1
0
Fork 0
fgdata/Nasal/geo.nas
2007-05-15 20:46:59 +00:00

376 lines
10 KiB
Text

# geo functions
# -------------------------------------------------------------------------------------------------
# geo.Coord.new([<coord>]) ... class that holds and maintains geographical coordinates
# can be initialized with another geo.Coord instance
# Coord.set(<coord>) ... sets coordinates from another geo.Coord instance
#
# Coord.set_lon(<num>) ... functions for setting longitude/latitude/altitude
# Coord.set_lat(<num>)
# Coord.set_alt(<num>)
# Coord.set_lonlat(<num>, <num> [, <num>]) (altitude is optional; default=0)
#
# Coord.set_x(<num>) ... functions for setting cartesian x/y/z coordinates
# Coord.set_y(<num>)
# Coord.set_z(<num>)
# Coord.set_xyz(<num>, <num>, <num>)
#
# Coord.lon() ... functions for getting lon/lat/alt
# Coord.lat()
# Coord.alt() ... returns altitude in m
# Coord.lonlat() ... returns array [<lon>, <lat>, <alt>]
#
# Coord.x() ... functions for reading cartesian coords (in m)
# Coord.y()
# Coord.z()
# Coord.xyz() ... returns array [<x>, <y>, <z>]
#
# Coord.course_to(<coord>) ... returns course to another geo.Coord instance (degree)
# Coord.distance_to(<coord>) ... returns distance in m along Earth curvature, ignoring altitudes
# useful for map distance
# Coord.direct_distance_to(<coord>) ... distance in m direct, considers altitude,
# but cuts through Earth surface
#
# Coord.apply_course_distance(<course>, <distance>) ... guess what
# Coord.dump() ... outputs coordinates
# Coord.is_defined() ... returns whether the coords are defined
#
# geo.aircraft_position() ... returns current aircraft position as geo.Coord
# geo.click_position() ... returns last click coords as geo.Coord or nil before first click
#
# geo.tile_path(<lon>, <lat>) ... returns tile path string (e.g. "w130n30/w123n37/942056.stg")
# geo.elevation(<lon>, <lat>) ... returns elevation in meter for given lon/lat, or nil on error
# geo.normdeg(<angle>) ... returns angle normalized to 0 <= angle < 360
var EPSILON = 0.0000000000001;
var ERAD = 6378138.12; # Earth radius (m)
var D2R = math.pi / 180;
var R2D = 180 / math.pi;
var FT2M = 0.3048;
var M2FT = 3.28083989501312335958;
var printf = func { print(call(sprintf, arg)) }
var floor = func(v) { v < 0.0 ? -int(-v) - 1 : int(v) }
var sin = math.sin;
var cos = math.cos;
var atan2 = math.atan2;
var sqrt = math.sqrt;
var asin = func(v) { math.atan2(v, math.sqrt(1 - v * v)) }
var acos = func(v) { math.atan2(math.sqrt(1 - v * v), v) }
var mod = func(v, w) {
var x = v - w * int(v / w);
return x < 0 ? x + abs(w) : x;
}
# class that maintains one set of geographical coordinates and provides
# simple conversion methods (which assume a spherical Earth)
#
var Coord = {
new : func(copy = nil) {
var m = { parents: [Coord] };
m._pdirty = 1; # polar
m._cdirty = 1; # cartesian
m._lon = nil; # in radian
m._lat = nil;
m._alt = nil; # ASL
m._x = nil; # in m
m._y = nil;
m._z = nil;
if (copy != nil) {
m.set(copy);
}
return m;
},
_cupdate : func {
me._cdirty or return;
var rad = ERAD + me._alt;
var cosphi = cos(me._lat) * rad;
me._x = cosphi * cos(me._lon);
me._y = cosphi * sin(me._lon);
me._z = sin(me._lat) * rad;
me._cdirty = 0;
},
_pupdate : func {
me._pdirty or return;
me._lat = atan2(me._z, sqrt(me._x * me._x + me._y * me._y));
me._lon = atan2(me._y, me._x);
me._alt = sqrt(me._x * me._x + me._y * me._y + me._z * me._z) - ERAD;
me._pdirty = 0;
},
x : func { me._cupdate(); me._x },
y : func { me._cupdate(); me._y },
z : func { me._cupdate(); me._z },
xyz : func { me._cupdate(); [me._x, me._y, me._z] },
lon : func { me._pupdate(); me._lon * R2D }, # return in degree
lat : func { me._pupdate(); me._lat * R2D },
alt : func { me._pupdate(); me._alt },
lonlat : func { me._pupdate(); [me._lon, me._lat, me._alt] },
set_x : func(x) { me._pupdate(); me._pdirty = 1; me._x = x; me },
set_y : func(y) { me._pupdate(); me._pdirty = 1; me._y = y; me },
set_z : func(z) { me._pupdate(); me._pdirty = 1; me._z = z; me },
set_lon : func(lon) { me._cupdate(); me._cdirty = 1; me._lon = lon * D2R; me },
set_lat : func(lat) { me._cupdate(); me._cdirty = 1; me._lat = lat * D2R; me },
set_alt : func(alt) { me._cupdate(); me._cdirty = 1; me._alt = alt; me },
set : func(c) {
c._pupdate();
me._lon = c._lon;
me._lat = c._lat;
me._alt = c._alt;
me._cdirty = 1;
me._pdirty = 0;
me;
},
set_lonlat : func(lon, lat, alt = 0) {
me._lon = lon * D2R;
me._lat = lat * D2R;
me._alt = alt;
me._cdirty = 1;
me._pdirty = 0;
me;
},
set_xyz : func(x, y, z) {
me._x = x;
me._y = y;
me._z = z;
me._pdirty = 1;
me._cdirty = 0;
me;
},
apply_course_distance : func(course, dist) {
me._pupdate();
course *= D2R;
dist /= ERAD;
me._lat = asin(sin(me._lat) * cos(dist) + cos(me._lat) * sin(dist) * cos(course));
if (cos(me._lat) > EPSILON) {
me._lon = math.pi - mod(math.pi - me._lon - asin(sin(course) * sin(dist)
/ cos(me._lat)), 2 * math.pi);
}
me._cdirty = 1;
me;
},
course_to : func(dest) {
me._pupdate();
dest._pupdate();
if (me._lon == dest._lon and me._lat == dest._lat) {
return 0;
}
var dlon = dest._lon - me._lon;
return mod(atan2(sin(dlon) * cos(dest._lat), cos(me._lat) * sin(dest._lat)
- sin(me._lat) * cos(dest._lat) * cos(dlon)), 2 * math.pi) * R2D;
},
# arc distance on an earth sphere; doesn't consider altitude
distance_to : func(dest) {
me._pupdate();
dest._pupdate();
if (me._lon == dest._lon and me._lat == dest._lat) {
return 0;
}
var o = sin((me._lon - dest._lon) * 0.5);
var a = sin((me._lat - dest._lat) * 0.5);
return 2.0 * ERAD * asin(sqrt(a * a + cos(me._lat) * cos(dest._lat) * o * o));
},
direct_distance_to : func(dest) {
me._cupdate();
dest._cupdate();
var dx = dest._x - me._x;
var dy = dest._y - me._y;
var dz = dest._z - me._z;
return sqrt(dx * dx + dy * dy + dz * dz);
},
is_defined : func {
return !(me._cdirty and me._pdirty);
},
dump : func {
if (me._cdirty and me._pdirty) {
print("Coord.print(): coord undefined");
}
me._cupdate();
me._pupdate();
printf("x=%f y=%f z=%f lon=%f lat=%f alt=%f",
me.x(), me.y(), me.z(), me.lon(), me.lat(), me.alt());
},
};
# normalize degree to 0 <= angle < 360
#
var normdeg = func(angle) {
while (angle < 0) {
angle += 360;
}
while (angle >= 360) {
angle -= 360;
}
return angle;
}
var bucket_span = func(lat) {
if (lat >= 89.0 ) {
360.0;
} elsif (lat >= 88.0 ) {
8.0;
} elsif (lat >= 86.0 ) {
4.0;
} elsif (lat >= 83.0 ) {
2.0;
} elsif (lat >= 76.0 ) {
1.0;
} elsif (lat >= 62.0 ) {
0.5;
} elsif (lat >= 22.0 ) {
0.25;
} elsif (lat >= -22.0 ) {
0.125;
} elsif (lat >= -62.0 ) {
0.25;
} elsif (lat >= -76.0 ) {
0.5;
} elsif (lat >= -83.0 ) {
1.0;
} elsif (lat >= -86.0 ) {
2.0;
} elsif (lat >= -88.0 ) {
4.0;
} elsif (lat >= -89.0 ) {
8.0;
} else {
360.0;
}
}
var tile_index = func(lon, lat) {
var lon_floor = floor(lon);
var lat_floor = floor(lat);
var span = bucket_span(lat);
var x = 0;
if (span < 0.0000001) {
lon = 0;
} elsif (span <= 1.0) {
x = int((lon - lon_floor) / span);
} else {
if (lon >= 0) {
lon = int(int(lon / span) * span);
} else {
lon = int(int((lon + 1) / span) * span - span);
if (lon < -180) {
lon = -180;
}
}
}
var y = int((lat - lat_floor) * 8);
(lon_floor + 180) * 16384 + (lat_floor + 90) * 64 + y * 8 + x;
}
var format = func(lon, lat) {
sprintf("%s%03d%s%02d", lon < 0 ? "w" : "e", abs(lon), lat < 0 ? "s" : "n", abs(lat));
}
var tile_path = func(lon, lat) {
var p = format(floor(lon / 10.0) * 10, floor(lat / 10.0) * 10);
p ~= "/" ~ format(floor(lon), floor(lat));
p ~= "/" ~ tile_index(lon, lat) ~ ".stg";
}
var put_model = func(path, lon, lat, elev_m = nil, hdg = 0, pitch = 0, roll = 0) {
if (elev_m == nil)
elev_m = elevation(lon, lat);
if (elev_m == nil)
die("can't get elevation for " ~ lon ~ "/" ~ lat);
var n = props.globals.getNode("/models");
for (var i = 0; 1; i += 1)
if (n.getChild("model", i, 0) == nil)
break;
n = n.getChild("model", i, 1);
n.getNode("path", 1).setValue(path);
n.getNode("longitude-deg", 1).setDoubleValue(lon);
n.getNode("latitude-deg", 1).setDoubleValue(lat);
n.getNode("elevation-ft", 1).setDoubleValue(elev_m * M2FT);
n.getNode("heading-deg", 1).setDoubleValue(hdg);
n.getNode("pitch-deg", 1).setDoubleValue(pitch);
n.getNode("roll-deg", 1).setDoubleValue(roll);
n.getNode("load", 1).setBoolValue(1);
n.removeChildren("load");
return n;
}
var terr_tree = nil;
var terr_lon = nil;
var terr_lat = nil;
var terr_elev = nil;
var elevation = func(lon, lat) {
terr_lon.setDoubleValue(lon);
terr_lat.setDoubleValue(lat);
var success = fgcommand("terrain-elevation", terr_tree);
return success ? terr_elev.getValue() : nil;
}
var aircraft_lon = nil;
var aircraft_lat = nil;
var aircraft_alt = nil;
var aircraft_position = func {
var lon = aircraft_lon.getValue();
var lat = aircraft_lat.getValue();
var alt = aircraft_alt.getValue() * FT2M;
return Coord.new().set_lonlat(lon, lat, alt);
}
var click_lon = nil;
var click_lat = nil;
var click_elev = nil;
var click_coord = Coord.new();
_setlistener("/sim/signals/click", func {
var lon = click_lon.getValue();
var lat = click_lat.getValue();
var elev = click_elev.getValue();
click_coord.set_lonlat(lon, lat, elev);
});
var click_position = func {
return click_coord.is_defined() ? Coord.new(click_coord) : nil;
}
_setlistener("/sim/signals/nasal-dir-initialized", func {
terr_tree = props.Node.new();
terr_lon = terr_tree.getNode("longitude-deg", 1);
terr_lat = terr_tree.getNode("latitude-deg", 1);
terr_elev = terr_tree.getNode("elevation-m", 1);
terr_lon.setDoubleValue(0.0);
terr_lat.setDoubleValue(0.0);
terr_elev.setDoubleValue(-9999.0);
aircraft_lon = props.globals.getNode("/position/longitude-deg", 1);
aircraft_lat = props.globals.getNode("/position/latitude-deg", 1);
aircraft_alt = props.globals.getNode("/position/altitude-ft", 1);
click_lon = props.globals.getNode("/sim/input/click/longitude-deg", 1);
click_lat = props.globals.getNode("/sim/input/click/latitude-deg", 1);
click_elev = props.globals.getNode("/sim/input/click/elevation-m", 1);
});