1
0
Fork 0
fgdata/Nasal/aircraft.nas

976 lines
28 KiB
Text

# These classes provide basic functions for use in aircraft specific
# Nasal context. Note that even if a class is called "door" or "light"
# this doesn't mean that it can't be used for other purposes.
#
# Class instances don't have to be assigned to variables. They do also
# work if they remain anonymous. It's even a good idea to keep them
# anonymous if you don't need further access to their members. On the
# other hand, you can assign the class and apply setters at the same time:
#
# aircraft.light.new("sim/model/foo/beacon", [1, 1]); # anonymous
# var strobe = aircraft.light.new("sim/model/foo/strobe", [1, 1]).cont().switch(1);
#
#
# Classes do create properties, but they don't usually overwrite the contents
# of an existing property. This makes it possible to preset them in
# a *-set.xml file or on the command line. For example:
#
# $ fgfs --aircraft=bo105 --prop:/controls/doors/door[0]/position-norm=1
#
#
# Wherever a property argument can be given, this can either be a path,
# or a node (i.e. property node hash). In return, the property node can
# always be accessed directly as member "node", and turned into a path
# string with node.getPath():
#
# var beacon = aircraft.light.new("sim/model/foo/beacon", [1, 1]);
# print(beacon.node.getPath());
#
# var strobe_node = props.globals.getNode("sim/model/foo/strobe", 1);
# var strobe = aircraft.light.new(strobe_node, [0.05, 1.0]);
#
#
# The classes implement only commonly used features, but are easy to
# extend, as all class members are accessible from outside. For example:
#
# # add custom property to door node:
# frontdoor.node.getNode("name", 1).setValue("front door");
#
# # add method to class instance (or base class -> aircraft.door.print)
# frontdoor.print = func { print(me.position.getValue()) };
#
#
# constants
# ==============================================================================
var D2R = math.pi / 180;
var R2D = 180 / math.pi;
# helper functions
# ==============================================================================
# creates (if necessary) and returns a property node from arg[0],
# which can be a property node already, or a property path
#
var makeNode = func(n) {
if (isa(n, props.Node))
return n;
else
return props.globals.getNode(n, 1);
}
# returns arg[1]-th optional argument of vector arg[0] or default value arg[2]
#
var optarg = func {
if (size(arg[0]) > arg[1] and arg[0][arg[1]] != nil)
arg[0][arg[1]];
else
arg[2];
}
# door
# ==============================================================================
# class for objects moving at constant speed, with the ability to
# reverse moving direction at any point. Appropriate for doors, canopies, etc.
#
# SYNOPSIS:
# door.new(<property>, <swingtime> [, <startpos>]);
#
# property ... door node: property path or node
# swingtime ... time in seconds for full movement (0 -> 1)
# startpos ... initial position (default: 0)
#
# PROPERTIES:
# ./position-norm (double) (default: <startpos>)
# ./enabled (bool) (default: 1)
#
# EXAMPLE:
# var canopy = aircraft.door.new("sim/model/foo/canopy", 5);
# canopy.open();
#
var door = {
new : func {
m = { parents : [door] };
m.node = makeNode(arg[0]);
m.swingtime = arg[1];
m.positionN = m.node.getNode("position-norm", 1);
m.enabledN = m.node.getNode("enabled", 1);
if (m.enabledN.getValue() == nil)
m.enabledN.setBoolValue(1);
var pos = optarg(arg, 2, 0);
if (m.positionN.getValue() == nil)
m.positionN.setDoubleValue(pos);
m.target = pos < 0.5;
return m;
},
# door.enable(bool) -> set ./enabled
enable : func(v) {
me.enabledN.setBoolValue(v);
me;
},
# door.setpos(double) -> set ./position-norm without movement
setpos : func(pos) {
me.positionN.setValue(pos);
me.target = pos < 0.5;
me;
},
# double door.getpos() -> return current position as double
getpos : func { me.positionN.getValue() },
# door.close() -> move to closed state
close : func { me.move(me.target = 0) },
# door.open() -> move to open state
open : func { me.move(me.target = 1) },
# door.toggle() -> move to opposite end position
toggle : func { me.move(me.target) },
# door.stop() -> stop movement
stop : func { interpolate(me.positionN) },
# door.move(double) -> move to arbitrary position
move : func(target) {
var pos = me.getpos();
if (pos != target) {
var time = abs(pos - target) * me.swingtime;
interpolate(me.positionN, target, time);
}
me.target = !me.target;
},
};
# light
# ==============================================================================
# class for generation of pulsing values. Appropriate for controlling
# beacons, strobes, etc.
#
# SYNOPSIS:
# light.new(<property>, <pattern> [, <switch>]);
# light.new(<property>, <stretch>, <pattern> [, <switch>]);
#
# property ... light node: property path or node
# stretch ... multiplicator for all pattern values
# pattern ... array of on/off time intervals (in seconds)
# switch ... property path or node to use as switch (default: ./enabled)
# instead of ./enabled
#
# PROPERTIES:
# ./state (bool) (default: 0)
# ./enabled (bool) (default: 0) except if <switch> given)
#
# EXAMPLES:
# aircraft.light.new("sim/model/foo/beacon", [0.4, 0.4]); # anonymous light
#-------
# var strobe = aircraft.light.new("sim/model/foo/strobe", [0.05, 0.05, 0.05, 1],
# "controls/lighting/strobe");
# strobe.switch(1);
#-------
# var switch = props.globals.getNode("controls/lighting/strobe", 1);
# var pattern = [0.02, 0.03, 0.02, 1];
# aircraft.light.new("sim/model/foo/strobe-top", 1.001, pattern, switch);
# aircraft.light.new("sim/model/foo/strobe-bot", 1.005, pattern, switch);
#
var light = {
new : func {
m = { parents : [light] };
m.node = makeNode(arg[0]);
var stretch = 1.0;
var c = 1;
if (typeof(arg[c]) == "scalar") {
stretch = arg[c];
c += 1;
}
if (typeof(arg[c]) != "vector") {
die("aircraft.nas: the arguments of aircraft.light.new() have changed!\n" ~
" *** BEFORE: aircraft.light.new(property, 0.1, 0.9, switch)\n" ~
" *** NOW: aircraft.light.new(property, [0.1, 0.9], switch)");
}
m.pattern = arg[c];
c += 1;
if (size(arg) > c and arg[c] != nil)
m.switchN = makeNode(arg[c]);
else
m.switchN = m.node.getNode("enabled", 1);
if (m.switchN.getValue() == nil)
m.switchN.setBoolValue(0);
m.stateN = m.node.getNode("state", 1);
if (m.stateN.getValue() == nil)
m.stateN.setBoolValue(0);
forindex (var i; m.pattern)
m.pattern[i] *= stretch;
m.index = 0;
m.loopid = 0;
m.continuous = 0;
m.lastswitch = 0;
m.seqcount = -1;
m.endstate = 0;
m.count = nil;
m.switchL = setlistener(m.switchN, func { m._switch_() }, 1);
return m;
},
# class destructor
del : func {
removelistener(me.switchL);
},
# light.switch(bool) -> set light switch (also affects other lights
# that use the same switch)
switch : func(v) { me.switchN.setBoolValue(v); me },
# light.toggle() -> toggle light switch
toggle : func { me.switchN.setBoolValue(!me.switchN.getValue()); me },
# light.cont() -> continuous light
cont : func {
if (!me.continuous) {
me.continuous = 1;
me.loopid += 1;
me.stateN.setBoolValue(me.lastswitch);
}
me;
},
# light.blink() -> blinking light (default)
# light.blink(3) -> when switched on, only run three blink sequences;
# second optional arg defines state after the sequences
blink : func(count = -1, endstate = 0) {
me.seqcount = count;
me.endstate = endstate;
if (me.continuous) {
me.continuous = 0;
me.index = 0;
me.stateN.setBoolValue(0);
me.lastswitch and me._loop_(me.loopid += 1);
}
me;
},
_switch_ : func {
var switch = me.switchN.getBoolValue();
switch != me.lastswitch or return;
me.lastswitch = switch;
me.loopid += 1;
if (me.continuous or !switch) {
me.stateN.setBoolValue(switch);
} elsif (switch) {
me.stateN.setBoolValue(0);
me.index = 0;
me.count = me.seqcount;
me._loop_(me.loopid);
}
},
_loop_ : func(id) {
id == me.loopid or return;
if (!me.count) {
me.loopid += 1;
me.stateN.setBoolValue(me.endstate);
return;
}
me.stateN.setBoolValue(me.index == 2 * int(me.index / 2));
settimer(func { me._loop_(id) }, me.pattern[me.index]);
if ((me.index += 1) >= size(me.pattern)) {
me.index = 0;
if (me.count > 0)
me.count -= 1;
}
},
};
# lowpass
# ==============================================================================
# class that implements a variable-interval EWMA (Exponentially Weighted
# Moving Average) lowpass filter with characteristics independent of the
# frame rate.
#
# SYNOPSIS:
# lowpass.new(<coefficient>);
#
# EXAMPLE:
# var lp = aircraft.lowpass.new(0.5);
# print(lp.filter(10)); # prints 10
# print(lp.filter(0));
#
var lowpass = {
new : func(coeff) {
var m = { parents : [lowpass] };
m.coeff = coeff >= 0 ? coeff : die("aircraft.lowpass(): coefficient must be >= 0");
m.value = nil;
return m;
},
# filter(raw_value) -> push new value, returns filtered value
filter : func(v) {
me.filter = me._filter_;
me.value = v;
},
# get() -> returns filtered value
get : func {
me.value;
},
# set() -> sets new average and returns it
set : func(v) {
me.value = v;
},
_filter_ : func(v) {
var dt = getprop("/sim/time/delta-sec") or 0;
var c = dt / (me.coeff + dt);
me.value = v * c + me.value * (1 - c);
},
};
# angular lowpass
# ==============================================================================
# same as above, but for angles. Filters sin/cos separately and calculates the
# angle again from them. This avoids unexpected jumps from 179.99 to -180 degree.
#
var angular_lowpass = {
new : func(coeff) {
var m = { parents : [angular_lowpass] };
m.sin = lowpass.new(coeff);
m.cos = lowpass.new(coeff);
m.value = nil;
return m;
},
filter : func(v) {
v *= D2R;
me.value = math.atan2(me.sin.filter(math.sin(v)), me.cos.filter(math.cos(v))) * R2D;
},
set : func(v) {
v *= D2R;
me.sin.set(math.sin(v));
me.cos.set(math.cos(v));
},
get : func {
me.value;
},
};
# data
# ==============================================================================
# class that loads and saves properties to aircraft-specific data files in
# ~/.fgfs/aircraft-data/ (Unix) or %APPDATA%\flightgear.org\aircraft-data\.
# There's no public constructor, as the only needed instance gets created
# by the system.
#
# SYNOPSIS:
# data.add(<properties>);
# data.save([<interval>])
#
# properties ... about any combination of property nodes (props.Node)
# or path name strings, or lists or hashes of them,
# lists of lists of them, etc.
# interval ... save in <interval> minutes intervals, or only once
# if 'nil' or empty (and again at reinit/exit)
#
# SIGNALS:
# /sim/signals/save ... set to 'true' right before saving. Can be used
# to update values that are to be saved
#
# EXAMPLE:
# var p = props.globals.getNode("/sim/model", 1);
# var vec = [p, p];
# var hash = {"foo": p, "bar": p};
#
# # add properties
# aircraft.data.add("/sim/fg-root", p, "/sim/fg-home");
# aircraft.data.add(p, vec, hash, "/sim/fg-root");
#
# # now save only once (and at exit/reinit, which is automatically done)
# aircraft.data.save();
#
# # or save now and every 30 sec (and at exit/reinit)
# aircraft.data.save(0.5);
#
var data = {
init : func {
me.path = getprop("/sim/fg-home") ~ "/aircraft-data/" ~ getprop("/sim/aircraft") ~ ".xml";
me.signalN = props.globals.getNode("/sim/signals/save", 1);
me.catalog = [];
me.loopid = 0;
me.interval = 0;
setlistener("/sim/signals/reinit", func(n) { n.getBoolValue() and me._save_() });
setlistener("/sim/signals/exit", func { me._save_() });
},
load : func {
printlog("warn", "trying to load aircraft data from ", me.path, " (OK if not found)");
fgcommand("load", props.Node.new({ "file": me.path }));
},
save : func(v = nil) {
me.loopid += 1;
if (v == nil) {
me._save_();
} else {
me.interval = 60 * v;
me._loop_(me.loopid);
}
},
_loop_ : func(id) {
id == me.loopid or return;
me._save_();
settimer(func { me._loop_(id) }, me.interval);
},
_save_ : func {
size(me.catalog) or return;
printlog("debug", "saving aircraft data to ", me.path);
me.signalN.setBoolValue(1);
var args = props.Node.new({ "filename": me.path });
var data = args.getNode("data", 1);
foreach (var c; me.catalog) {
if (c[0] == `/`)
c = substr(c, 1);
props.copy(props.globals.getNode(c, 1), data.getNode(c, 1));
}
fgcommand("savexml", args);
},
add : func(p...) {
foreach (var n; props.nodeList(p))
append(me.catalog, n.getPath());
},
};
# timer
# ==============================================================================
# class that implements timer that can be started, stopped, reset, and can
# have its value saved to the aircraft specific data file. Saving the value
# is done automatically by the aircraft.Data class.
#
# SYNOPSIS:
# timer.new(<property> [, <resolution:double> [, <save:bool>]])
#
# <property> ... property path or props.Node hash that holds the timer value
# <resolution> ... timer update resolution -- interval in seconds in which the
# timer property is updated while running (default: 1 s)
# <save> ... bool that defines whether the timer value should be saved
# and restored next time, as needed for Hobbs meters
# (default: 1)
#
# EXAMPLES:
# var hobbs_turbine = aircraft.timer.new("/sim/time/hobbs/turbine[0]", 60);
# hobbs_turbine.start();
#
# aircraft.timer.new("/sim/time/hobbs/battery", 60).start(); # anonymous timer
#
var timer = {
new : func(prop, res = 1, save = 1) {
var m = { parents : [timer] };
m.node = makeNode(prop);
if (m.node.getType() == "NONE")
m.node.setDoubleValue(0);
m.systimeN = props.globals.getNode("/sim/time/elapsed-sec", 1);
m.last_systime = nil;
m.interval = res;
m.loopid = 0;
m.running = 0;
if (save) {
data.add(m.node);
m.saveL = setlistener("/sim/signals/save", func { m._save_() });
} else {
m.saveL = nil;
}
return m;
},
del : func {
me.stop();
if (me.saveL != nil)
removelistener(me.saveL);
},
start : func {
me.running and return;
me.last_systime = me.systimeN.getValue();
me.interval != nil and me._loop_(me.loopid);
me.running = 1;
me;
},
stop : func {
me.running or return;
me.running = 0;
me.loopid += 1;
me._apply_();
me;
},
reset : func {
me.node.setDoubleValue(0);
me.last_systime = me.systimeN.getValue();
},
_apply_ : func {
var sys = me.systimeN.getValue();
me.node.setDoubleValue(me.node.getValue() + sys - me.last_systime);
me.last_systime = sys;
},
_save_ : func {
if (me.running)
me._apply_();
},
_loop_ : func(id) {
id != me.loopid and return;
me._apply_();
settimer(func { me._loop_(id) }, me.interval);
},
};
# livery
# =============================================================================
# Class that maintains livery XML files (see English Electric Lightning for an
# example). The last used livery is saved on exit and restored next time. Livery
# files are regular PropertyList XML files whose properties are copied to the
# main tree (whereby the node types are ignored).
#
# SYNOPSIS:
# livery.init(<livery-dir> [, <name-path> [, <sort-path>]]);
#
# <livery-dir> ... directory with livery XML files, relative to $FG_ROOT
# <name-path> ... property path to the livery name in the livery files
# and the property tree (default: /sim/model/livery/name)
# <sort-path> ... property path to the sort criterion (default: same as
# <name-path> -- that is: alphabetic sorting)
#
# EXAMPLE:
# aircraft.livery.init("Aircraft/Lightning/Models/Liveries",
# "sim/model/livery/variant",
# "sim/model/livery/index"); # optional
#
# aircraft.livery.dialog.toggle();
# aircraft.livery.select("OEBH");
# aircraft.livery.next();
#
var livery = {
init : func(livery_dir, name_path = "sim/model/livery/name", sort_path = nil) {
me.dir = livery_dir;
if (me.dir[-1] != `/`)
me.dir ~= "/";
me.name_path = name_path;
me.sort_path = sort_path != nil ? sort_path : name_path;
me.rescan();
aircraft.data.add(name_path);
me.dialog = gui.Dialog.new("livery-select");
},
rescan : func {
me.data = [];
var path = getprop("/sim/fg-root") ~ "/" ~ me.dir;
foreach (var file; directory(path)) {
if (substr(file, -4) != ".xml")
continue;
var n = props.Node.new({ filename : path ~ file });
fgcommand("loadxml", n);
n = n.getNode("data");
var name = n.getNode(me.name_path);
var index = n.getNode(me.sort_path);
if (name == nil or index == nil)
continue;
append(me.data, [name.getValue(), index.getValue(), n.getValues(),
substr(file, 0, size(file) - 4)]);
}
me.data = sort(me.data, func(a, b) {
num(a[1]) == nil or num(b[1]) == nil ? cmp(a[1], b[1]) : a[1] - b[1];
});
me.select(getprop(me.name_path));
},
# select by index (out-of-bounds indices are wrapped)
set : func(i) {
if (i < 0)
i = size(me.data) - 1;
if (i >= size(me.data))
i = 0;
me.current = i;
props.globals.setValues(me.data[i][2]);
setprop("sim/model/livery/file", me.data[i][3]);
},
# select by name
select : func(name) {
forindex (var i; me.data)
if (me.data[i][0] == name)
me.set(i);
},
next : func {
me.set(me.current + 1);
},
previous : func {
me.set(me.current - 1);
},
};
# livery_update
# =============================================================================
# Class for maintaining liveries in MP aircraft. It is used in Nasal code that's
# embedded in aircraft animation XML files, and checks in intervals whether the
# parent aircraft has changed livery, in which case it changes the livery
# in the remote aircraft accordingly.
#
# SYNOPSIS:
# livery_update(<livery-dir> [, <interval:10> [, <func>]]);
#
# <livery-dir> ... directory with livery files, relative to $FG_ROOT
# <interval> ... checking interval in seconds (default: 10)
# <func> ... callback function that's called with the ./sim/model/livery/file
# contents as argument whenever the livery has changed. This can
# be used for post-processing.
#
# EXAMPLE:
# <nasal>
# <load>
# var livery_update = aircraft.livery_update.new(
# "Aircraft/R22/Models/Liveries", 30,
# func { print("R22 livery update") });
# </load>
#
# <unload>
# livery_update.stop();
# </unload>
# </nasal>
#
var livery_update = {
new : func(liveriesdir, interval = 10, callback = nil) {
var m = { parents : [livery_update] };
var root = cmdarg();
m.root = root.getPath();
m.fileN = root.getNode("sim/model/livery/file", 1);
m.dir = getprop("/sim/fg-root") ~ "/" ~ liveriesdir ~ "/";
m.interval = interval;
m.last = "";
m.running = 1;
m.callback = callback;
if (root.getName() == "multiplayer")
m._loop_();
return m;
},
stop : func {
me.running = 0;
},
_loop_ : func {
me.running or return;
var file = me.fileN.getValue();
if (file != nil and file != me.last) {
fgcommand("loadxml", props.Node.new({ filename: me.dir ~ file ~ ".xml",
targetnode: me.root }));
me.last = file;
if (me.callback != nil)
me.callback(file);
}
settimer(func { me._loop_() }, me.interval);
},
};
# formation
# =============================================================================
# A modification of the livery class. This class maintains formation
# XML files (see Blackburn Buccaneer for an example). Files are regular
# PropertyList XML files whose properties are copied to the
# main tree (whereby the node types are ignored).
#
# SYNOPSIS:
# formation.init(<formation-dir> [, <name-path> [, <sort-path>]]);
#
# <formation-dir> ... directory with livery XML files, relative to $FG_ROOT
# <name-path> ... property path to the livery name in the livery files
# and the property tree (default: /sim/model/formation/name)
# <sort-path> ... property path to the sort criterion (default: same as
# <name-path> -- that is: alphabetic sorting)
#
# EXAMPLE:
# aircraft.formation.init("Aircraft/Buccaneer/Formations",
# "sim/model/formation/variant",
# "sim/model/formation/index"); # optional
#
# aircraft.formation.dialog.toggle();
# aircraft.formation.select("take off");
# aircraft.formation.next();
#
var formation = {
init : func(formation_dir, name_path = "sim/model/formation/name", sort_path = nil) {
me.dir = formation_dir;
if (me.dir[-1] != `/`)
me.dir ~= "/";
me.name_path = name_path;
me.sort_path = sort_path != nil ? sort_path : name_path;
me.rescan();
aircraft.data.add(name_path);
me.dialog = gui.Dialog.new("formation-select");
},
rescan : func {
me.data = [];
var path = getprop("/sim/fg-root") ~ "/" ~ me.dir;
foreach (var file; directory(path)) {
if (substr(file, -4) != ".xml")
continue;
var n = props.Node.new({ filename : path ~ file });
fgcommand("loadxml", n);
n = n.getNode("data");
var name = n.getNode(me.name_path);
var index = n.getNode(me.sort_path);
if (name == nil or index == nil)
continue;
append(me.data, [name.getValue(), index.getValue(), n.getValues()]);
}
me.data = sort(me.data, func(a, b) {
num(a[1]) == nil or num(b[1]) == nil ? cmp(a[1], b[1]) : a[1] - b[1];
});
me.select(getprop(me.name_path));
},
# select by index (out-of-bounds indices are wrapped)
set : func(i) {
if (i < 0)
i = size(me.data) - 1;
if (i >= size(me.data))
i = 0;
props.globals.setValues(me.data[i][2]);
me.current = i;
},
# select by name
select : func(name) {
forindex (var i; me.data)
if (me.data[i][0] == name)
me.set(i);
},
next : func {
me.set(me.current + 1);
},
previous : func {
me.set(me.current - 1);
},
};
# steering
# =============================================================================
# Class that implements differential braking depending on rudder position.
# Note that this overrides the controls.applyBrakes() wrapper. If you need
# your own version, then override it again after the steering.init() call.
#
# SYNOPSIS:
# steering.init([<property> [, <threshold>]]);
#
# <property> ... property path or props.Node hash that enables/disables
# brake steering (usually bound to the js trigger button)
# <threshold> ... defines range (+- threshold) around neutral rudder
# position in which both brakes are applied
#
# EXAMPLES:
# aircraft.steering.init("/controls/gear/steering", 0.2);
# aircraft.steering.init();
#
var steering = {
init : func(switch = "/controls/gear/brake-steering", threshold = 0.3) {
me.threshold = threshold;
me.switchN = makeNode(switch);
me.switchN.setBoolValue(me.switchN.getBoolValue());
me.leftN = props.globals.getNode("/controls/gear/brake-left", 1);
me.rightN = props.globals.getNode("/controls/gear/brake-right", 1);
me.rudderN = props.globals.getNode("/controls/flight/rudder", 1);
me.loopid = 0;
controls.applyBrakes = func(v, w = 0) {
call(func(v, w) (w < 0 ? leftN : w > 0 ? rightN : switchN).setValue(v),
[v, w], nil, aircraft.steering);
}
setlistener(me.switchN, func(n) {
me.loopid += 1;
if (n.getValue())
me._loop_(me.loopid);
else
me.setbrakes(0, 0);
}, 1);
},
_loop_ : func(id) {
id == me.loopid or return;
var rudder = me.rudderN.getValue();
if (rudder > me.threshold)
me.setbrakes(0, rudder);
elsif (rudder < -me.threshold)
me.setbrakes(-rudder, 0);
else
me.setbrakes(1, 1);
settimer(func { me._loop_(id) }, 0);
},
setbrakes : func(left, right) {
me.leftN.setDoubleValue(left);
me.rightN.setDoubleValue(right);
},
};
# autotrim
# =============================================================================
# Singleton class that supports quick trimming and compensates for the lack
# of resistance/force feedback in most joysticks. Normally the pilot trims such
# that no real or artificially generated (by means of servo motors and spring
# preloading) forces act on the stick/yoke and it is in a comfortable position.
# This doesn't work well on computer joysticks.
#
# SYNOPSIS:
# autotrim.start(); # on key/button press
# autotrim.stop(); # on key/button release (mod-up)
#
# USAGE:
# (1) move the stick such that the aircraft is in an orientation that
# you want to trim for (forward flight, hover, ...)
# (2) press autotrim button and keep it pressed
# (3) move stick/yoke to neutral position (center)
# (4) release autotrim button
#
var autotrim = {
init : func {
me.elevator = me.Trim.new("elevator");
me.aileron = me.Trim.new("aileron");
me.rudder = me.Trim.new("rudder");
me.loopid = 0;
me.active = 0;
},
start : func {
me.active and return;
me.active = 1;
me.elevator.start();
me.aileron.start();
me.rudder.start();
me._loop_(me.loopid += 1);
},
stop : func {
me.active or return;
me.active = 0;
me.loopid += 1;
me.update();
},
_loop_ : func(id) {
id == me.loopid or return;
me.update();
settimer(func { me._loop_(id) }, 0);
},
update : func {
me.elevator.update();
me.aileron.update();
me.rudder.update();
},
Trim : {
new : func(name) {
var m = { parents : [ autotrim.Trim ] };
m.trimN = props.globals.getNode("/controls/flight/" ~ name ~ "-trim", 1);
m.ctrlN = props.globals.getNode("/controls/flight/" ~ name, 1);
return m;
},
start : func {
me.last = me.ctrlN.getValue();
},
update : func {
var v = me.ctrlN.getValue();
me.trimN.setDoubleValue(me.trimN.getValue() + me.last - v);
me.last = v;
},
},
};
# HUD control class to handle both HUD implementations
# ==============================================================================
#
var HUD = {
init : func {
me.vis0N = props.globals.getNode("/sim/hud/visibility[0]", 1);
me.vis1N = props.globals.getNode("/sim/hud/visibility[1]", 1);
me.currcolN = props.globals.getNode("/sim/hud/current-color", 1);
me.paletteN = props.globals.getNode("/sim/hud/palette", 1);
me.brightnessN = props.globals.getNode("/sim/hud/color/brightness", 1);
me.currentN = me.vis0N;
},
cycle_color : func { # h-key
if (!me.currentN.getBoolValue()) # if off, turn on
return me.currentN.setBoolValue(1);
var i = me.currcolN.getValue() + 1; # if through, turn off
if (i < 0 or i >= size(me.paletteN.getChildren("color"))) {
me.currentN.setBoolValue(0);
me.currcolN.setIntValue(0);
} else { # otherwise change color
me.currentN.setBoolValue(1);
me.currcolN.setIntValue(i);
}
},
cycle_brightness : func { # H-key
me.is_active() or return;
var br = me.brightnessN.getValue() - 0.2;
me.brightnessN.setValue(br > 0.01 ? br : 1);
},
normal_type : func { # i-key
me.is_active() or return;
me.oldinit1();
me.vis0N.setBoolValue(1);
me.vis1N.setBoolValue(0);
me.currentN = me.vis0N;
},
cycle_type : func { # I-key
me.is_active() or return;
if (me.currentN == me.vis0N) {
me.vis0N.setBoolValue(0);
me.vis1N.setBoolValue(1);
me.currentN = me.vis1N;
} elsif (me.currentN == me.vis1N) {
me.vis0N.setBoolValue(1);
me.vis1N.setBoolValue(0);
me.oldinit2();
me.currentN = me.vis0N;
}
},
oldinit1 : func { fgcommand("hud-init") },
oldinit2 : func { fgcommand("hud-init2") },
is_active : func { me.vis0N.getValue() or me.vis1N.getValue() },
};
# module initialization
# ==============================================================================
#
_setlistener("/sim/signals/nasal-dir-initialized", func {
props.globals.getNode("/sim/time/delta-realtime-sec", 1).setDoubleValue(0.00000001);
HUD.init();
data.init();
autotrim.init();
if (getprop("/sim/startup/save-on-exit")) {
data.load();
var n = props.globals.getNode("/sim/aircraft-data");
if (n != nil)
foreach (var c; n.getChildren("path"))
if (c.getType() != "NONE")
data.add(c.getValue());
} else {
data._save_ = func {}
data._loop_ = func {}
}
});