1
0
Fork 0
fgdata/Shaders/shadows-include.frag
2020-12-06 14:44:03 +01:00

137 lines
4 KiB
GLSL

#version 120
uniform sampler2DShadow shadow_tex;
uniform bool shadows_enabled;
uniform int sun_atlas_size;
varying vec4 lightSpacePos[4];
const bool DEBUG_CASCADES = false;
const float DEPTH_BIAS = 1.5;
// Ideally these should be passed as an uniform, but we don't support uniform
// arrays yet
const vec2 uv_shifts[4] = vec2[4](
vec2(0.0, 0.0), vec2(0.5, 0.0),
vec2(0.0, 0.5), vec2(0.5, 0.5));
const vec2 uv_factor = vec2(0.5, 0.5);
float debugCascade(int cascade)
{
const mat2 bayer_matrix = mat2(0, 3, 2, 1);
const float scale = 0.2;
vec2 coords = mod(gl_FragCoord.xy * scale, 2.0);
int threshold = int(bayer_matrix[int(coords.x)][int(coords.y)]);
if (threshold < cascade)
return 0.0;
return 1.0;
}
float checkWithinBounds(vec2 coords, vec2 bottomLeft, vec2 topRight)
{
vec2 r = step(bottomLeft, coords) - step(topRight, coords);
return r.x * r.y;
}
float sampleOffset(vec4 pos, vec2 offset, vec2 invTexelSize)
{
return shadow2DProj(
shadow_tex, vec4(
pos.xy + offset * invTexelSize * pos.w,
pos.z - DEPTH_BIAS * invTexelSize.x,
pos.w)).r;
}
// OptimizedPCF from https://github.com/TheRealMJP/Shadows
// Original by Ignacio Castaño for The Witness
// Released under The MIT License
float sampleOptimizedPCF(vec4 pos)
{
vec2 invTexelSize = vec2(1.0 / float(sun_atlas_size));
vec2 uv = pos.xy * sun_atlas_size;
vec2 base_uv = floor(uv + 0.5);
float s = (uv.x + 0.5 - base_uv.x);
float t = (uv.y + 0.5 - base_uv.y);
base_uv -= vec2(0.5);
base_uv *= invTexelSize;
pos.xy = base_uv.xy;
float sum = 0.0;
float uw0 = (4.0 - 3.0 * s);
float uw1 = 7.0;
float uw2 = (1.0 + 3.0 * s);
float u0 = (3.0 - 2.0 * s) / uw0 - 2.0;
float u1 = (3.0 + s) / uw1;
float u2 = s / uw2 + 2.0;
float vw0 = (4.0 - 3.0 * t);
float vw1 = 7.0;
float vw2 = (1.0 + 3.0 * t);
float v0 = (3.0 - 2.0 * t) / vw0 - 2.0;
float v1 = (3.0 + t) / vw1;
float v2 = t / vw2 + 2.0;
sum += uw0 * vw0 * sampleOffset(pos, vec2(u0, v0), invTexelSize);
sum += uw1 * vw0 * sampleOffset(pos, vec2(u1, v0), invTexelSize);
sum += uw2 * vw0 * sampleOffset(pos, vec2(u2, v0), invTexelSize);
sum += uw0 * vw1 * sampleOffset(pos, vec2(u0, v1), invTexelSize);
sum += uw1 * vw1 * sampleOffset(pos, vec2(u1, v1), invTexelSize);
sum += uw2 * vw1 * sampleOffset(pos, vec2(u2, v1), invTexelSize);
sum += uw0 * vw2 * sampleOffset(pos, vec2(u0, v2), invTexelSize);
sum += uw1 * vw2 * sampleOffset(pos, vec2(u1, v2), invTexelSize);
sum += uw2 * vw2 * sampleOffset(pos, vec2(u2, v2), invTexelSize);
return sum / 144.0;
}
float sampleShadowMap(int n)
{
float s = 1.0;
if (n < 4) {
vec4 pos = lightSpacePos[n];
pos.xy *= uv_factor;
pos.xy += uv_shifts[n];
s = sampleOptimizedPCF(pos);
}
return s;
}
// Get a value between 0.0 and 1.0 where 0.0 means shadowed and 1.0 means lit
float getShadowing()
{
if (!shadows_enabled)
return 1.0;
const float band_size = 0.2;
const vec2 bandBottomLeft = vec2(band_size);
const vec2 bandTopRight = vec2(1.0 - band_size);
for (int i = 0; i < 4; ++i) {
if (checkWithinBounds(lightSpacePos[i].xy, vec2(0.0), vec2(1.0)) > 0.0 &&
(lightSpacePos[i].z / lightSpacePos[i].w) <= 1.0) {
float debug_value = 0.0;
if (DEBUG_CASCADES)
debug_value = debugCascade(i);
if (checkWithinBounds(lightSpacePos[i].xy, bandBottomLeft, bandTopRight) < 1.0) {
vec2 s =
smoothstep(vec2(0.0), bandBottomLeft, lightSpacePos[i].xy) -
smoothstep(bandTopRight, vec2(1.0), lightSpacePos[i].xy);
float blend = 1.0 - s.x * s.y;
return clamp(mix(sampleShadowMap(i), sampleShadowMap(i+1), blend) - debug_value, 0.0, 1.0);
}
return clamp(sampleShadowMap(i) - debug_value, 0.0, 1.0);
}
}
return 1.0;
}