161 lines
5.5 KiB
GLSL
161 lines
5.5 KiB
GLSL
/*
|
|
* This is a library of noise functions, taking a coordinate vector and
|
|
* a wavelength as input and returning a number [0:1] as output.
|
|
|
|
* - Noise2D() is 2d Perlin noise.
|
|
* - Noise3D() is 3d Perlin noise.
|
|
* - DotNoise2D() is sparse dot noise and takes a dot density parameter.
|
|
* - DropletNoise2D() is sparse dot noise modified to look like liquid and
|
|
* takes a dot density parameter.
|
|
* - VoronoiNoise2D() is a function mapping the terrain into random domains,
|
|
* based on Voronoi tiling of a regular grid distorted with xrand and yrand.
|
|
* - SlopeLines2D() computes a semi-random set of lines along the direction of
|
|
* steepest descent, allowing to simulate e.g. water erosion patterns.
|
|
* - Strata3D() computes a vertically stratified random pattern, appropriate
|
|
* e.g. for rock textures
|
|
*
|
|
* Thorsten Renk 2014
|
|
*/
|
|
|
|
#version 330 core
|
|
|
|
float rand_2d(vec2 co)
|
|
{
|
|
return fract(sin(dot(co.xy, vec2(12.9898,78.233))) * 43758.5453);
|
|
}
|
|
|
|
float rand_3d(vec3 co)
|
|
{
|
|
return fract(sin(dot(co.xyz, vec3(12.9898,78.233,144.7272))) * 43758.5453);
|
|
}
|
|
|
|
float cosine_interpolate(float a, float b, float x)
|
|
{
|
|
float ft = x * 3.1415927;
|
|
float f = (1.0 - cos(ft)) * 0.5;
|
|
return a * (1.0 - f) + b * f;
|
|
}
|
|
|
|
float simple_interpolate(float a, float b, float x)
|
|
{
|
|
return a + smoothstep(0.0, 1.0, x) * (b - a);
|
|
}
|
|
|
|
float interpolated_noise_2d(vec2 coord)
|
|
{
|
|
float x = coord.x;
|
|
float y = coord.y;
|
|
|
|
float integer_x = x - fract(x);
|
|
float fractional_x = x - integer_x;
|
|
|
|
float integer_y = y - fract(y);
|
|
float fractional_y = y - integer_y;
|
|
|
|
float v1 = rand_2d(vec2(integer_x, integer_y));
|
|
float v2 = rand_2d(vec2(integer_x + 1.0, integer_y));
|
|
float v3 = rand_2d(vec2(integer_x, integer_y + 1.0));
|
|
float v4 = rand_2d(vec2(integer_x + 1.0, integer_y + 1.0));
|
|
|
|
float i1 = simple_interpolate(v1, v2, fractional_x);
|
|
float i2 = simple_interpolate(v3, v4, fractional_x);
|
|
|
|
return simple_interpolate(i1, i2, fractional_y);
|
|
}
|
|
|
|
float interpolated_noise_3d(vec3 coord)
|
|
{
|
|
float x = coord.x;
|
|
float y = coord.y;
|
|
float z = coord.z;
|
|
|
|
float integer_x = x - fract(x);
|
|
float fractional_x = x - integer_x;
|
|
|
|
float integer_y = y - fract(y);
|
|
float fractional_y = y - integer_y;
|
|
|
|
float integer_z = z - fract(z);
|
|
float fractional_z = z - integer_z;
|
|
|
|
float v1 = rand_3d(vec3(integer_x, integer_y, integer_z));
|
|
float v2 = rand_3d(vec3(integer_x + 1.0, integer_y, integer_z));
|
|
float v3 = rand_3d(vec3(integer_x, integer_y + 1.0, integer_z));
|
|
float v4 = rand_3d(vec3(integer_x + 1.0, integer_y + 1.0, integer_z));
|
|
|
|
float v5 = rand_3d(vec3(integer_x, integer_y, integer_z + 1.0));
|
|
float v6 = rand_3d(vec3(integer_x + 1.0, integer_y, integer_z + 1.0));
|
|
float v7 = rand_3d(vec3(integer_x, integer_y + 1.0, integer_z + 1.0));
|
|
float v8 = rand_3d(vec3(integer_x + 1.0, integer_y + 1.0, integer_z + 1.0));
|
|
|
|
float i1 = simple_interpolate(v1, v5, fractional_z);
|
|
float i2 = simple_interpolate(v2, v6, fractional_z);
|
|
float i3 = simple_interpolate(v3, v7, fractional_z);
|
|
float i4 = simple_interpolate(v4, v8, fractional_z);
|
|
|
|
float ii1 = simple_interpolate(i1, i2, fractional_x);
|
|
float ii2 = simple_interpolate(i3, i4, fractional_x);
|
|
|
|
return simple_interpolate(ii1, ii2, fractional_y);
|
|
}
|
|
|
|
float noise_2d(vec2 coord, float wavelength)
|
|
{
|
|
return interpolated_noise_2d(coord / wavelength);
|
|
}
|
|
|
|
float noise_3d(vec3 coord, float wavelength)
|
|
{
|
|
return interpolated_noise_3d(coord / wavelength);
|
|
}
|
|
|
|
float voronoi_noise_2d(vec2 coord, float xrand, float yrand)
|
|
{
|
|
float x = coord.x;
|
|
float y = coord.y;
|
|
|
|
float integer_x = x - fract(x);
|
|
float fractional_x = x - integer_x;
|
|
|
|
float integer_y = y - fract(y);
|
|
float fractional_y = y - integer_y;
|
|
|
|
float val[4];
|
|
val[0] = rand_2d(vec2(integer_x, integer_y));
|
|
val[1] = rand_2d(vec2(integer_x+1.0, integer_y));
|
|
val[2] = rand_2d(vec2(integer_x, integer_y+1.0));
|
|
val[3] = rand_2d(vec2(integer_x+1.0, integer_y+1.0));
|
|
|
|
float xshift[4];
|
|
xshift[0] = xrand * (rand_2d(vec2(integer_x+0.5, integer_y)) - 0.5);
|
|
xshift[1] = xrand * (rand_2d(vec2(integer_x+1.5, integer_y)) -0.5);
|
|
xshift[2] = xrand * (rand_2d(vec2(integer_x+0.5, integer_y+1.0))-0.5);
|
|
xshift[3] = xrand * (rand_2d(vec2(integer_x+1.5, integer_y+1.0))-0.5);
|
|
|
|
float yshift[4];
|
|
yshift[0] = yrand * (rand_2d(vec2(integer_x, integer_y +0.5)) - 0.5);
|
|
yshift[1] = yrand * (rand_2d(vec2(integer_x+1.0, integer_y+0.5)) -0.5);
|
|
yshift[2] = yrand * (rand_2d(vec2(integer_x, integer_y+1.5))-0.5);
|
|
yshift[3] = yrand * (rand_2d(vec2(integer_x+1.5, integer_y+1.5))-0.5);
|
|
|
|
float dist[4];
|
|
dist[0] = sqrt((fractional_x + xshift[0]) * (fractional_x + xshift[0]) + (fractional_y + yshift[0]) * (fractional_y + yshift[0]));
|
|
dist[1] = sqrt((1.0 -fractional_x + xshift[1]) * (1.0-fractional_x+xshift[1]) + (fractional_y +yshift[1]) * (fractional_y+yshift[1]));
|
|
dist[2] = sqrt((fractional_x + xshift[2]) * (fractional_x + xshift[2]) + (1.0-fractional_y +yshift[2]) * (1.0-fractional_y + yshift[2]));
|
|
dist[3] = sqrt((1.0-fractional_x + xshift[3]) * (1.0-fractional_x + xshift[3]) + (1.0-fractional_y +yshift[3]) * (1.0-fractional_y + yshift[3]));
|
|
|
|
int i_min;
|
|
float dist_min = 100.0;
|
|
for (int i = 0; i < 4; ++i) {
|
|
if (dist[i] < dist_min) {
|
|
dist_min = dist[i];
|
|
i_min = i;
|
|
}
|
|
}
|
|
return val[i_min];
|
|
}
|
|
|
|
float voronoi_noise_2d(vec2 coord, float wavelength, float xrand, float yrand)
|
|
{
|
|
return voronoi_noise_2d(coord / wavelength, xrand, yrand);
|
|
}
|