// -*-C++-*- // This is a library of noise functions, taking a coordinate vector and a wavelength // as input and returning a number [0:1] as output. // * Noise2D(in vec2 coord, in float wavelength) is 2d Perlin noise // * Noise3D(in vec3 coord, in float wavelength) is 3d Perlin noise // * DotNoise2D(in vec2 coord, in float wavelength, in float fractionalMaxDotSize, in float dDensity) // is sparse dot noise and takes a dot density parameter // * VoronoiNoise2D(in vec2 coord, in float wavelength, in float xrand, in float yrand) // is a function mapping the terrain into random domains, based on Voronoi tiling of a regular grid // distorted with xrand and yrand // * slopeLines2D(in vec2 coord, in vec2 gradDir, in float wavelength, in float steepness) // computes a semi-random set of lines along the direction of steepest descent, allowing to // simulate e.g. water erosion patterns // Thorsten Renk 2014 #version 120 float rand2D(in vec2 co){ return fract(sin(dot(co.xy ,vec2(12.9898,78.233))) * 43758.5453); } float rand3D(in vec3 co){ return fract(sin(dot(co.xyz ,vec3(12.9898,78.233,144.7272))) * 43758.5453); } float cosine_interpolate(in float a, in float b, in float x) { float ft = x * 3.1415927; float f = (1.0 - cos(ft)) * .5; return a*(1.0-f) + b*f; } float simple_interpolate(in float a, in float b, in float x) { return a + smoothstep(0.0,1.0,x) * (b-a); } float interpolatedNoise2D(in float x, in float y) { float integer_x = x - fract(x); float fractional_x = x - integer_x; float integer_y = y - fract(y); float fractional_y = y - integer_y; float v1 = rand2D(vec2(integer_x, integer_y)); float v2 = rand2D(vec2(integer_x+1.0, integer_y)); float v3 = rand2D(vec2(integer_x, integer_y+1.0)); float v4 = rand2D(vec2(integer_x+1.0, integer_y +1.0)); float i1 = simple_interpolate(v1 , v2 , fractional_x); float i2 = simple_interpolate(v3 , v4 , fractional_x); return simple_interpolate(i1 , i2 , fractional_y); } float interpolatedNoise3D(in float x, in float y, in float z) { float integer_x = x - fract(x); float fractional_x = x - integer_x; float integer_y = y - fract(y); float fractional_y = y - integer_y; float integer_z = z - fract(z); float fractional_z = z - integer_z; float v1 = rand3D(vec3(integer_x, integer_y, integer_z)); float v2 = rand3D(vec3(integer_x+1.0, integer_y, integer_z)); float v3 = rand3D(vec3(integer_x, integer_y+1.0, integer_z)); float v4 = rand3D(vec3(integer_x+1.0, integer_y +1.0, integer_z)); float v5 = rand3D(vec3(integer_x, integer_y, integer_z+1.0)); float v6 = rand3D(vec3(integer_x+1.0, integer_y, integer_z+1.0)); float v7 = rand3D(vec3(integer_x, integer_y+1.0, integer_z+1.0)); float v8 = rand3D(vec3(integer_x+1.0, integer_y +1.0, integer_z+1.0)); float i1 = simple_interpolate(v1,v5, fractional_z); float i2 = simple_interpolate(v2,v6, fractional_z); float i3 = simple_interpolate(v3,v7, fractional_z); float i4 = simple_interpolate(v4,v8, fractional_z); float ii1 = simple_interpolate(i1,i2,fractional_x); float ii2 = simple_interpolate(i3,i4,fractional_x); return simple_interpolate(ii1 , ii2 , fractional_y); } float Noise2D(in vec2 coord, in float wavelength) { return interpolatedNoise2D(coord.x/wavelength, coord.y/wavelength); } float Noise3D(in vec3 coord, in float wavelength) { return interpolatedNoise3D(coord.x/wavelength, coord.y/wavelength, coord.z/wavelength); } float dotNoise2D(in float x, in float y, in float fractionalMaxDotSize, in float dDensity) { float integer_x = x - fract(x); float fractional_x = x - integer_x; float integer_y = y - fract(y); float fractional_y = y - integer_y; if (rand2D(vec2(integer_x+1.0, integer_y +1.0)) > dDensity) {return 0.0;} float xoffset = (rand2D(vec2(integer_x, integer_y)) -0.5); float yoffset = (rand2D(vec2(integer_x+1.0, integer_y)) - 0.5); float dotSize = 0.5 * fractionalMaxDotSize * max(0.25,rand2D(vec2(integer_x, integer_y+1.0))); vec2 truePos = vec2 (0.5 + xoffset * (1.0 - 2.0 * dotSize) , 0.5 + yoffset * (1.0 -2.0 * dotSize)); float distance = length(truePos - vec2(fractional_x, fractional_y)); return 1.0 - smoothstep (0.3 * dotSize, 1.0* dotSize, distance); } float DotNoise2D(in vec2 coord, in float wavelength, in float fractionalMaxDotSize, in float dDensity) { return dotNoise2D(coord.x/wavelength, coord.y/wavelength, fractionalMaxDotSize, dDensity); } float voronoiNoise2D(in float x, in float y, in float xrand, in float yrand) { float integer_x = x - fract(x); float fractional_x = x - integer_x; float integer_y = y - fract(y); float fractional_y = y - integer_y; float val[4]; val[0] = rand2D(vec2(integer_x, integer_y)); val[1] = rand2D(vec2(integer_x+1.0, integer_y)); val[2] = rand2D(vec2(integer_x, integer_y+1.0)); val[3] = rand2D(vec2(integer_x+1.0, integer_y+1.0)); float xshift[4]; xshift[0] = xrand * (rand2D(vec2(integer_x+0.5, integer_y)) - 0.5); xshift[1] = xrand * (rand2D(vec2(integer_x+1.5, integer_y)) -0.5); xshift[2] = xrand * (rand2D(vec2(integer_x+0.5, integer_y+1.0))-0.5); xshift[3] = xrand * (rand2D(vec2(integer_x+1.5, integer_y+1.0))-0.5); float yshift[4]; yshift[0] = yrand * (rand2D(vec2(integer_x, integer_y +0.5)) - 0.5); yshift[1] = yrand * (rand2D(vec2(integer_x+1.0, integer_y+0.5)) -0.5); yshift[2] = yrand * (rand2D(vec2(integer_x, integer_y+1.5))-0.5); yshift[3] = yrand * (rand2D(vec2(integer_x+1.5, integer_y+1.5))-0.5); float dist[4]; dist[0] = sqrt((fractional_x + xshift[0]) * (fractional_x + xshift[0]) + (fractional_y + yshift[0]) * (fractional_y + yshift[0])); dist[1] = sqrt((1.0 -fractional_x + xshift[1]) * (1.0-fractional_x+xshift[1]) + (fractional_y +yshift[1]) * (fractional_y+yshift[1])); dist[2] = sqrt((fractional_x + xshift[2]) * (fractional_x + xshift[2]) + (1.0-fractional_y +yshift[2]) * (1.0-fractional_y + yshift[2])); dist[3] = sqrt((1.0-fractional_x + xshift[3]) * (1.0-fractional_x + xshift[3]) + (1.0-fractional_y +yshift[3]) * (1.0-fractional_y + yshift[3])); int i, i_min; float dist_min = 100.0; for (i=0; i<4;i++) { if (dist[i] < dist_min) { dist_min = dist[i]; i_min = i; } } return val[i_min]; //return val[0]; } float VoronoiNoise2D(in vec2 coord, in float wavelength, in float xrand, in float yrand) { return voronoiNoise2D(coord.x/wavelength, coord.y/wavelength, xrand, yrand); } float slopeLines2D(in float x, in float y, in float sx, in float sy, in float steepness) { float integer_x = x - fract(x); float fractional_x = x - integer_x; float integer_y = y - fract(y); float fractional_y = y - integer_y; vec2 O = vec2 (0.2 + 0.6* rand2D(vec2 (integer_x, integer_y+1)), 0.3 + 0.4* rand2D(vec2 (integer_x+1, integer_y))); vec2 S = vec2 (sx, sy); vec2 P = vec2 (-sy, sx); vec2 X = vec2 (fractional_x, fractional_y); float radius = 0.0 + 0.3 * rand2D(vec2 (integer_x, integer_y)); float b = (X.y - O.y + O.x * S.y/S.x - X.x * S.y/S.x) / (P.y - P.x * S.y/S.x); float a = (X.x - O.x - b*P.x)/S.x; return (1.0 - smoothstep(0.7 * (1.0-steepness), 1.2* (1.0 - steepness), 0.6* abs(a))) * (1.0 - smoothstep(0.0, 1.0 * radius,abs(b))); } float slopeLines2D(in vec2 coord, in vec2 gradDir, in float wavelength, in float steepness) { return slopeLines2D(coord.x/wavelength, coord.y/wavelength, gradDir.x, gradDir.y, steepness); }