1
0
Fork 0
fgdata/Aircraft/Generic/helicopter-fcs.nas

911 lines
29 KiB
Text

#
# Flight Control System for Helicopters by Tatsuhiro Nishioka
# $Id$
#
var enableDebug = func() {
setprop("/controls/flight/fcs/switches/debug", 1);
}
var debugEnabled = func() {
var debugStatus = getprop("/controls/flight/fcs/switches/debug");
if (debugStatus == 1) {
return 1;
} else {
return 0;
}
}
var dumpParameters = func() {
debug.dump(props.globals.getNode("/controls/flight/fcs/gains").getValues());
}
#
# FCSFilter - base class for FCS components like CAS and SAS
#
var FCSFilter = {
#
# new - constructor
# input_path: a property path for a filter input
# nil is equivalent to "/controls/flight/"
# output_path: a property path for a filter output
#
new : func(input_path, output_path) {
var obj = { parents : [FCSFilter],
input_path : input_path,
output_path : output_path };
obj.axis_conv = {'roll' : 'aileron', 'pitch' : 'elevator', 'yaw' : 'rudder' };
obj.body_conv = {'roll' : 'v', 'pitch' : 'u' };
obj.last_body_fps = {'roll' : 0.0, 'pitch' : 0.0 };
obj.last_pos = {'roll' : 0.0, 'pitch' : 0.0, 'yaw' : 0.0};
return obj;
},
#
# updateSensitivities: read sensitivitiy values for all axis from the property
#
updateSensitivities : func() {
me.sensitivities = props.globals.getNode("/controls/flight/fcs/gains/sensitivities").getValues();
},
#
# read - gets input command for a given axis from input_path
#
read : func(axis) {
if (me.input_path == nil or me.input_path == "") {
return getprop("/controls/flight/" ~ me.axis_conv[axis]);
} else {
var value = getprop(me.input_path ~ "/" ~ axis);
value = int(value * 1000) / 1000.0;
}
},
#
# write - outputs command for a given axis into output_path
# this will be the output of an next command filter (like SAS)
#
write : func(axis, value) {
if (me.output_path == nil or me.output_path == '') {
setprop("/controls/flight/fcs/" ~ axis, me.limit(value, 1.0));
} else {
setprop(me.output_path ~ "/" ~ axis, me.limit(value, 1.0));
}
},
#
# toggleFilterStatus - toggles engage/disengage FCS function
# name: FCS filter name; one of /controls/flight/fcs/switches/*
#
toggleFilterStatus : func(name) {
var messages = ["disengaged", "engaged"];
var path = "/controls/flight/fcs/switches/" ~ name;
var status = getprop(path);
setprop(path, 1 - status);
screen.log.write(name ~ " " ~ messages[1 - status]);
},
#
# getStatus - returns 1 if a given function is engaged
# name: FCS filter name; one of /controls/flight/fcs/switches/*
#
getStatus : func(name) {
var path = "/controls/flight/fcs/switches/" ~ name;
return getprop(path);
},
#
# limit - cut out a given value between +range to -range
# value: number to be adjusted
# range: absolute number for specifying the range
limit : func(value, range) {
if (value > range) {
return range;
} elsif (value < -range) {
return - range;
}
return value;
},
max : func(val1, val2) {
return (val1 > val2) ? val1 : val2;
},
min : func(val1, val2) {
return (val1 > val2) ? val2 : val1;
},
#
# calcCounterBodyFPS - calculates counter-force command to kill movement in each axis
# axis: one of 'roll', 'pitch', or 'yaw'
# input: input (0.0 - 1.0) for a given axis
# offset_deg:
#
calcCounterBodyFPS : func(axis, input, offset_deg) {
var position = getprop("/orientation/" ~ axis ~ "-deg");
var body_fps = 0;
var last_body_fps = me.last_body_fps[axis];
var reaction_gain = 0;
var heading = getprop("/orientation/heading-deg");
var wind_speed_fps = getprop("/environment/wind-speed-kt") * 1.6878099;
var wind_direction = getprop("/environment/wind-from-heading-deg");
var wind_direction -= heading;
var rate = getprop("/orientation/" ~ axis ~ "-rate-degps");
var gear_pos = getprop("/gear/gear[0]/compression-norm") + getprop("/gear/gear[1]/compression-norm");
var counter_fps = 0;
var fps_axis = me.body_conv[axis]; # convert from {roll, pitch} to {u, v}
var target_pos = offset_deg;
var brake_deg = 0;
body_fps = getprop("/velocities/" ~ fps_axis ~ "Body-fps");
if (axis == 'roll') {
var wind_fps = math.sin(wind_direction / 180 * math.pi) * wind_speed_fps;
} else {
var wind_fps = math.cos(wind_direction / 180 * math.pi) * wind_speed_fps;
}
var brake_freq = getprop("/controls/flight/fcs/gains/afcs/fps-" ~ axis ~ "-brake-freq");
var brake_gain = getprop("/controls/flight/fcs/gains/afcs/fps-brake-gain-" ~ axis);
body_fps -= wind_fps;
var dfps = body_fps - me.last_body_fps[axis];
var fps_coeff = getprop("/controls/flight/fcs/gains/afcs/fps-" ~ axis ~ "-coeff");
target_pos -= int(body_fps * 100) / 100 * fps_coeff;
if (axis == 'roll' and gear_pos > 0.0 and position > 0) {
target_pos -= position * gear_pos / 5;
}
reaction_gain = getprop("/controls/flight/fcs/gains/afcs/fps-reaction-gain-" ~ axis);
var brake_sensitivity = (axis == 'roll') ? 1 : 1;
if (math.abs(position + rate / brake_freq * brake_sensitivity) > math.abs(target_pos)) {
if (math.abs(dfps) > 1) {
dfps = 1;
}
var error_deg = target_pos - position;
brake_deg = (error_deg - rate / brake_freq) * math.abs(dfps * 10) * brake_gain;
if (target_pos > 0) {
brake_deg = me.min(brake_deg, 0);
} else {
brake_deg = me.max(brake_deg, 0);
}
}
counter_fps = me.limit((target_pos + brake_deg) * reaction_gain, 1.0);
if (debugEnabled() == 1) {
setprop("/controls/flight/fcs/afcs/status/ah-" ~ fps_axis ~ "body-fps", body_fps);
setprop("/controls/flight/fcs/afcs/status/ah-" ~ fps_axis ~ "body-wind-fps", wind_fps);
setprop("/controls/flight/fcs/afcs/status/ah-" ~ axis ~ "-target-deg", target_pos);
setprop("/controls/flight/fcs/afcs/status/ah-" ~ axis ~ "-rate", rate);
setprop("/controls/flight/fcs/afcs/status/ah-delta-" ~ fps_axis ~ "body-fps", dfps);
setprop("/controls/flight/fcs/afcs/status/ah-" ~ axis ~ "-brake-deg", brake_deg);
setprop("/controls/flight/fcs/afcs/status/counter-fps-" ~ axis, counter_fps);
}
me.last_pos[axis] = position;
me.last_body_fps[axis] = body_fps;
return me.limit(counter_fps + input * 0.2, 1.0);
},
};
#
# AFCS - Automatic Flight Control System
#
var AFCS = {
new : func(input_path, output_path) {
var obj = FCSFilter.new(input_path, output_path);
obj.parents = [FCSFilter, AFCS];
return obj;
},
#
# toggle* - I/F methods for Instruments
#
toggleAutoHover : func() {
me.toggleFilterStatus("auto-hover");
},
toggleAirSpeedLock : func() {
me.toggleFilterStatus("air-speed-lock");
},
toggleHeadingLock : func() {
me.toggleFilterStatus("heading-lock");
},
toggleAltitudeLock : func() {
me.toggleFilterStatus("altitude-lock");
},
#
# auto hover - locks vBody_fps and uBody_fps regardless of wind speed/direction
#
autoHover : func(axis, input) {
if (axis == 'yaw') {
return input;
} else {
var offset_deg = getprop("/controls/flight/fcs/gains/afcs/fps-" ~ axis ~ "-offset-deg");
return me.calcCounterBodyFPS(axis, input, offset_deg);
}
},
altitudeLock : func(axis, input) {
# not implemented yet
return input;
},
headingLock : func(axis, input) {
# not implementet yet
return input;
},
#
# applying all AFCS functions
# only auto hover is available at this moment
#
apply : func(axis) {
var input = me.read(axis);
var hover_status = me.getStatus("auto-hover");
if (hover_status == 0) {
me.write(axis, input);
return;
}
me.write(axis, me.autoHover(axis, input));
}
};
#
# SAS : Stability Augmentation System - a rate damper
#
var SAS = {
#
# new
# input_path: is a base path to input axis; nil for using raw input from KB/JS
# output_path: is a base path to output axis; nis for using /controls/flight/fcs
# with input_path / output_path, you can connect SAS, CAS, and more control filters
#
new : func(input_path, output_path) {
var obj = FCSFilter.new(input_path, output_path);
obj.parents = [FCSFilter, SAS];
return obj;
},
toggleEnable : func() {
me.toggleFilterStatus("sas");
},
#
# calcGain - get gain for each axis based on air speed and dynamic pressure
# axis: one of 'roll', 'pitch', or 'yaw'
#
calcGain : func(axis) {
var mach = getprop("/velocities/mach");
var initial_gain = getprop("/controls/flight/fcs/gains/sas/" ~ axis);
var gain = initial_gain - 0.1 * mach * mach;
if (math.abs(gain) < math.abs(initial_gain) * 0.01 or gain * initial_gain < 0) {
gain = initial_gain * 0.01;
}
return gain;
},
#
# calcAuthorityLimit - returns SAS authority limit using a given limit and mach number
#
calcAuthorityLimit : func() {
var mach = getprop("/velocities/mach");
var min_mach = 0.038;
me.authority_limit = getprop("/controls/flight/fcs/gains/sas/authority-limit");
var limit = me.authority_limit;
if (math.abs(mach < min_mach)) {
limit += (min_mach - math.abs(mach)) / min_mach * (1 - me.authority_limit) * 0.95;
}
if (debugEnabled() == 1) {
setprop("/controls/flight/fcs/sas/status/authority-limit", limit);
}
return limit;
},
#
# apply - apply SAS damper to a given input axis
# axis: one of 'roll', 'pitch', or 'yaw'
#
apply : func(axis) {
me.updateSensitivities();
var status = me.getStatus("sas");
var input = me.read(axis);
if (status == 0) {
me.write(axis, input);
return;
}
var mach = getprop("/velocities/mach");
var value = 0;
var rate = getprop("/orientation/" ~ axis ~ "-rate-degps");
var gain = me.calcGain(axis);
var limit = me.calcAuthorityLimit();
if (math.abs(rate) >= me.sensitivities[axis]) {
value = - gain * rate;
if (value > limit) {
value = limit;
} elsif (value < - limit) {
value = - limit;
}
}
me.write(axis, value + input);
}
};
#
# CAS : Control Augmentation System - makes your aircraft more meneuverable
#
var CAS = {
new : func(input_path, output_path) {
var obj = FCSFilter.new(input_path, output_path);
obj.parents = [FCSFilter, CAS];
setprop("/autopilot/locks/altitude", '');
setprop("/autopilot/locks/heading", '');
obj.setCASControlThresholds();
return obj;
},
calcRollRateAdjustment : func {
var position = getprop("/orientation/roll-deg");
return math.abs(math.sin(position / 180 * math.pi)) / 6;
},
#
# calcHeadingAdjustment - returns roll axis output for stabilizing heading
#
calcHeadingAdjustment : func {
if (getprop("/controls/flight/fcs/switches/heading-adjuster") == 1) {
var gain = getprop("/controls/flight/fcs/gains/cas/output/heading-adjuster-gain");
var yaw_rate = getprop("/orientation/yaw-rate-degps");
var limit = getprop("/controls/flight/fcs/gains/cas/output/heading-adjuster-limit");
var adjuster = yaw_rate * gain;
return me.limit(adjuster, limit);
} else {
return 0;
}
},
#
# calcSideSlipAdjustment - returns yaw axis output for preventing side slip
#
calcSideSlipAdjustment : func {
if (getprop("/controls/flight/fcs/switches/sideslip-adjuster") == 0) {
return 0;
}
var mach = getprop("/velocities/mach");
var slip = -getprop("/orientation/side-slip-deg"); # inverted after a change in side-slip sign (bug #901)
var min_speed_threshold = getprop("/controls/flight/fcs/gains/cas/input/anti-side-slip-min-speed");
if (mach < min_speed_threshold) { # works only if air speed > min_speed_threshold
slip = 0;
}
var anti_slip_gain = getprop("/controls/flight/fcs/gains/cas/output/anti-side-slip-gain");
var roll_deg = getprop("/orientation/roll-deg");
var gain_adjuster = me.min(math.abs(mach) / 0.060, 1) * me.limit(0.2 + math.sqrt(math.abs(roll_deg)/10), 3);
anti_slip_gain *= gain_adjuster;
if (debugEnabled() == 1) {
setprop("/controls/flight/fcs/cas/status/anti-side-slip", slip * anti_slip_gain);
}
return slip * anti_slip_gain;
},
#
# isInverted - returns 1 if aircraft is inverted (roll > 90 or roll < -90)
#
isInverted : func() {
var roll_deg = getprop("/orientation/roll-deg");
if (roll_deg > 90 or roll_deg < -90)
return 1;
else
return 0;
},
# FIXME: command for CAS is just a temporal one
#
# calcCommand - returns CAS output for each axis
#
calcCommand: func (axis, input) {
var output = 0;
var mach = getprop("/velocities/mach");
var input_gain = me.calcGain(axis);
var output_gain = getprop("/controls/flight/fcs/gains/cas/output/" ~ axis);
var target_rate = input * input_gain;
var rate = getprop("/orientation/" ~ axis ~ "-rate-degps");
var drate = target_rate - rate;
if (axis == 'pitch' and me.isInverted() == 1) {
drate = - drate;
}
var attitudeControlThreshold = getprop("/controls/flight/fcs/gains/cas/input/attitude-control-threshold");
var rateControlThreshold = getprop("/controls/flight/fcs/gains/cas/input/rate-control-threshold");
var locks = {'pitch' : getprop("/autopilot/locks/altitude"),
'roll' : getprop("/autopilot/locks/heading")};
setprop("/controls/flight/fcs/cas/target_" ~ axis ~ "rate", target_rate);
setprop("/controls/flight/fcs/cas/delta_" ~ axis, drate);
if (axis == 'roll' or axis == 'pitch') {
if (math.abs(input) > rateControlThreshold) {
return input;
} elsif (math.abs(input) > attitudeControlThreshold or locks[axis] != '') {
output = drate * output_gain;
} else {
output = me.calcAttitudeCommand(axis);
}
if (axis == 'roll' and math.abs(mach) < 0.035) {
# FIXME: I don't know if OH-1 has this one
output += me.calcCounterBodyFPS(axis, input, -0.8);
}
} elsif (axis == 'yaw') {
if (getprop("/controls/flight/fcs/switches/tail-rotor-adjuster") == 0) {
output = input;
} else {
output = drate * output_gain + me.calcSideSlipAdjustment();
}
} else {
output = drate * output_gain;
}
return output;
},
toggleEnable : func() {
me.toggleFilterStatus("cas");
},
#
# toggle enable / disable attitude control
# you can make similar function that changes parameters
# in attitude-control-limit and rate-control-limit
# at controls/flight/fcs/gains/cas/input
# CAS changes its behavior when roll/pitch axis inputs reaches each limit.
# e.g. when attitude-control-limit is 0.7 and rate-control-limit is 0.9,
# giving 0.6 for roll holds bank angle, 0.8 keeps roll rate,
# and 1.0 makes roll at maximum roll rate.
# Sets of initial values for these limits are stored at
# controls/fcs/gains/cas/{attitude,rate}
#
toggleAttitudeControl : func() {
me.toggleFilterStatus("attitude-control");
me.setCASControlThresholds();
},
setCASControlThresholds : func()
{
if (me.getStatus("attitude-control") == 1) {
var params = props.globals.getNode("controls/flight/fcs/gains/cas/control/attitude").getValues();
props.globals.getNode("controls/flight/fcs/gains/cas/input").setValues(params);
} else {
var params = props.globals.getNode("controls/flight/fcs/gains/cas/control/rate").getValues();
props.globals.getNode("controls/flight/fcs/gains/cas/input").setValues(params);
}
},
#
# calcAttitudeCommand - Attitude base Augmentation output for roll and pitch axis
# axis: either 'roll' or 'pitch'
#
calcAttitudeCommand : func(axis) {
var input_gain = getprop("/controls/flight/fcs/gains/cas/input/attitude-" ~ axis);
var output_gain = getprop("/controls/flight/fcs/gains/cas/output/" ~ axis);
var brake_freq = getprop("/controls/flight/fcs/gains/cas/output/" ~ axis ~ "-brake-freq");
var brake_gain = getprop("/controls/flight/fcs/gains/cas/output/" ~ axis ~ "-brake");
var trim = getprop("/controls/flight/" ~ me.axis_conv[axis] ~ "-trim");
var current_deg = getprop("/orientation/" ~ axis ~ "-deg");
var rate = getprop("/orientation/" ~ axis ~ "-rate-degps");
var target_deg = (me.read(axis) + trim) * input_gain;
if (axis == 'roll' and math.abs(target_deg) < 0.1) {
# rolls a bit to counteract the heading changes only if target roll rate = 0
target_deg += me.calcHeadingAdjustment();
}
var command_deg = 0;
if (target_deg != 0) {
command_deg = (0.094 * math.ln(math.abs(target_deg)) + 0.53) * target_deg;
}
var error_deg = command_deg - current_deg;
if (axis == 'pitch' and me.isInverted() == 1) {
error_deg = - error_deg;
}
var brake_deg = (error_deg - rate / brake_freq) * math.abs(error_deg) * brake_gain;
if (command_deg > 0) {
brake_deg = me.min(brake_deg, 0);
} else {
brake_deg = me.max(brake_deg, 0);
}
if (debugEnabled() == 1) {
var monitor_prefix = me.output_path ~ "/status/" ~ axis;
setprop(monitor_prefix ~ "-target_deg", target_deg);
setprop(monitor_prefix ~ "-error_deg", error_deg);
setprop(monitor_prefix ~ "-brake_deg", brake_deg);
setprop(monitor_prefix ~ "-deg", current_deg);
setprop(monitor_prefix ~ "-rate", -rate);
}
return (error_deg + brake_deg) * output_gain;
},
#
# calcGain - returns gain for a given axis using a given gain and speed
# FixMe: gain should be calculated using both speed and dynamic pressure
#
calcGain : func(axis) {
var mach = getprop("/velocities/mach");
var input_gain = getprop("/controls/flight/fcs/gains/cas/input/" ~ axis);
var gain = input_gain;
if (axis == 'pitch') {
gain += 0.1 * mach * mach;
} elsif (axis== 'yaw') {
gain *= ((1 - mach) * (1 - mach));
}
if (gain * input_gain < 0.0 ) {
gain = 0;
}
if (debugEnabled() == 1) {
setprop("/controls/flight/fcs/cas/gain-" ~ axis, gain);
}
return gain;
},
#
# apply - public method that outputs CAS command for a given axis to output_path
# input is read from input_path
# axis: one of 'roll', 'pitch', or 'yaw'
#
apply : func(axis) {
me.updateSensitivities();
var input = me.read(axis);
var status = me.getStatus("cas");
var cas_command = 0;
# FIXME : hmm, a bit nasty. CAS should be enabled even with auto-hover....
if (status == 0 or (me.getStatus("auto-hover") == 1 and axis != 'yaw')) {
me.write(axis, input);
return;
}
cas_command = me.calcCommand(axis, input);
me.write(axis, cas_command);
}
};
#
# Tail hstab, "stabilator," for stabilize the nose
#
var Stabilator = {
new : func() {
var obj = { parents : [Stabilator] };
me.gainTable = props.globals.getNode("/controls/flight/fcs/gains/stabilator").getChildren('gain-table');
return obj;
},
toggleEnable : func {
var status = getprop("/controls/flight/fcs/switches/auto-stabilator");
getprop("/controls/flight/fcs/switches/auto-stabilator", 1 - status);
},
#
# calcPosition - returns stabilator position (output) depending on
# predefined gain table and mach number
#
calcPosition : func() {
var speed = getprop("/velocities/mach") / 0.001497219; # in knot
var index = int(math.abs(speed) / 10);
if (index >= size(me.gainTable) - 1) {
index = size(me.gainTable) - 2;
}
var gain = me.gainTable[index].getValue();
var gainAmb = me.gainTable[index-1].getValue();
var mod = math.mod(int(math.abs(speed)), 10);
var position = gain * ((10 - mod) / 10) + gainAmb * mod / 10;
if (speed < -20) {
position = - position;
}
return position;
},
#
# apply - public method for Stabilator control
# no axis is required since it is only for hstab
#
apply : func() {
var status = getprop("/controls/flight/fcs/switches/auto-stabilator");
if (status == 0) {
return;
}
var gain = getprop("/controls/flight/fcs/gains/stabilator/stabilator-gain");
var mach = getprop("/velocities/mach");
var throttle = getprop("/controls/flight/throttle");
var stabilator_norm = 0;
stabilator_norm = me.calcPosition();
setprop("/controls/flight/fcs/stabilator", stabilator_norm);
}
};
#
# Automatic tail rotor adjuster depending on collective/throttle status
#
var TailRotorCollective = {
new : func() {
var obj = FCSFilter.new("/controls/engines/engine[1]", "/controls/flight/fcs/tail-rotor");
obj.parents = [FCSFilter, TailRotorCollective];
obj.adjuster = 0.0;
return obj;
},
#
# apply - public method for tail rotor adjuster
# no axis is required
#
apply : func() {
var throttle = me.read("throttle");
var pedal_pos_deg = getprop("/controls/flight/fcs/yaw");
var cas_input = cas.read('yaw');
var cas_input_gain = cas.calcGain('yaw');
var target_rate = cas_input * cas_input_gain;
var rate = getprop("/orientation/yaw-rate-degps");
var error_rate = getprop("/controls/flight/fcs/cas/delta_yaw");
var error_adjuster_gain = getprop("/controls/flight/fcs/gains/tail-rotor/error-adjuster-gain");
var minimum = getprop("/controls/flight/fcs/gains/tail-rotor/src-minimum");
var maximum = getprop("/controls/flight/fcs/gains/tail-rotor/src-maximum");
var low_limit = getprop("/controls/flight/fcs/gains/tail-rotor/low-limit");
var high_limit = getprop("/controls/flight/fcs/gains/tail-rotor/high-limit");
var authority_limit = getprop("/controls/flight/fcs/gains/tail-rotor/authority-limit");
var output = 0;
var range = maximum - minimum;
if (throttle < minimum) {
output = low_limit;
} elsif (throttle > maximum) {
output = high_limit;
} else {
output = low_limit + (throttle - minimum) / range * (high_limit - low_limit);
}
# CAS driven tail rotor thrust adjuster
me.adjuster = error_rate * error_adjuster_gain;
me.adjuster = me.limit(me.adjuster, authority_limit);
output += me.adjuster;
setprop("/controls/flight/fcs/tail-rotor/error-rate", error_rate);
setprop("/controls/flight/fcs/tail-rotor/adjuster", me.adjuster);
me.write("throttle", output);
}
};
# Back-up FCS
# It automatically disable CAS and shifts to
# the backup mode (e.g. SAS only or direct link mode)
#
var BackupFCS = {
new : func() {
var obj = { parents : [BackupFCS] };
obj.switches = {'cas' : 0, 'sas' : 1, 'attitude-control' : 0 }; # default backup switches
obj.normalSwitches = props.globals.getNode("/controls/flight/fcs/switches").getValues();
setprop("/controls/flight/fcs/failures/manual-backup-mode", 0);
setprop("/controls/flight/fcs/switches/backup-mode", 0);
return obj;
},
# checkFCSFailures - detects FCS failures
# returns 1 if failure (or manual backup mode) is detected, 0 otherwise
#
checkFCSFailures : func()
{
# not fully implemented yet
if (getprop("/controls/flight/fcs/failures/manual-backup-mode") == 1) {
return 1;
} else {
return 0;
}
},
#
# shiftToBackupMode - overwrites switches for force entering backup mode
#
shiftToBackupMode : func() {
if (me.switches != nil) {
var switchNode = props.globals.getNode("/controls/flight/fcs/switches");
switchNode.setValues(me.switches);
setprop("/controls/flight/fcs/switches/backup-mode", 1);
}
},
#
# shiftToNormalMode - bring switches back to normal mode
# switches for normalMode are captured at BackupFCS.new
shiftToNormalMode : func() {
if (me.normalSwitches != nil) {
props.globals.getNode("/controls/flight/fcs/switches").setValues(me.normalSwitches);
setprop("/controls/flight/fcs/switches/backup-mode", 0);
}
},
#
# setBackupMode - specifies set of values on FCS switches
# switches: hash of FCS switch values that will be set to
# controls/flight/fcs/switches on backup mode
# only values to be overwritten must be specified
# e.g. {'cas' : 0, 'sas' : 1}
#
setBackupMode : func(switches) {
me.switches = switches
},
#
# update - main I/F for BackupFCS
#
update : func() {
if (me.checkFCSFailures() == 1) {
me.shiftToBackupMode();
} elsif (getprop("/controls/flight/fcs/switches/backup-mode") == 1) {
me.shiftToNormalMode();
}
},
#
# toggleBackupMode - I/F for Cockpit Panel
#
toggleBackupMode : func() {
var mode = getprop("/controls/flight/fcs/failures/manual-backup-mode");
setprop("/controls/flight/fcs/failures/manual-backup-mode", 1 - mode);
}
};
var sas = nil;
var cas = nil;
var afcs = nil;
var stabilator = nil;
var tail = nil;
var backup = nil;
var count = 0;
#
# AFCS main loop
# This runs at 60Hz (on every other update of /rotors/main/cone-deg)
#
var update = func {
count += 1;
# AFCS, CAS, and SAS run at 60Hz
rpm = getprop("/rotors/main/rpm");
# AFCS, CAS, and SAS run at 60Hz only when engine rpm >= 10
# this rpm filter prevents CAS/SAS work when engine is not running,
# which may cause Nasal runtime error
if (math.mod(count, 2) == 0 or rpm < 10) {
return;
}
cas.apply('roll');
cas.apply('pitch');
cas.apply('yaw');
afcs.apply('roll');
afcs.apply('pitch');
afcs.apply('yaw');
sas.apply('roll');
sas.apply('pitch');
sas.apply('yaw');
stabilator.apply();
tail.apply();
backup.update();
}
# Factory default configuration values
# DO NOT CHANGE THESE VALUES.!
# You can change some of these values in per-aircraft nasal file.
# See Aircraft/OH-1/Nasal/OH1.nas for more detail
#
var default_fcs_params = {
'gains' : {
'afcs' : {
# Auto Hover parameters
'fps-brake-gain-pitch' : 1.8,
'fps-brake-gain-roll' : 0.8,
'fps-pitch-brake-freq' : 3,
'fps-pitch-coeff' : -0.95,
'fps-pitch-offset-deg' : 0.9,
'fps-reaction-gain-pitch' : -0.8,
'fps-reaction-gain-roll' : 0.3436,
'fps-roll-brake-freq' : 8,
'fps-roll-coeff' : 0.8,
'fps-roll-offset-deg' : -0.8
},
'cas' : {
'input' : { # Input gains for CAS
'roll' : 30,
'pitch' : -60,
'yaw' : 30,
'attitude-roll' : 80,
'attitude-pitch' : -80,
'attitude-control-threshold' : 0.0, # input threshold that CAS changes attitude-base control to rate-base control
'rate-control-threshold' : 0.95, # input threshold that CAS changes rate-base control to doing nothing
'anti-side-slip-min-speed' : 0.015
},
'output' : { # Output gains for CAS
'roll' : 0.06,
'pitch' : -0.1,
'yaw' : 0.5,
'roll-brake-freq' : 10,
'pitch-brake-freq' : 3,
'roll-brake' : 0.4,
'pitch-brake' : 6,
'anti-side-slip-gain' : -4.5,
'heading-adjuster-gain' : -5,
'heading-adjuster-limit' : 5,
},
'control' : { # configuration for CAS augumentation modes
'attitude' : { # Attitude control augmentation mode (e.g. ATTDAGMT button on OH-1)
# Note: attitude-control-threshold must be smaller than rate-control-threshold in any mode
'attitude-control-threshold' : 0.95, # Roll / Pitch attitude(angle) hold mode when 0 < input <= 0.95
'rate-control-threshold' : 1.0 # Rate hold mode when 0.95 < input <= 1.0
},
'rate' : { # Rate control augmentation mode
'attitude-control-threshold' : 0.0,
'rate-control-threshold' : 0.95
},
}
},
'sas' : { # gains for SAS
'roll' : 0.02,
'pitch' : -0.10,
'yaw' : 0.04,
'authority-limit' : 0.15 # How much SAS will take over pilot's control. 0.15 means 15%
},
'sensitivities' : {
'roll' : 1.0,
'pitch' : 1.0,
'yaw' : 3.0
},
'tail-rotor' : { # parameters for tail rotor control based on throttle / collective
'src-minimum' : 0.10, # throttle value that outputs low-limit
'src-maximum' : 1.00, # throttle value that outputs high-limit
'low-limit' : 0.00011,
'high-limit' : 0.0035,
'error-adjuster-gain' : -0.5, # gain that how much CAS adjust yaw rate
'authority-limit' : 0.3
},
'stabilator' : { # gain tables for adjusting either incidence or flap angle of hstab
# index is the speed (Kt) devided by 10
# 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160, 170, 180, .....
'gain-table' : [-0.9, -0.8, 0.1, -0.5, 0.0, 0.7, 0.8, 0.9, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.9, 0.8, 0.6, 0.4, 0.2, -1.0]
}
},
'switches' : { # master switches for AFCS, can be controlled by cockpit panel or keys
'auto-hover' : 0,
'cas' : 1,
'sas' : 1,
'attitude-control' : 0,
'auto-stabilator' : 1,
'sideslip-adjuster' : 1,
'tail-rotor-adjuster' : 1,
'heading-adjuster' : 0,
'air-speed-lock' : 0,
'heading-lock' : 0,
'altitude-lock' : 0,
}
};
#
# initialize - creates AFCS components and invokes AFCS main loop
#
var initialize = func {
cas = CAS.new(nil, "/controls/flight/fcs/cas");
afcs = AFCS.new("/controls/flight/fcs/cas", "/controls/flight/fcs/afcs");
sas = SAS.new("/controls/flight/fcs/afcs", "/controls/flight/fcs");
stabilator = Stabilator.new();
tail = TailRotorCollective.new();
backup = BackupFCS.new();
setlistener("/rotors/main/cone-deg", update);
}
#
# Stores default AFCS parameters at startup
#
var confNode = props.globals.getNode("/controls/flight/fcs", 1);
confNode.setValues(default_fcs_params);
#
# fcs-initialized signal must be set by per-aircraft nasal script
# to show that FCS configuration parameters are set
#
setlistener("/sim/signals/fcs-initialized", initialize);