions
// 2nd lowest number of steps
int mns2 = n+1;
for (int j=0;j<4;j++) {
if ((mi[j] < mns2) && (mi[j] >= mns) && (j != idx1))
{mns2 = mi[j]; lc_n[1] = l[j]; idx2=j; num_n=2;}
}
}
// If two neighbors are found split available mix factor (mf1) by relative weights
if (idx2 != -1) {
float rw = w[idx2]/(w[idx1]+w[idx2]);
mfact[1] = rw;
}
} // End if (enable_2nd_closest_neighbor_for_large_scale_transition_weights == 1)
// Test phase controls
if (enable_dithering_for_large_scale_transitions == 1)
{
// Add noise to change transition
float tnoise1= Noise2D(tile_coord, dithering_noise_wavelength_as_fraction_of_step_size*steps.x);
float noise = 0.5*(1.0-tnoise1)/float(n);
mfact[0]=mfact[0]+noise;
mfact[0]=clamp(mfact[0],0.0,0.5);
}
// Test phase controls
if (grow_landclass_borders_with_large_scale_transition == 1)
{
// Grow landclass borders with noise so landclass blobs that are too artificial
// looking or coarse look natural.
// A landclass with higher growth priority grows on to an adjacent landclass
// with lower priority
// Decide whether to grow neighbor on to lc
float grow_n = get_growth_priority(lc,lc_n[0],lc_n[1]);
// Noise on the scale of landclass texels in the texture
float tnoise2 = Noise2D(tile_coord, 0.4*transition_search_distance_in_m/tile_size.x);
float threshold = mix(1.0,0.0, mfact[0]);
float neighbor_growth_mixf = 0.3*mix(0.0,1.0,mfact[0]*2.0)*step(threshold-0.15,tnoise2);
mfact[0] = mfact[0]+((grow_n > 0.0)?neighbor_growth_mixf:-neighbor_growth_mixf);
mfact[0] = clamp(mfact[0],0.0,1.0);
// Decide whether to extrude furthest neighbor or closest neighbor onto lc
float grow_n1 = get_growth_priority(lc_n[0],lc_n[1]);
mfact[1] = mfact[1]+((grow_n > 0.0)?neighbor_growth_mixf:-neighbor_growth_mixf);
mfact[1] = clamp(mfact[1],0.0,1.0);
} // Testing: End if (grow_landclass_borders_with_large_scale_transition == 1)
} // Testing: End if ((enable_large_scale_transition_search == 1) && (max_neighbor_landclass_texture_lookups > 0))
//lc = int(t);
//mfact[2] = t;
landclass_id = lc;
neighbor_landclass_ids=lc_n;
num_unique_neighbors = num_n;
mix_factor = mfact;
}
// End Test-phase code
////////////////////////
// Determine the texel and material parameters for a particular fragment,
// Taking into account photoscenery etc.
void get_material(in int landclass,
in vec2 ground_tex_coord,
in vec4 dxdy_gc,
out float mat_shininess,
out vec4 mat_ambient,
out vec4 mat_diffuse,
out vec4 mat_specular,
out vec4 dxdy,
out vec2 st
)
{
// Calculate texture coords for ground textures
// Textures are stretched along the ground to different
// lengths along each axes as set by <xsize> and <ysize>
// regional definitions parameters.
vec2 stretch_dimensions = fg_dimensionsArray[landclass].st;
vec2 tileSize = vec2(fg_tileWidth, fg_tileHeight);
vec2 texture_scaling = tileSize.yx / stretch_dimensions.st;
st = texture_scaling.st * ground_tex_coord.st;
// Scale partial derivatives
dxdy = vec4(texture_scaling.st, texture_scaling.st) * dxdy_gc;
if (fg_photoScenery) {
// In the photoscenery case we don't have landclass or materials available, so we
// just use constants for the material properties.
mat_ambient = vec4(0.2,0.2,0.2,1.0);
mat_diffuse = vec4(0.8,0.8,0.8,1.0);
mat_specular = vec4(0.0,0.0,0.0,1.0);
mat_shininess = 1.2;
} else {
// Color Mode is always AMBIENT_AND_DIFFUSE, which means
// using a base colour of white for ambient/diffuse,
// rather than the material color from ambientArray/diffuseArray.
mat_ambient = vec4(1.0,1.0,1.0,1.0);
mat_diffuse = vec4(1.0,1.0,1.0,1.0);
mat_specular = fg_specularArray[landclass];
mat_shininess = fg_dimensionsArray[landclass].z;
}
}