1
0
Fork 0
fgdata/Nasal/local_weather/compat_layer.nas
2015-11-16 17:41:57 +02:00

997 lines
27 KiB
Text

########################################################
# compatibility layer for local weather package
# Thorsten Renk, March 2011
########################################################
# function purpose
#
# setDefaultCloudsOff to remove the standard Flightgear 3d clouds
# setVisibility to set the visibility to a given value
# setLift to set lift to given value
# setRain to set rain to a given value
# setSnow to set snow to a given value
# setTurbulence to set turbulence to a given value
# setTemperature to set temperature to a given value
# setPressure to set pressure to a given value
# setDewpoint to set the dewpoint to a given value
# setLight to set light saturation to given value
# setWind to set wind
# setWindSmoothly to set the wind gradually across a second
# smooth_wind_loop (helper function for setWindSmoothly)
# create_cloud to place a single cloud into the scenery
# create_impostor to place an impostor sheet mimicking far clouds into the scene
# create_cloud_array to place clouds from storage arrays into the scenery
# get_elevation to get the terrain elevation at given coordinates
# get_elevation_vector to get terrain elevation at given coordinate vector
# set_wxradarecho_storm to provide info about a storm to the wxradar
# This file contains portability wrappers for the local weather system:
# http://wiki.flightgear.org/index.php/A_local_weather_system
#
# This module is intended to provide a certain degree of backward compatibility for past
# FlightGear releases, while sketching out the low level APIs used and required by the
# local weather system, as these
# are being added to FlightGear.
#
# This file contains various workarounds for doing things that are currently not yet directly
# supported by the core FlightGear/Nasal APIs (fgfs 2.0).
#
# Some of these workarounds are purely implemented in Nasal space, and may thus not provide sufficient
# performance in some situations.
#
# The goal is to move all such workarounds eventually into this module, so that the high level weather modules
# only refer to this "compatibility layer" (using an "ideal API"), while this module handles
# implementation details
# and differences among different versions of FlightGear, so that key APIs can be ported to C++ space
# for the sake
# of improving runtime performance and efficiency.
#
# This provides an abstraction layer that isolates the rest of the local weather system from low
# level implementation details.
#
# C++ developers who want to help improve the local weather system (or the FlightGear/Nasal
# interface in general) should
# check out this file (as well as the wiki page) for APIs or features that shall eventually be
# re/implemented in C++ space for
# improving the local weather system.
#
#
# This module provides a handful of helpers for dynamically querying the Nasal API of the running fgfs binary,
# so that it can make use of new APIs (where available), while still working with older fgfs versions.
#
# Note: The point of these helpers is that they should really only be used
# by this module, and not in other parts/files of the
# local weather system. Any hard coded special cases should be moved into this module.
#
# The compatibility layer is currently work in progress and will be extended as new Nasal
# APIs are being added to FlightGear.
var weather_dynamics = nil;
var weather_tile_management = nil;
var compat_layer = nil;
var weather_tiles = nil;
_setlistener("/nasal/local_weather/loaded", func {
compat_layer = local_weather;
weather_dynamics = local_weather;
weather_tile_management = local_weather;
weather_tiles = local_weather;
var result = "yes";
if (1==0) # no compatibility tests for 2.4 binary, it has the required features
{
print("Compatibility layer: testing for hard coded support");
if (props.globals.getNode("/rendering/scene/saturation", 0) == nil)
{result = "no"; features.can_set_light = 0;}
else
{result = "yes"; features.can_set_light = 1;}
print("* can set light saturation: "~result);
if (props.globals.getNode("/rendering/scene/scattering", 0) == nil)
{result = "no"; features.can_set_scattering = 0;}
else
{result = "yes"; features.can_set_scattering = 1;}
print("* can set horizon scattering: "~result);
if (props.globals.getNode("/environment/terrain", 0) == nil)
{result = "no"; features.terrain_presampling = 0;}
else
{result = "yes"; features.terrain_presampling = 1;setprop("/environment/terrain/area[0]/enabled",1);}
print("* hard coded terrain presampling: "~result);
if ((props.globals.getNode("/environment/terrain/area[0]/enabled",1).getBoolValue() == 1) and (features.terrain_presampling ==1))
{result = "yes"; features.terrain_presampling_active = 1;}
else
{result = "no"; features.terrain_presampling_active = 0;}
print("* terrain presampling initialized: "~result);
if (props.globals.getNode("/environment/config/enabled", 0) == nil)
{result = "no"; features.can_disable_environment = 0;}
else
{result = "yes"; features.can_disable_environment = 1;}
print("* can disable global weather: "~result);
print("Compatibility layer: tests done.");
}
# features of a 2.4 binary
# switch terrainsampler to active, should be initialized
features.can_set_light = 1;
features.can_set_scattering = 1;
features.terrain_presampling = 1;
features.terrain_presampling_active = 1;
features.can_disable_environment = 1;
# features of a current GIT binary
features.fast_geodinfo = 1;
# do actual startup()
local_weather.updateMenu();
local_weather.startup();
});
var setDefaultCloudsOff = func {
var layers = props.globals.getNode("/environment/clouds").getChildren("layer");
foreach (var l; layers)
{
l.getNode("coverage-type").setValue(5);
}
# we store that information ourselves, so this should be zero, but rain forces us to go for an offset
setprop("/environment/clouds/layer[0]/elevation-ft",0.0);
# layer wrapping off
setprop("/sim/rendering/clouds3d-wrap",0);
# rain altitude limit off, detailed precipitation control on
props.globals.getNode("/environment/params/use-external-precipitation-level").setBoolValue("true");
props.globals.getNode("/environment/precipitation-control/detailed-precipitation").setBoolValue("true");
# set skydome unloading off
setprop("/sim/rendering/minimum-sky-visibility", 0.0);
# just to be sure, set other parameters off
compat_layer.setRain(0.0);
compat_layer.setSnow(0.0);
compat_layer.setLight(1.0);
}
####################################
# set visibility to given value
####################################
var setVisibility = func (vis) {
setprop("/environment/visibility-m",vis);
}
var setVisibilitySmoothly = func (vis) {
visibility_target = vis;
visibility_current = getprop("/environment/visibility-m");
if (smooth_visibility_loop_flag == 0)
{
smooth_visibility_loop_flag = 1;
visibility_loop();
}
}
var visibility_loop = func {
if (local_weather.local_weather_running_flag == 0) {return;}
if (visibility_target == visibility_current)
{smooth_visibility_loop_flag = 0; return;}
if (visibility_target < visibility_current)
{
var vis_goal = visibility_target;
if (vis_goal < 0.97 * visibility_current) {vis_goal = 0.97 * visibility_current;}
}
else
{
var vis_goal = visibility_target;
if (vis_goal > 1.03 * visibility_current) {vis_goal = 1.03 * visibility_current;}
}
# print(vis_goal, " ",local_weather.interpolated_conditions.visibility_m );
if (local_weather.interpolated_conditions.visibility_m > vis_goal)
{setprop("/environment/visibility-m",vis_goal);}
visibility_current = vis_goal;
settimer( func {visibility_loop(); },0);
}
####################################
# set thermal lift to given value
####################################
var setLift = func (lift) {
setprop("/environment/local-weather-lift-fps",lift);
}
####################################
# set rain properties
####################################
var setRain = func (rain) {
setprop("/environment/rain-norm", rain);
}
var setRainDropletSize = func (size) {
setprop("/environment/precipitation-control/rain-droplet-size", size);
}
####################################
# set snow properties
####################################
var setSnow = func (snow) {
setprop("/environment/snow-norm", snow);
}
var setSnowFlakeSize = func (size) {
setprop("/environment/precipitation-control/snow-flake-size", size);
}
####################################
# set turbulence to given value
####################################
var setTurbulence = func (turbulence) {
var turbulence_scale = getprop("/local-weather/config/turbulence-scale");
setprop("/environment/turbulence/magnitude-norm",turbulence * turbulence_scale);
setprop("/environment/turbulence/rate-hz",3.0);
}
####################################
# set temperature to given value
####################################
var setTemperature = func (T) {
setprop("/environment/temperature-sea-level-degc",T);
}
####################################
# set pressure to given value
####################################
var setPressure = func (p) {
setprop("/environment/pressure-sea-level-inhg",p);
}
####################################
# set dewpoint to given value
####################################
var setDewpoint = func (D) {
setprop("/environment/dewpoint-sea-level-degc",D);
}
####################################
# set light saturation to given value
####################################
var setLight = func (s) {
setprop("/rendering/scene/saturation",s);
}
var setLightSmoothly = func (s) {
light_target = s;
light_current = getprop("/rendering/scene/saturation");
if (smooth_light_loop_flag == 0)
{
smooth_light_loop_flag = 1;
light_loop();
}
}
var light_loop = func {
if (local_weather.local_weather_running_flag == 0) {return;}
if (light_target == light_current)
{smooth_light_loop_flag = 0; return;}
if (light_target < light_current)
{
var light_goal = light_target;
if (light_goal < 0.97 * light_current) {light_goal = 0.97 * light_current;}
}
else
{
var light_goal = light_target;
if (light_goal > 1.03 * light_current) {light_goal = 1.03 * light_current;}
}
setprop("/rendering/scene/saturation",light_goal);
light_current = light_goal;
settimer( func {light_loop(); },0);
}
####################################
# set horizon scattering
####################################
var setScattering = func (s) {
setprop("/rendering/scene/scattering",s);
}
####################################
# set overcast haze
####################################
var setOvercast = func (o) {
setprop("/rendering/scene/overcast",o);
}
####################################
# set skydome scattering parameters
####################################
var setSkydomeShader = func (r, m, d) {
setprop("/sim/rendering/rayleigh", r);
setprop("/sim/rendering/mie", m);
setprop("/sim/rendering/dome-density",d);
}
###########################################################
# set wind to given direction and speed
###########################################################
var setWind = func (dir, speed) {
setprop("/environment/wind-from-heading-deg",dir);
setprop("/environment/wind-speed-kt",speed);
# this is needed to trigger the cloud drift to pick up the new wind setting
setprop("/environment/clouds/layer[0]/elevation-ft",0.0);
}
###########################################################
# set wind smoothly to given direction and speed
# interpolating across several frames
###########################################################
var smoothDirection = func (dir0, dir1, factor) {
var diff = ( math.mod( dir0 - dir1 + 180 + 360, 360 ) - 180 );
diff *= factor;
return math.mod( 360 + dir1 + ( diff / 2), 360);
}
var setWindSmoothly = func (dir, speed) {
var curDir = getprop("/environment/wind-from-heading-deg");
var curSpeed = getprop("/environment/wind-speed-kt");
dir = math.mod(dir, 360);
var newSpeed = (curSpeed * 9 + speed) / 10;
var newDir = smoothDirection(dir, curDir, 0.2);
setWind(newDir, newSpeed);
#setWind(dir, speed);
}
###########################################################
# place a single cloud
###########################################################
var create_cloud = func(path, lat, long, alt, heading) {
var tile_counter = getprop(lw~"tiles/tile-counter");
var buffer_flag = getprop(lw~"config/buffer-flag");
var d_max = weather_tile_management.cloud_view_distance + 1000.0;
# noctilucent clouds should not be deleted with the tile, hence they're assigned to tile zero
if (find("noctilucent",path) != -1)
{tile_counter=0;}
# check if we deal with a convective cloud - no need to do this any more, convective clouds go via a different system
var convective_flag = 0;
#if (find("cumulus",path) != -1)
# {
# if ((find("alto",path) != -1) or (find("cirro", path) != -1) or (find("strato", path) != -1))
# {convective_flag = 0;}
# else if ((find("small",path) != -1) or (find("whisp",path) != -1))
# {convective_flag = 1;}
# else if (find("bottom",path) != -1)
# {convective_flag = 4;}
# else
# {convective_flag = 2;}
#
# }
#else if (find("congestus",path) != -1)
# {
# if (find("bottom",path) != -1)
# {convective_flag = 5;}
# else
# {convective_flag = 3;}
# }
#print("path: ", path, " flag: ", convective_flag);
# first check if the cloud should be stored in the buffer
# we keep it if it is in visual range or at high altitude (where visual range is different)
# now check if we are writing from the buffer, in this case change tile index
# to buffered one
if (getprop(lw~"tmp/buffer-status") == "placing")
{
tile_counter = buffered_tile_index;
}
# if the cloud is not buffered, get property tree nodes and write it
# into the scenery
var n = props.globals.getNode("local-weather/clouds", 1);
var c = n.getChild("tile",tile_counter,1);
var cloud_number = n.getNode("placement-index").getValue();
for (var i = cloud_number; 1; i += 1)
if (c.getChild("cloud", i, 0) == nil)
break;
var cl = c.getChild("cloud", i, 1);
n.getNode("placement-index").setValue(i);
var placement_index = i;
var model_number = n.getNode("model-placement-index").getValue();
var m = props.globals.getNode("models", 1);
for (var i = model_number; 1; i += 1)
if (m.getChild("model", i, 0) == nil)
break;
var model = m.getChild("model", i, 1);
n.getNode("model-placement-index").setValue(i);
var latN = cl.getNode("position/latitude-deg", 1); latN.setValue(lat);
var lonN = cl.getNode("position/longitude-deg", 1); lonN.setValue(long);
var altN = cl.getNode("position/altitude-ft", 1); altN.setValue(alt);
var hdgN = cl.getNode("orientation/true-heading-deg", 1); hdgN.setValue(heading);
cl.getNode("tile-index",1).setValue(tile_counter);
model.getNode("path", 1).setValue(path);
model.getNode("latitude-deg", 1).setValue(lat);
model.getNode("longitude-deg", 1).setValue(long);
model.getNode("elevation-ft", 1).setValue(alt);
model.getNode("heading-deg", 1).setValue(local_weather.wind.cloudlayer[0]+180.0);
model.getNode("tile-index",1).setValue(tile_counter);
model.getNode("speed-kt",1).setValue(local_weather.wind.cloudlayer[1]);
model.getNode("load", 1).remove();
#model.getNode("latitude-deg-prop", 1).setValue(latN.getPath());
#model.getNode("longitude-deg-prop", 1).setValue(lonN.getPath());
#model.getNode("elevation-ft-prop", 1).setValue(altN.getPath());
#model.getNode("heading-deg-prop", 1).setValue(hdgN.getPath());
# sort the cloud into the cloud hash array
if (buffer_flag == 1)
{
var cs = weather_tile_management.cloudScenery.new(tile_counter, convective_flag, cl, model);
append(weather_tile_management.cloudSceneryArray,cs);
}
# if weather dynamics is on, also create a timestamp property and sort the cloud hash into quadtree
if (local_weather.dynamics_flag == 1)
{
cs.timestamp = weather_dynamics.time_lw;
cs.write_index = placement_index;
if (getprop(lw~"tmp/buffer-status") == "placing")
{
var blat = buffered_tile_latitude;
var blon = buffered_tile_longitude;
var alpha = buffered_tile_alpha;
}
else
{
var blat = getprop(lw~"tiles/tmp/latitude-deg");
var blon = getprop(lw~"tiles/tmp/longitude-deg");
var alpha = getprop(lw~"tmp/tile-orientation-deg");
}
weather_dynamics.sort_into_quadtree(blat, blon, alpha, lat, long, weather_dynamics.cloudQuadtrees[tile_counter-1], cs);
}
}
###########################################################
# place an impostor sheet
###########################################################
var create_impostor = func(path, lat, long, alt, heading) {
var n = props.globals.getNode("local-weather/clouds", 1);
var model_number = n.getNode("model-placement-index").getValue();
var m = props.globals.getNode("models", 1);
for (var i = model_number; 1; i += 1)
if (m.getChild("model", i, 0) == nil)
break;
var model = m.getChild("model", i, 1);
n.getNode("model-placement-index").setValue(i);
model.getNode("path", 1).setValue(path);
model.getNode("latitude-deg", 1).setValue(lat);
model.getNode("longitude-deg", 1).setValue(long);
model.getNode("elevation-ft", 1).setValue(alt);
model.getNode("heading-deg", 1).setValue(local_weather.wind.cloudlayer[0]+180.0);
model.getNode("speed-kt",1).setValue(local_weather.wind.cloudlayer[1]);
model.getNode("load", 1).remove();
var imp = weather_tile_management.cloudImpostor.new(model);
append(weather_tile_management.cloudImpostorArray,imp);
}
###########################################################
# place a model
###########################################################
var place_model = func(path, lat, lon, alt, heading, pitch, yaw) {
var m = props.globals.getNode("models", 1);
for (var i = 0; 1; i += 1)
if (m.getChild("model", i, 0) == nil)
break;
var model = m.getChild("model", i, 1);
model.getNode("path", 1).setValue(path);
model.getNode("latitude-deg", 1).setValue(lat);
model.getNode("longitude-deg", 1).setValue(lon);
model.getNode("elevation-ft", 1).setValue(alt);
model.getNode("heading-deg", 1).setValue(heading);
model.getNode("pitch-deg", 1).setValue(pitch);
model.getNode("roll-deg", 1).setValue(yaw);
model.getNode("load", 1).remove();
}
###########################################################
# place a model with control properties
###########################################################
var place_model_controlled = func(string, path, lat, lon, alt, heading, pitch, roll) {
var m = props.globals.getNode("models", 1);
for (var i = 0; 1; i += 1)
if (m.getChild("model", i, 0) == nil)
break;
var model = m.getChild("model", i, 1);
setprop("/local-weather/"~string~"/latitude-deg", lat);
setprop("/local-weather/"~string~"/longitude-deg", lon);
setprop("/local-weather/"~string~"/elevation-ft", alt);
setprop("/local-weather/"~string~"/heading-deg", heading);
setprop("/local-weather/"~string~"/pitch-deg", pitch);
setprop("/local-weather/"~string~"/roll-deg", roll);
var cmodel = props.globals.getNode("/local-weather/"~string, 1);
var latN = cmodel.getNode("latitude-deg",1);
var lonN = cmodel.getNode("longitude-deg",1);
var altN = cmodel.getNode("elevation-ft",1);
var headN = cmodel.getNode("heading-deg",1);
var pitchN = cmodel.getNode("pitch-deg",1);
var rollN = cmodel.getNode("roll-deg",1);
model.getNode("path", 1).setValue(path);
model.getNode("latitude-deg-prop", 1).setValue(latN.getPath());
model.getNode("longitude-deg-prop", 1).setValue(lonN.getPath());
model.getNode("elevation-ft-prop", 1).setValue(altN.getPath());
model.getNode("heading-deg-prop", 1).setValue(headN.getPath());
model.getNode("pitch-deg-prop", 1).setValue(pitchN.getPath());
model.getNode("roll-deg-prop", 1).setValue(rollN.getPath());
model.getNode("tile-index",1).setValue(0);
model.getNode("load", 1).remove();
#return model;
}
###########################################################
# place a single cloud using hard-coded system
###########################################################
var create_cloud_new = func(c) {
var tile_counter = getprop(lw~"tiles/tile-counter");
cloud_index = cloud_index + 1;
c.index = tile_counter;
c.cloud_index = cloud_index;
# light must be such that the top of a cloud cannot be darker than the bottom
if (c.bottom_shade > c.top_shade) {c.bottom_shade = c.top_shade;}
c.middle_shade = c.top_shade;
# write the actual cloud into the scenery
var p = props.Node.new({ "layer" : 0,
"index": cloud_index,
"lat-deg": c.lat,
"lon-deg": c.lon,
"min-sprite-width-m": c.min_width,
"max-sprite-width-m": c.max_width,
"min-sprite-height-m": c.min_height,
"max-sprite-height-m": c.max_height,
"num-sprites": c.n_sprites,
"min-bottom-lighting-factor": c.bottom_shade,
"min-middle-lighting-factor": c.middle_shade,
"min-top-lighting-factor": c.top_shade,
"alpha-factor": c.alpha_factor,
"min-shade-lighting-factor": c.bottom_shade,
"texture": c.texture_sheet,
"num-textures-x": c.num_tex_x,
"num-textures-y": c.num_tex_y,
"min-cloud-width-m": c.min_cloud_width,
"max-cloud-width-m": c.min_cloud_width,
"min-cloud-height-m": c.min_cloud_height + c.min_cloud_height * 0.2 * local_weather.height_bias,
"max-cloud-height-m": c.min_cloud_height + c.min_cloud_height * 0.2 * local_weather.height_bias,
"z-scale": c.z_scale,
"height-map-texture": 0,
"alt-ft" : c.alt });
fgcommand("add-cloud", p);
#print("alt: ", c.alt);
# add other management properties to the hash if dynamics is on
if (local_weather.dynamics_flag == 1)
{
c.timestamp = weather_dynamics.time_lw;
}
# add cloud to array
append(weather_tile_management.cloudArray,c);
}
###########################################################
# place a cloud layer from arrays, split across frames
###########################################################
var create_cloud_array = func (i, clouds_path, clouds_lat, clouds_lon, clouds_alt, clouds_orientation) {
if (getprop(lw~"tmp/thread-status") != "placing") {return;}
if (getprop(lw~"tmp/convective-status") != "idle") {return;}
if ((i < 0) or (i==0))
{
if (local_weather.debug_output_flag == 1)
{print("Cloud placement from array finished!"); }
# then place all clouds using the new rendering system
if (local_weather.hardcoded_clouds_flag == 1)
{
var s = size(local_weather.cloudAssemblyArray);
create_new_cloud_array(s,cloudAssemblyArray);
}
setprop(lw~"tmp/thread-status", "idle");
# now set flag that tile has been completely processed
var dir_index = props.globals.getNode(lw~"tiles/tmp/dir-index").getValue();
setprop(lw~"tiles/tile["~dir_index~"]/generated-flag",2);
return;
}
var k_max = 30;
var s = size(clouds_path);
if (s < k_max) {k_max = s;}
for (var k = 0; k < k_max; k = k+1)
{
if (getprop(lw~"config/dynamics-flag") ==1)
{
cloud_mean_altitude = local_weather.clouds_mean_alt[s-k-1];
cloud_flt = local_weather.clouds_flt[s-k-1];
cloud_evolution_timestamp = local_weather.clouds_evolution_timestamp[s-k-1];
}
create_cloud(clouds_path[s-k-1], clouds_lat[s-k-1], clouds_lon[s-k-1], clouds_alt[s-k-1], clouds_orientation[s-k-1]);
#create_cloud_new(clouds_path[s-k-1], clouds_lat[s-k-1], clouds_lon[s-k-1], clouds_alt[s-k-1], clouds_orientation[s-k-1]);
}
setsize(clouds_path,s-k_max);
setsize(clouds_lat,s-k_max);
setsize(clouds_lon,s-k_max);
setsize(clouds_alt,s-k_max);
setsize(clouds_orientation,s-k_max);
if (getprop(lw~"config/dynamics-flag") ==1)
{
setsize(local_weather.clouds_mean_alt,s-k_max);
setsize(local_weather.clouds_flt,s-k_max);
setsize(local_weather.clouds_evolution_timestamp,s-k_max);
}
settimer( func {create_cloud_array(i - k, clouds_path, clouds_lat, clouds_lon, clouds_alt, clouds_orientation ) }, 0 );
};
var create_new_cloud_array = func (i, cloudArray)
{
if ((i < 0) or (i==0))
{
if (local_weather.debug_output_flag == 1)
{print("Processing add-cloud calls finished!"); }
return;
}
var k_max = 20;
var s = size(cloudArray);
if (s < k_max) {k_max = s;}
for (var k = 0; k < k_max; k = k+1)
{
local_weather.create_cloud_new(cloudArray[s-k-1]);
#print(cloudArray[s-k-1].alt);
}
setsize(cloudArray,s-k_max);
settimer( func {create_new_cloud_array(i - k, cloudArray) }, 0 );
}
###########################################################
# get terrain elevation
###########################################################
var get_elevation = func (lat, lon) {
var info = geodinfo(lat, lon);
if (info != nil) {var elevation = info[0] * local_weather.m_to_ft;}
else {var elevation = -1.0; }
return elevation;
}
###########################################################
# get terrain elevation vector
###########################################################
var get_elevation_array = func (lat, lon) {
var elevation = [];
var n = size(lat);
for(var i = 0; i < n; i=i+1)
{
append(elevation, get_elevation(lat[i], lon[i]));
}
return elevation;
}
###########################################################
# set the wxradar echo of a storm
###########################################################
var set_wxradarecho_storm = func (lat, lon, base, top, radius, ref, turb, type) {
# look for the next free index in the wxradar property tree entries
var n = props.globals.getNode("/instrumentation/wxradar", 1);
for (var i = 0; 1; i += 1)
if (n.getChild("storm", i, 0) == nil)
break;
var s = n.getChild("storm", i, 1);
s.getNode("latitude-deg",1).setValue(lat);
s.getNode("longitude-deg",1).setValue(lon);
s.getNode("heading-deg",1).setValue(0.0);
s.getNode("base-altitude-ft",1).setValue(base);
s.getNode("top-altitude-ft",1).setValue(top);
s.getNode("radius-nm",1).setValue(radius * m_to_nm);
s.getNode("reflectivity-norm",1).setValue(ref);
s.getNode("turbulence-norm",1).setValue(turb);
s.getNode("type",1).setValue(type);
s.getNode("show",1).setValue(1);
}
###########################################################
# remove unused echos
###########################################################
var remove_wxradar_echos = func {
var distance_to_remove = 70000.0;
var storms = props.globals.getNode("/instrumentation/wxradar", 1).getChildren("storm");
var pos = geo.aircraft_position();
foreach (s; storms)
{
var d_sq = local_weather.calc_d_sq(pos.lat(), pos.lon(), s.getNode("latitude-deg").getValue(), s.getNode("longitude-deg").getValue());
if (d_sq > distance_to_remove * distance_to_remove)
{
s.remove();
}
}
}
############################################################
# global variables
############################################################
# conversions
var nm_to_m = 1852.00;
var m_to_nm = 1.0/nm_to_m;
# some common abbreviations
var lw = "/local-weather/";
var ec = "/environment/config/";
# storage arrays for model vector
var mvec = [];
var msize = 0;
# loop flags and variables
var smooth_visibility_loop_flag = 0;
var visibility_target = 0.0;
var visibility_current = 0.0;
var smooth_light_loop_flag = 0;
var light_target = 0.0;
var light_current = 0.0;
# available hard-coded support
var features = {};
# globals to transmit info if clouds are written from buffer
var buffered_tile_latitude = 0.0;
var buffered_tile_longitude = 0.0;
var buffered_tile_alpha = 0.0;
var buffered_tile_index = 0;
# globals to handle additional info for Cumulus cloud dynamics
var cloud_mean_altitude = 0.0;
var cloud_flt = 0.0;
var cloud_evolution_timestamp = 0.0;
# globals to handle new cloud indexing
var cloud_index = 0;