389 lines
10 KiB
C++
389 lines
10 KiB
C++
// -*-C++-*-
|
|
|
|
// written by Thorsten Renk, Oct 2011, based on default.frag
|
|
|
|
|
|
varying vec3 relPos;
|
|
|
|
|
|
uniform sampler2D texture;
|
|
|
|
|
|
varying float yprime_alt;
|
|
|
|
varying float is_shadow;
|
|
varying float autumn_flag;
|
|
|
|
uniform float visibility;
|
|
uniform float avisibility;
|
|
uniform float scattering;
|
|
uniform float ground_scattering;
|
|
uniform float cloud_self_shading;
|
|
uniform float terminator;
|
|
uniform float terrain_alt;
|
|
uniform float hazeLayerAltitude;
|
|
uniform float overcast;
|
|
uniform float eye_alt;
|
|
uniform float dust_cover_factor;
|
|
uniform float air_pollution;
|
|
uniform float landing_light1_offset;
|
|
uniform float landing_light2_offset;
|
|
uniform float landing_light3_offset;
|
|
uniform float cseason;
|
|
|
|
uniform int use_searchlight;
|
|
uniform int use_landing_light;
|
|
uniform int use_alt_landing_light;
|
|
uniform int quality_level;
|
|
uniform int tquality_level;
|
|
|
|
|
|
const float EarthRadius = 5800000.0;
|
|
const float terminator_width = 200000.0;
|
|
|
|
float alt;
|
|
float mie_angle;
|
|
|
|
|
|
float light_distance_fading(in float dist);
|
|
float fog_backscatter(in float avisibility);
|
|
float rayleigh_in_func(in float dist, in float air_pollution, in float avisibility, in float eye_alt, in float vertex_alt);
|
|
|
|
vec3 searchlight();
|
|
vec3 landing_light(in float offset, in float offsetv);
|
|
vec3 get_hazeColor(in float light_arg);
|
|
vec3 filter_combined (in vec3 color) ;
|
|
|
|
float luminance(vec3 color)
|
|
{
|
|
return dot(vec3(0.212671, 0.715160, 0.072169), color);
|
|
}
|
|
|
|
|
|
float light_func (in float x, in float a, in float b, in float c, in float d, in float e)
|
|
{
|
|
x = x - 0.5;
|
|
|
|
// use the asymptotics to shorten computations
|
|
if (x > 30.0) {return e;}
|
|
if (x < -15.0) {return 0.0;}
|
|
|
|
return e / pow((1.0 + a * exp(-b * (x-c)) ),(1.0/d));
|
|
}
|
|
|
|
// this determines how light is attenuated in the distance
|
|
// physically this should be exp(-arg) but for technical reasons we use a sharper cutoff
|
|
// for distance > visibility
|
|
|
|
float tree_fog_func (in float targ)
|
|
{
|
|
|
|
|
|
float fade_mix;
|
|
|
|
// for large altitude > 30 km, we switch to some component of quadratic distance fading to
|
|
// create the illusion of improved visibility range
|
|
|
|
targ = 1.25 * targ * smoothstep(0.07,0.1,targ); // need to sync with the distance to which terrain is drawn
|
|
|
|
|
|
if (alt < 30000.0)
|
|
{return exp(-targ - targ * targ * targ * targ);}
|
|
else if (alt < 50000.0)
|
|
{
|
|
fade_mix = (alt - 30000.0)/20000.0;
|
|
return fade_mix * exp(-targ*targ - pow(targ,4.0)) + (1.0 - fade_mix) * exp(-targ - pow(targ,4.0));
|
|
}
|
|
else
|
|
{
|
|
return exp(- targ * targ - pow(targ,4.0));
|
|
}
|
|
|
|
}
|
|
|
|
float rand2D(in vec2 co){
|
|
return fract(sin(dot(co.xy ,vec2(12.9898,78.233))) * 43758.5453);
|
|
}
|
|
|
|
|
|
float simple_interpolate(in float a, in float b, in float x)
|
|
{
|
|
return a + smoothstep(0.0,1.0,x) * (b-a);
|
|
}
|
|
|
|
float interpolatedNoise2D(in float x, in float y)
|
|
{
|
|
float integer_x = x - fract(x);
|
|
float fractional_x = x - integer_x;
|
|
|
|
float integer_y = y - fract(y);
|
|
float fractional_y = y - integer_y;
|
|
|
|
float v1 = rand2D(vec2(integer_x, integer_y));
|
|
float v2 = rand2D(vec2(integer_x+1.0, integer_y));
|
|
float v3 = rand2D(vec2(integer_x, integer_y+1.0));
|
|
float v4 = rand2D(vec2(integer_x+1.0, integer_y +1.0));
|
|
|
|
float i1 = simple_interpolate(v1 , v2 , fractional_x);
|
|
float i2 = simple_interpolate(v3 , v4 , fractional_x);
|
|
|
|
return simple_interpolate(i1 , i2 , fractional_y);
|
|
}
|
|
|
|
|
|
|
|
float Noise2D(in vec2 coord, in float wavelength)
|
|
{
|
|
return interpolatedNoise2D(coord.x/wavelength, coord.y/wavelength);
|
|
|
|
}
|
|
|
|
void main()
|
|
{
|
|
|
|
if (is_shadow > 1.0) {discard;}
|
|
|
|
vec3 shadedFogColor = vec3(0.55, 0.67, 0.88);
|
|
|
|
|
|
vec3 lightDir = gl_LightSource[0].position.xyz;
|
|
float intensity;
|
|
|
|
mie_angle = gl_Color.a;
|
|
vec4 texel = texture2D(texture, gl_TexCoord[0].st);
|
|
|
|
// angle with horizon
|
|
float dist = length(relPos);
|
|
float ct = dot(vec3(0.0, 0.0, 1.0), relPos)/dist;
|
|
|
|
// determine tree shadow properties
|
|
if (is_shadow>0.0)
|
|
{
|
|
if (ct > -0.1) {discard;} // we eliminate shadows above the camera to avoid artifacts
|
|
float illumination = length(gl_Color.rgb);
|
|
texel = vec4 (0.1,0.1,0.1,texel.a);
|
|
texel.a *= illumination;// * smoothstep(0.0, 0.2, is_shadow);
|
|
texel.a *=0.6 * smoothstep(0.5,0.8,scattering);
|
|
texel.a = min(0.8, texel.a);
|
|
}
|
|
|
|
float effective_scattering = min(scattering, cloud_self_shading);
|
|
|
|
|
|
if (quality_level > 3)
|
|
{
|
|
// seasonal color changes
|
|
|
|
if ((cseason < 1.5)&& (autumn_flag > 0.0) && (is_shadow <0.0))
|
|
{
|
|
texel.r = min(1.0, (1.0 + 5.0 *cseason * autumn_flag ) * texel.r);
|
|
texel.b = max(0.0, (1.0 - 8.0 * cseason) * texel.b);
|
|
}
|
|
|
|
// mix dust
|
|
vec4 dust_color = vec4 (0.76, 0.71, 0.56, texel.a);
|
|
|
|
texel = mix(texel, dust_color, clamp(0.6 * dust_cover_factor ,0.0, 1.0) );
|
|
}
|
|
|
|
|
|
// ALS secondary light sources
|
|
|
|
vec3 secondary_light = vec3 (0.0,0.0,0.0);
|
|
|
|
if ((quality_level>5) && (tquality_level>5))
|
|
{
|
|
if (use_searchlight == 1)
|
|
{
|
|
secondary_light += searchlight();
|
|
}
|
|
if (use_landing_light == 1)
|
|
{
|
|
secondary_light += landing_light(landing_light1_offset, landing_light3_offset);
|
|
}
|
|
if (use_alt_landing_light == 1)
|
|
{
|
|
secondary_light += landing_light(landing_light2_offset, landing_light3_offset);
|
|
}
|
|
}
|
|
|
|
vec4 fragColor = vec4 (gl_Color.rgb +secondary_light * light_distance_fading(dist),1.0) * texel;
|
|
|
|
|
|
// Rayleigh haze
|
|
|
|
float lightArg = (terminator-yprime_alt)/100000.0;
|
|
vec3 hazeColor = get_hazeColor(lightArg);
|
|
|
|
// Rayleigh color shift due to in-scattering
|
|
|
|
if ((quality_level > 5) && (tquality_level > 5))
|
|
{
|
|
float rShade = 1.0 - 0.9 * smoothstep(-terminator_width+ terminator, terminator_width + terminator, yprime_alt + 420000.0);
|
|
float lightIntensity = length(hazeColor * effective_scattering) * rShade;
|
|
vec3 rayleighColor = vec3 (0.17, 0.52, 0.87) * lightIntensity;
|
|
float rayleighStrength = rayleigh_in_func(dist, air_pollution, avisibility/max(lightIntensity,0.05), eye_alt, eye_alt + relPos.z);
|
|
fragColor.rgb = mix(fragColor.rgb, rayleighColor,rayleighStrength);
|
|
}
|
|
|
|
|
|
|
|
|
|
// here comes the terrain haze model
|
|
|
|
|
|
float delta_z = hazeLayerAltitude - eye_alt;
|
|
|
|
|
|
if (dist > max(40.0, 0.07 * min(visibility,avisibility)))
|
|
{
|
|
|
|
alt = eye_alt;
|
|
|
|
|
|
|
|
float transmission;
|
|
float vAltitude;
|
|
float delta_zv;
|
|
float H;
|
|
float distance_in_layer;
|
|
float transmission_arg;
|
|
|
|
|
|
|
|
|
|
// we solve the geometry what part of the light path is attenuated normally and what is through the haze layer
|
|
|
|
if (delta_z > 0.0) // we're inside the layer
|
|
{
|
|
if (ct < 0.0) // we look down
|
|
{
|
|
distance_in_layer = dist;
|
|
vAltitude = min(distance_in_layer,min(visibility, avisibility)) * ct;
|
|
delta_zv = delta_z - vAltitude;
|
|
}
|
|
else // we may look through upper layer edge
|
|
{
|
|
H = dist * ct;
|
|
if (H > delta_z) {distance_in_layer = dist/H * delta_z;}
|
|
else {distance_in_layer = dist;}
|
|
vAltitude = min(distance_in_layer,visibility) * ct;
|
|
delta_zv = delta_z - vAltitude;
|
|
}
|
|
}
|
|
else // we see the layer from above, delta_z < 0.0
|
|
{
|
|
H = dist * -ct;
|
|
if (H < (-delta_z)) // we don't see into the layer at all, aloft visibility is the only fading
|
|
{
|
|
distance_in_layer = 0.0;
|
|
delta_zv = 0.0;
|
|
}
|
|
else
|
|
{
|
|
vAltitude = H + delta_z;
|
|
distance_in_layer = vAltitude/H * dist;
|
|
vAltitude = min(distance_in_layer,visibility) * (-ct);
|
|
delta_zv = vAltitude;
|
|
}
|
|
}
|
|
|
|
|
|
// blur of the haze layer edge
|
|
|
|
float blur_thickness = 50.0;
|
|
float cphi = dot(vec3(0.0, 1.0, 0.0), relPos)/dist;
|
|
float ctlayer;
|
|
float ctblur = 0.035 ;
|
|
|
|
float blur_dist;
|
|
|
|
if ((abs(delta_z) < 400.0)&&(quality_level>5)&&(tquality_level>5))
|
|
{
|
|
ctlayer = delta_z/dist-0.01 + 0.02 * Noise2D(vec2(cphi,1.0),0.1) -0.01;
|
|
blur_dist = dist * (1.0-smoothstep(0.0,300.0,-delta_z)) * smoothstep(-400.0,-200.0, -delta_z);
|
|
blur_dist = blur_dist * smoothstep(ctlayer-4.0*ctblur, ctlayer-ctblur, ct) * (1.0-smoothstep(ctlayer+0.5*ctblur, ctlayer+ctblur, ct));
|
|
distance_in_layer = max(distance_in_layer, blur_dist);
|
|
}
|
|
|
|
// ground haze cannot be thinner than aloft visibility in the model,
|
|
// so we need to use aloft visibility otherwise
|
|
|
|
|
|
transmission_arg = (dist-distance_in_layer)/avisibility;
|
|
|
|
|
|
float eqColorFactor;
|
|
|
|
//float scattering = ground_scattering + (1.0 - ground_scattering) * smoothstep(hazeLayerAltitude -100.0, hazeLayerAltitude + 100.0, relPos.z + eye_alt);
|
|
|
|
if (visibility < avisibility)
|
|
{
|
|
transmission_arg = transmission_arg + (distance_in_layer/visibility);
|
|
// this combines the Weber-Fechner intensity
|
|
eqColorFactor = 1.0 - 0.1 * delta_zv/visibility - (1.0 -effective_scattering);
|
|
|
|
}
|
|
else
|
|
{
|
|
transmission_arg = transmission_arg + (distance_in_layer/avisibility);
|
|
// this combines the Weber-Fechner intensity
|
|
eqColorFactor = 1.0 - 0.1 * delta_zv/avisibility - (1.0 -effective_scattering);
|
|
}
|
|
|
|
|
|
|
|
transmission = tree_fog_func(transmission_arg);
|
|
|
|
// there's always residual intensity, we should never be driven to zero
|
|
if (eqColorFactor < 0.2) eqColorFactor = 0.2;
|
|
|
|
|
|
|
|
|
|
// now dim the light for haze
|
|
float eShade = 0.9 * smoothstep(terminator_width+ terminator, -terminator_width + terminator, yprime_alt) + 0.1;
|
|
|
|
// Mie-like factor
|
|
|
|
if (lightArg < 10.0)
|
|
{intensity = length(hazeColor);
|
|
float mie_magnitude = 0.5 * smoothstep(350000.0, 150000.0, terminator-sqrt(2.0 * EarthRadius * terrain_alt));
|
|
hazeColor = intensity * ((1.0 - mie_magnitude) + mie_magnitude * mie_angle) * normalize(mix(hazeColor, vec3 (0.5, 0.58, 0.65), mie_magnitude * (0.5 - 0.5 * mie_angle)) );
|
|
}
|
|
|
|
// high altitude desaturation of the haze color
|
|
|
|
intensity = length(hazeColor);
|
|
hazeColor = intensity * normalize (mix(hazeColor, intensity * vec3 (1.0,1.0,1.0), 0.7* smoothstep(5000.0, 50000.0, alt)));
|
|
|
|
// blue hue of haze
|
|
|
|
hazeColor.x = hazeColor.x * 0.83;
|
|
hazeColor.y = hazeColor.y * 0.9;
|
|
|
|
|
|
// additional blue in indirect light
|
|
float fade_out = max(0.65 - 0.3 *overcast, 0.45);
|
|
intensity = length(hazeColor);
|
|
hazeColor = intensity * normalize(mix(hazeColor, 1.5* shadedFogColor, 1.0 -smoothstep(0.25, fade_out,eShade) ));
|
|
|
|
// change haze color to blue hue for strong fogging
|
|
|
|
hazeColor = intensity * normalize(mix(hazeColor, shadedFogColor, (1.0-smoothstep(0.5,0.9,eqColorFactor))));
|
|
|
|
|
|
|
|
// determine the right mix of transmission and haze
|
|
|
|
hazeColor = clamp(hazeColor,0.0,1.0);
|
|
fragColor.rgb = mix(eqColorFactor * hazeColor * eShade + secondary_light * fog_backscatter(avisibility), fragColor.rgb,transmission);
|
|
|
|
}
|
|
|
|
fragColor.rgb = filter_combined(fragColor.rgb);
|
|
|
|
gl_FragColor = fragColor;
|
|
|
|
}
|
|
|