1
0
Fork 0
fgdata/Shaders/urban-lightfield.vert
2012-12-05 20:31:27 +00:00

278 lines
8 KiB
GLSL

// -*-C++-*-
// Shader that uses OpenGL state values to do per-pixel lighting
//
// The only light used is gl_LightSource[0], which is assumed to be
// directional.
//
// Diffuse colors come from the gl_Color, ambient from the material. This is
// equivalent to osg::Material::DIFFUSE.
// Haze part added by Thorsten Renk, Oct. 2011
#define MODE_OFF 0
#define MODE_DIFFUSE 1
#define MODE_AMBIENT_AND_DIFFUSE 2
// The constant term of the lighting equation that doesn't depend on
// the surface normal is passed in gl_{Front,Back}Color. The alpha
// component is set to 1 for front, 0 for back in order to work around
// bugs with gl_FrontFacing in the fragment shader.
varying vec3 relPos;
varying vec2 rawPos;
varying vec3 VNormal;
varying vec3 VTangent;
varying vec4 ecPosition;
varying vec4 constantColor;
varying vec3 light_diffuse;
varying float yprime_alt;
varying float mie_angle;
uniform int colorMode;
uniform float hazeLayerAltitude;
uniform float terminator;
uniform float terrain_alt;
uniform float avisibility;
uniform float visibility;
uniform float overcast;
uniform float ground_scattering;
uniform float eye_alt;
uniform float moonlight;
attribute vec3 tangent;//, binormal;
float earthShade;
float steepness;
// This is the value used in the skydome scattering shader - use the same here for consistency?
const float EarthRadius = 5800000.0;
const float terminator_width = 200000.0;
float light_func (in float x, in float a, in float b, in float c, in float d, in float e)
{
//x = x - 0.5;
// use the asymptotics to shorten computations
if (x < -15.0) {return 0.0;}
return e / pow((1.0 + a * exp(-b * (x-c)) ),(1.0/d));
}
void main()
{
vec4 light_ambient;
vec3 shadedFogColor = vec3(0.65, 0.67, 0.78);
vec3 moonLightColor = vec3 (0.095, 0.095, 0.15) * moonlight;
//float yprime_alt;
float yprime;
float lightArg;
float intensity;
float vertex_alt;
float scattering;
rawPos = gl_Vertex.xy;
steepness = dot(normalize(gl_Normal), vec3 (0.0, 0.0, 1.0));
VNormal = normalize(gl_NormalMatrix * gl_Normal);
ecPosition = gl_ModelViewMatrix * gl_Vertex;
// Normal = normalize(gl_Normal);
VTangent = gl_NormalMatrix * tangent;
// VBinormal = gl_NormalMatrix * binormal;
// this code is copied from default.vert
//vec4 ecPosition = gl_ModelViewMatrix * gl_Vertex;
gl_Position = ftransform();
gl_TexCoord[0] = gl_TextureMatrix[0] * gl_MultiTexCoord0;
//normal = gl_NormalMatrix * gl_Normal;
vec4 ambient_color, diffuse_color;
if (colorMode == MODE_DIFFUSE) {
diffuse_color = gl_Color;
ambient_color = gl_FrontMaterial.ambient;
} else if (colorMode == MODE_AMBIENT_AND_DIFFUSE) {
diffuse_color = gl_Color;
ambient_color = gl_Color;
} else {
diffuse_color = gl_FrontMaterial.diffuse;
ambient_color = gl_FrontMaterial.ambient;
}
// here start computations for the haze layer
// we need several geometrical quantities
// first current altitude of eye position in model space
vec4 ep = gl_ModelViewMatrixInverse * vec4(0.0,0.0,0.0,1.0);
// and relative position to vector
relPos = gl_Vertex.xyz - ep.xyz;
// unfortunately, we need the distance in the vertex shader, although the more accurate version
// is later computed in the fragment shader again
float dist = length(relPos);
// altitude of the vertex in question, somehow zero leads to artefacts, so ensure it is at least 100m
vertex_alt = max(gl_Vertex.z,100.0);
scattering = ground_scattering + (1.0 - ground_scattering) * smoothstep(hazeLayerAltitude -100.0, hazeLayerAltitude + 100.0, vertex_alt);
// early culling of vertices which can't be seen due to ground haze despite being in aloft visibility range
float delta_z = hazeLayerAltitude - eye_alt;
//if (((dist * (relPos.z - delta_z)/relPos.z > visibility ) && (relPos.z < 0.0) && (delta_z < 0.0) && (dist > 30000.0)))
if (0==1)
{
gl_Position = vec4(0.0, 0.0, -1000.0, 1.0); // move outside of view frustrum, gets culled before reaching fragment shader
earthShade = 1.0;
mie_angle = 1.0;
yprime_alt = 0.0;
}
else
{
// branch dependent on daytime
if (terminator < 1000000.0) // the full, sunrise and sunset computation
{
// establish coordinates relative to sun position
vec3 lightFull = (gl_ModelViewMatrixInverse * gl_LightSource[0].position).xyz;
vec3 lightHorizon = normalize(vec3(lightFull.x,lightFull.y, 0.0));
// yprime is the distance of the vertex into sun direction
yprime = -dot(relPos, lightHorizon);
// this gets an altitude correction, higher terrain gets to see the sun earlier
yprime_alt = yprime - sqrt(2.0 * EarthRadius * vertex_alt);
// two times terminator width governs how quickly light fades into shadow
// now the light-dimming factor
earthShade = 0.6 * (1.0 - smoothstep(-terminator_width+ terminator, terminator_width + terminator, yprime_alt)) + 0.4;
// parametrized version of the Flightgear ground lighting function
lightArg = (terminator-yprime_alt)/100000.0;
// directional scattering for low sun
if (lightArg < 10.0)
{mie_angle = (0.5 * dot(normalize(relPos), normalize(lightFull)) ) + 0.5;}
else
{mie_angle = 1.0;}
light_diffuse.b = light_func(lightArg, 1.330e-05, 0.264, 3.827, 1.08e-05, 1.0);
light_diffuse.g = light_func(lightArg, 3.931e-06, 0.264, 3.827, 7.93e-06, 1.0);
light_diffuse.r = light_func(lightArg, 8.305e-06, 0.161, 3.827, 3.04e-05, 1.0);
light_diffuse = light_diffuse * scattering;
light_ambient.r = light_func(lightArg, 0.236, 0.253, 1.073, 0.572, 0.33);
light_ambient.g = light_ambient.r * 0.4/0.33;
light_ambient.b = light_ambient.r * 0.5/0.33;
light_ambient.a = 1.0;
// correct ambient light intensity and hue before sunrise
if (earthShade < 0.5)
{
//light_ambient = light_ambient * (0.7 + 0.3 * smoothstep(0.2, 0.5, earthShade));
intensity = length(light_ambient.rgb);
light_ambient.rgb = intensity * normalize(mix(light_ambient.xyz, shadedFogColor, 1.0 -smoothstep(0.1, 0.8,earthShade) ));
light_ambient.rgb = light_ambient.rgb + moonLightColor * (1.0 - smoothstep(0.4, 0.5, earthShade));
intensity = length(light_diffuse.xyz);
light_diffuse.xyz = intensity * normalize(mix(light_diffuse.xyz, shadedFogColor, 1.0 -smoothstep(0.1, 0.7,earthShade) ));
}
// the haze gets the light at the altitude of the haze top if the vertex in view is below
// but the light at the vertex if the vertex is above
vertex_alt = max(vertex_alt,hazeLayerAltitude);
if (vertex_alt > hazeLayerAltitude)
{
if (dist > 0.8 * avisibility)
{
vertex_alt = mix(vertex_alt, hazeLayerAltitude, smoothstep(0.8*avisibility, avisibility, dist));
yprime_alt = yprime -sqrt(2.0 * EarthRadius * vertex_alt);
}
}
else
{
vertex_alt = hazeLayerAltitude;
yprime_alt = yprime -sqrt(2.0 * EarthRadius * vertex_alt);
}
}
else // the faster, full-day version without lightfields
{
//vertex_alt = max(gl_Vertex.z,100.0);
earthShade = 1.0;
mie_angle = 1.0;
if (terminator > 3000000.0)
{light_diffuse = vec3 (1.0, 1.0, 1.0);
light_ambient = vec4 (0.33, 0.4, 0.5, 0.0); }
else
{
lightArg = (terminator/100000.0 - 10.0)/20.0;
light_diffuse.b = 0.78 + lightArg * 0.21;
light_diffuse.g = 0.907 + lightArg * 0.091;
light_diffuse.r = 0.904 + lightArg * 0.092;
light_ambient.b = 0.41 + lightArg * 0.08;
light_ambient.g = 0.333 + lightArg * 0.06;
light_ambient.r = 0.316 + lightArg * 0.016;
}
light_diffuse = light_diffuse * scattering;
yprime_alt = -sqrt(2.0 * EarthRadius * hazeLayerAltitude);
}
// a sky/earth irradiation map model - the sky creates much more diffuse radiation than the ground, so
// steep faces end up shaded more
light_ambient = light_ambient * ((1.0+steepness)/2.0 * 1.2 + (1.0-steepness)/2.0 * 0.2);
// default lighting based on texture and material using the light we have just computed
gl_FrontColor = gl_Color;
constantColor = gl_FrontMaterial.emission
+ gl_Color * (gl_LightModel.ambient + light_ambient);
}
}