1
0
Fork 0
fgdata/Shaders/HDR/atmos.glsl
2024-02-09 14:04:40 +01:00

343 lines
11 KiB
GLSL

/*
* Common atmosphere rendering functions
*
* See https://www.shadertoy.com/view/msXXDS for a more complete description
* of what the shader does and more references.
*
* All 4-component vectors in this file represent values sampled for the
* following wavelengths: 630, 560, 490, 430 nm
*/
#version 330 core
uniform vec4 aerosol_absorption_cross_section;
uniform vec4 aerosol_scattering_cross_section;
uniform float aerosol_base_density;
uniform float aerosol_relative_background_density;
uniform float aerosol_scale_height;
uniform float aerosol_turbidity;
uniform float fog_density;
uniform float fog_scale_height;
uniform float fog_height_offset;
uniform float ozone_mean_dobson;
uniform vec4 ground_albedo;
uniform float fg_EarthRadius;
const float RAYLEIGH_PHASE_SCALE = 0.05968310365946075091; // 3/(16*pi)
const float HENYEY_ASYMMETRY = 0.8;
const float HENYEY_ASYMMETRY2 = HENYEY_ASYMMETRY*HENYEY_ASYMMETRY;
/*
* Rayleigh scattering coefficient at sea level, units m^-1
* "Rayleigh-scattering calculations for the terrestrial atmosphere"
* by Anthony Bucholtz (1995).
*/
const vec4 molecular_scattering_coefficient_base =
vec4(6.605e-6, 1.067e-5, 1.842e-5, 3.156e-5);
/*
* Fog scattering/extinction cross section, units m^2 / molecules
* Mie theory results for IOR of 1.333. Particle size is a log normal
* distribution of mean diameter=15 and std deviation=0.4
*/
const vec4 fog_scattering_cross_section =
vec4(5.015e-10, 4.987e-10, 4.966e-10, 4.949e-10);
/*
* Ozone absorption cross section, units m^2 / molecules
* "High spectral resolution ozone absorption cross-sections"
* by V. Gorshelev et al. (2014).
*/
const vec4 ozone_absorption_cross_section =
vec4(3.472e-25, 3.914e-25, 1.349e-25, 11.03e-27);
// math.glsl
float M_PI();
float M_2PI();
float M_1_PI();
float M_1_4PI();
float sqr(float x);
//------------------------------------------------------------------------------
float get_earth_radius()
{
return fg_EarthRadius;
}
float get_atmosphere_radius()
{
return 6471e3; // m
}
/*
* Helper function to obtain the transmittance to the top of the atmosphere
* from the precomputed transmittance LUT.
*/
vec4 transmittance_from_lut(sampler2D lut, float cos_theta, float normalized_altitude)
{
float u = clamp(cos_theta * 0.5 + 0.5, 0.0, 1.0);
float v = clamp(normalized_altitude, 0.0, 1.0);
return texture(lut, vec2(u, v));
}
/*
* Returns the distance between ro and the first intersection with the sphere
* or -1.0 if there is no intersection. The sphere's origin is (0,0,0).
* -1.0 is also returned if the ray is pointing away from the sphere.
*/
float ray_sphere_intersection(vec3 ro, vec3 rd, float radius)
{
float b = dot(ro, rd);
float c = dot(ro, ro) - radius*radius;
if (c > 0.0 && b > 0.0) return -1.0;
float d = b*b - c;
if (d < 0.0) return -1.0;
if (d > b*b) return (-b+sqrt(d));
return (-b-sqrt(d));
}
/*
* Rayleigh phase function.
*/
float molecular_phase_function(float cos_theta)
{
return RAYLEIGH_PHASE_SCALE * (1.0 + cos_theta*cos_theta);
}
/*
* Henyey-Greenstrein phase function.
*/
float aerosol_phase_function(float cos_theta)
{
float den = 1.0 + HENYEY_ASYMMETRY2 + 2.0 * HENYEY_ASYMMETRY * cos_theta;
return M_1_4PI() * (1.0 - HENYEY_ASYMMETRY2) / (den * sqrt(den));
}
/*
* Get the approximated multiple scattering contribution for a given point
* within the atmosphere.
*/
vec4 get_multiple_scattering(sampler2D transmittance_lut,
float cos_theta,
float normalized_height,
float d)
{
// Solid angle subtended by the planet from a point at d distance
// from the planet center.
float omega = M_2PI() * (1.0 - sqrt(sqr(d) - sqr(get_earth_radius())) / d);
omega = max(0.0, omega);
vec4 T_to_ground = transmittance_from_lut(transmittance_lut, cos_theta, 0.0);
vec4 T_ground_to_sample =
transmittance_from_lut(transmittance_lut, 1.0, 0.0) /
transmittance_from_lut(transmittance_lut, 1.0, normalized_height);
// 2nd order scattering from the ground
vec4 L_ground = M_1_4PI() * omega * (ground_albedo * M_1_PI())
* T_to_ground * T_ground_to_sample * max(0.0, cos_theta);
// Fit of Earth's multiple scattering coming from other points in the atmosphere
vec4 L_ms = 0.02 * vec4(0.217, 0.347, 0.594, 1.0)
* (1.0 / (1.0 + 5.0 * exp(-17.92 * cos_theta)));
return L_ms + L_ground;
}
/*
* Return the molecular volume scattering coefficient (m^-1) for a given altitude
* in kilometers.
*/
vec4 get_molecular_scattering_coefficient(float h)
{
return molecular_scattering_coefficient_base
* exp(-0.07771971 * pow(h, 1.16364243));
}
/*
* Return the molecular volume absorption coefficient (m^-1) for a given altitude
* in kilometers.
*/
vec4 get_molecular_absorption_coefficient(float h)
{
h += 1e-4; // Avoid division by 0
float t = log(h) - 3.22261;
float density = 3.78547397e17 * (1.0 / h) * exp(-t * t * 5.55555555);
return ozone_absorption_cross_section * ozone_mean_dobson * density;
}
/*
* Return the aerosol density for a given altitude in kilometers.
*/
float get_aerosol_density(float h)
{
return aerosol_turbidity * aerosol_base_density
* (exp(-h / aerosol_scale_height) + aerosol_relative_background_density);
}
/*
* Return the fog volume scattering coefficient (m^-1) for a given altitude in
* kilometers.
*
* Fog (or mist, depending on density) is a special kind of aerosol consisting
* of water droplets or ice crystals. Visibility is mostly dependent on fog.
*/
vec4 get_fog_scattering_coefficient(float h)
{
if (fog_density > 0.0) {
return fog_scattering_cross_section * fog_density
* min(1.0, exp((-h + fog_height_offset) / fog_scale_height));
} else {
return vec4(0.0);
}
}
/*
* Get the collision coefficients (scattering and absorption) of the
* atmospheric medium for a given point at an altitude h in meters.
*/
void get_atmosphere_collision_coefficients(in float h,
out vec4 aerosol_absorption,
out vec4 aerosol_scattering,
out vec4 molecular_absorption,
out vec4 molecular_scattering,
out vec4 fog_scattering,
out vec4 extinction)
{
h = max(h, 1e-3); // In case height is negative
h *= 1e-3; // To km
// Molecules
molecular_absorption = get_molecular_absorption_coefficient(h);
molecular_scattering = get_molecular_scattering_coefficient(h);
// Aerosols
float aerosol_density = get_aerosol_density(h);
aerosol_absorption = aerosol_absorption_cross_section * aerosol_density;
aerosol_scattering = aerosol_scattering_cross_section * aerosol_density;
// Fog
fog_scattering = get_fog_scattering_coefficient(h);
extinction =
aerosol_absorption + aerosol_scattering +
molecular_absorption + molecular_scattering +
fog_scattering;
}
/*
* Any given ray inside the atmospheric medium can end in one of 3 places:
* 1. The Earth's surface.
* 2. Outer space. We define the boundary between space and the atmosphere
* at the Kármán line (100 km above sea level).
* 3. Any object within the atmosphere.
*/
float get_ray_end(vec3 ray_origin, vec3 ray_dir, float t_max)
{
float ray_altitude = length(ray_origin);
// If the ray origin is underground, put the ground a bit below it
float earth_radius = min(get_earth_radius(), ray_altitude - 1.0);
if (ray_altitude >= get_atmosphere_radius()) {
// We are in outer space, move the ray origin to the atmospheric boundary
// XXX: No atmosphere rendering from space yet
return -1.0;
}
float t_atmos = ray_sphere_intersection(ray_origin, ray_dir, get_atmosphere_radius());
float t_ground = ray_sphere_intersection(ray_origin, ray_dir, earth_radius);
float t_d = 0.0;
if (t_ground < 0.0) {
if (t_atmos < 0.0) {
t_d = -1.0;
} else {
t_d = t_atmos;
}
} else {
if (t_atmos > 0.0) {
t_d = min(t_atmos, t_ground);
}
}
return min(t_d, t_max);
}
/*
* Compute the in-scattering integral of the volume rendering equation (VRE)
*
* The integral is solved numerically by ray marching. The final in-scattering
* returned by this function is a 4D vector of the spectral radiance sampled for
* the 4 wavelengths at the top of this file. To obtain an RGB triplet, the
* spectral radiance must be multiplied by the spectral irradiance of the Sun
* and converted to sRGB.
*/
vec4 compute_inscattering(in vec3 ray_origin,
in vec3 ray_dir,
in float t_max,
in vec3 sun_dir,
in int steps,
in sampler2D transmittance_lut,
out vec4 transmittance)
{
float t_d = get_ray_end(ray_origin, ray_dir, t_max);
if (t_d < 1e-3) {
// No intersection with the atmosphere or the ray origin and end points
// are too close too each other. In both cases there is no inscattering.
return vec4(0.0);
}
float dt = t_d / float(steps);
float cos_theta = dot(-ray_dir, sun_dir);
float molecular_phase = molecular_phase_function(cos_theta);
float aerosol_phase = aerosol_phase_function(cos_theta);
vec4 L_inscattering = vec4(0.0);
transmittance = vec4(1.0);
for (int i = 0; i < steps; ++i) {
float t = (float(i) + 0.5) * dt;
vec3 x_t = ray_origin + ray_dir * t;
float distance_to_earth_center = length(x_t);
vec3 zenith_dir = x_t / distance_to_earth_center;
float altitude = distance_to_earth_center - get_earth_radius();
float normalized_altitude = altitude / (get_atmosphere_radius() - get_earth_radius());
float sample_cos_theta = dot(zenith_dir, sun_dir);
vec4 aerosol_absorption, aerosol_scattering;
vec4 molecular_absorption, molecular_scattering;
vec4 fog_scattering;
vec4 extinction;
get_atmosphere_collision_coefficients(
altitude,
aerosol_absorption, aerosol_scattering,
molecular_absorption, molecular_scattering,
fog_scattering,
extinction);
vec4 transmittance_to_sun = transmittance_from_lut(
transmittance_lut, sample_cos_theta, normalized_altitude);
vec4 ms = get_multiple_scattering(
transmittance_lut, sample_cos_theta, normalized_altitude,
distance_to_earth_center);
vec4 S =
molecular_scattering * (molecular_phase * transmittance_to_sun + ms) +
(aerosol_scattering + fog_scattering) * (aerosol_phase * transmittance_to_sun + ms);
vec4 step_transmittance = exp(-dt * extinction);
// Energy-conserving analytical integration
// "Physically Based Sky, Atmosphere and Cloud Rendering in Frostbite"
// by Sébastien Hillaire
vec4 S_int = (S - S * step_transmittance) / max(extinction, 1e-7);
L_inscattering += transmittance * S_int;
transmittance *= step_transmittance;
}
return L_inscattering;
}