// This shader is mostly an adaptation of the shader found at // http://www.bonzaisoftware.com/water_tut.html and its glsl conversion // available at http://forum.bonzaisoftware.com/viewthread.php?tid=10 // © Michael Horsch - 2005 // Major update and revisions - 2011-10-07 // © Emilian Huminiuc and Vivian Meazza #version 120 uniform sampler2D water_normalmap; uniform sampler2D water_reflection; uniform sampler2D water_dudvmap; uniform sampler2D water_reflection_grey; uniform sampler2D sea_foam; uniform sampler2D perlin_normalmap; uniform sampler3D Noise; uniform float saturation, Overcast, WindE, WindN; uniform float CloudCover0, CloudCover1, CloudCover2, CloudCover3, CloudCover4; uniform float osg_SimulationTime; uniform int Status; varying vec4 waterTex1; //moving texcoords varying vec4 waterTex2; //moving texcoords varying vec4 waterTex4; //viewts //varying vec4 ecPosition; varying vec3 viewerdir; varying vec3 lightdir; varying vec3 normal; uniform float WaveFreq ; uniform float WaveAmp ; uniform float WaveSharp ; uniform float WaveAngle ; uniform float WaveFactor ; uniform float WaveDAngle ; ////fog "include" ///// uniform int fogType; vec3 fog_Func(vec3 color, int type); ////////////////////// /////// functions ///////// void rotationmatrix(in float angle, out mat4 rotmat) { rotmat = mat4( cos( angle ), -sin( angle ), 0.0, 0.0, sin( angle ), cos( angle ), 0.0, 0.0, 0.0 , 0.0 , 1.0, 0.0, 0.0 , 0.0 , 0.0, 1.0 ); } // wave functions /////////////////////// struct Wave { float freq; // 2*PI / wavelength float amp; // amplitude float phase; // speed * 2*PI / wavelength vec2 dir; }; Wave wave0 = Wave(1.0, 1.0, 0.5, vec2(0.97, 0.25)); Wave wave1 = Wave(2.0, 0.5, 1.3, vec2(0.97, -0.25)); Wave wave2 = Wave(1.0, 1.0, 0.6, vec2(0.95, -0.3)); Wave wave3 = Wave(2.0, 0.5, 1.4, vec2(0.99, 0.1)); float evaluateWave(in Wave w, vec2 pos, float t) { return w.amp * sin( dot(w.dir, pos) * w.freq + t * w.phase); } // derivative of wave function float evaluateWaveDeriv(Wave w, vec2 pos, float t) { return w.freq * w.amp * cos( dot(w.dir, pos)*w.freq + t*w.phase); } // sharp wave functions float evaluateWaveSharp(Wave w, vec2 pos, float t, float k) { return w.amp * pow(sin( dot(w.dir, pos)*w.freq + t*w.phase)* 0.5 + 0.5 , k); } float evaluateWaveDerivSharp(Wave w, vec2 pos, float t, float k) { return k*w.freq*w.amp * pow(sin( dot(w.dir, pos)*w.freq + t*w.phase)* 0.5 + 0.5 , k - 1) * cos( dot(w.dir, pos)*w.freq + t*w.phase); } void sumWaves(float angle, float dangle, float windScale, float factor, out float ddx, float ddy) { mat4 RotationMatrix; float deriv; vec4 P = waterTex1 * 1024; rotationmatrix(radians(angle + dangle * windScale + 0.6 * sin(P.x * factor)), RotationMatrix); P *= RotationMatrix; P.y += evaluateWave(wave0, P.xz, osg_SimulationTime); deriv = evaluateWaveDeriv(wave0, P.xz, osg_SimulationTime ); ddx = deriv * wave0.dir.x; ddy = deriv * wave0.dir.y; P.y += evaluateWave(wave1, P.xz, osg_SimulationTime); deriv = evaluateWaveDeriv(wave1, P.xz, osg_SimulationTime); ddx += deriv * wave1.dir.x; ddy += deriv * wave1.dir.y; P.y += evaluateWaveSharp(wave2, P.xz, osg_SimulationTime, WaveSharp); deriv = evaluateWaveDerivSharp(wave2, P.xz, osg_SimulationTime, WaveSharp); ddx += deriv * wave2.dir.x; ddy += deriv * wave2.dir.y; P.y += evaluateWaveSharp(wave3, P.xz, osg_SimulationTime, WaveSharp); deriv = evaluateWaveDerivSharp(wave3, P.xz, osg_SimulationTime, WaveSharp); ddx += deriv * wave3.dir.x; ddy += deriv * wave3.dir.y; } void main(void) { const vec4 sca = vec4(0.005, 0.005, 0.005, 0.005); const vec4 sca2 = vec4(0.02, 0.02, 0.02, 0.02); const vec4 tscale = vec4(0.25, 0.25, 0.25, 0.25); mat4 RotationMatrix; // compute direction to viewer vec3 E = normalize(viewerdir); // compute direction to light source vec3 L = normalize(lightdir); // half vector vec3 H = normalize(L + E); vec3 Normal = normalize(normal); const float water_shininess = 240.0; // approximate cloud cover float cover = 0.0; //bool Status = true; float windEffect = sqrt(pow(abs(WindE),2)+pow(abs(WindN),2)) * 0.6; //wind speed in kt float windScale = 15.0/(3.0 + windEffect); //wave scale float windEffect_low = 0.3 + 0.7 * smoothstep(0.0, 5.0, windEffect); //low windspeed wave filter float waveRoughness = 0.01 + smoothstep(0.0, 40.0, windEffect); //wave roughness filter float mixFactor = 0.2 + 0.02 * smoothstep(0.0, 50.0, windEffect); //mixFactor = 0.2; mixFactor = clamp(mixFactor, 0.3, 0.8); // sine waves //float WaveFreq =1.0; //float WaveAmp = 1000.0; //float WaveSharp = 10.0; float angle = 0.0; wave0.freq = WaveFreq ; wave0.amp = WaveAmp; wave0.dir = vec2(cos(radians(angle)), sin(radians(angle))); angle -= 45; wave1.freq = WaveFreq * 2.0 ; wave1.amp = WaveAmp * 1.25; wave1.dir = vec2(cos(radians(angle)), sin(radians(angle))); angle += 30; wave2.freq = WaveFreq * 3.5; wave2.amp = WaveAmp * 0.75; wave2.dir = vec2(cos(radians(angle)), sin(radians(angle))); angle -= 50; wave3.freq = WaveFreq * 3.0 ; wave3.amp = WaveAmp * 0.75; wave3.dir = vec2(cos(radians(angle)), sin(radians(angle))); // sum waves float ddx = 0.0, ddy = 0.0; sumWaves(WaveAngle, -1.5, windScale, WaveFactor, ddx, ddy); float ddx1 = 0.0, ddy1 = 0.0; sumWaves(WaveAngle, 1.5, windScale, WaveFactor, ddx1, ddy1); //reset the waves angle = 0.0; float waveamp = WaveAmp * 0.75; wave0.freq = WaveFreq ; wave0.amp = waveamp; wave0.dir = vec2(cos(radians(angle)), sin(radians(angle))); angle -= 20; wave1.freq = WaveFreq * 2.0 ; wave1.amp = waveamp * 1.25; wave1.dir = vec2(cos(radians(angle)), sin(radians(angle))); angle += 35; wave2.freq = WaveFreq * 3.5; wave2.amp = waveamp * 0.75; wave2.dir = vec2(cos(radians(angle)), sin(radians(angle))); angle -= 45; wave3.freq = WaveFreq * 3.0 ; wave3.amp = waveamp * 0.75; wave3.dir = vec2(cos(radians(angle)), sin(radians(angle))); float ddx2 = 0.0, ddy2 = 0.0; sumWaves(WaveAngle + WaveDAngle, -1.5, windScale, WaveFactor, ddx2, ddy2); float ddx3 = 0.0, ddy3 = 0.0; sumWaves(WaveAngle + WaveDAngle, 1.5, windScale, WaveFactor, ddx3, ddy3); // end sine stuff if (Status == 1){ cover = min(min(min(min(CloudCover0, CloudCover1),CloudCover2),CloudCover3),CloudCover4); } else { // hack to allow for Overcast not to be set by Local Weather if (Overcast == 0){ cover = 5; } else { cover = Overcast * 5; } } vec4 viewt = normalize(waterTex4); vec4 disdis = texture2D(water_dudvmap, vec2(waterTex2 * tscale)* windScale) * 2.0 - 1.0; //vec4 dist = texture2D(water_dudvmap, vec2(waterTex1 + disdis*sca2)* windScale) * 2.0 - 1.0; //dist *= (0.6 + 0.5 * smoothstep(0.0, 15.0, windEffect)); //vec4 fdist = normalize(dist); //fdist = -fdist; //dds fix //fdist *= sca; //normalmaps vec4 nmap = texture2D(water_normalmap, vec2(waterTex1 + disdis * sca2) * windScale) * 2.0 - 1.0; vec4 nmap1 = texture2D(perlin_normalmap, vec2(waterTex1 + disdis * sca2) * windScale) * 2.0 - 1.0; rotationmatrix(radians(3.0 * sin(osg_SimulationTime * 0.0075)), RotationMatrix); nmap += texture2D(water_normalmap, vec2(waterTex2 * RotationMatrix * tscale) * windScale) * 2.0 - 1.0; nmap1 += texture2D(perlin_normalmap, vec2(waterTex2 * RotationMatrix * tscale) * windScale) * 2.0 - 1.0; nmap *= windEffect_low; nmap1 *= windEffect_low; // mix water and noise, modulated by factor vec4 vNorm = normalize(mix(nmap, nmap1, mixFactor) * waveRoughness); vNorm.r += ddx + ddx1 + ddx2 + ddx3; vNorm = -vNorm; //dds fix //load reflection vec4 tmp = vec4(lightdir, 0.0); vec4 refTex = texture2D(water_reflection, vec2(tmp)) ; vec4 refTexGrey = texture2D(water_reflection_grey, vec2(tmp)) ; vec4 refl ; // cover = 0; if(cover >= 1.5){ refl= normalize(refTex); } else { refl = normalize(refTexGrey); refl.r *= (0.75 + 0.15 * cover); refl.g *= (0.80 + 0.15 * cover); refl.b *= (0.875 + 0.125 * cover); refl.a *= 1.0; } vec3 N0 = vec3(texture2D(water_normalmap, vec2(waterTex1 + disdis * sca2) * windScale) * 2.0 - 1.0); vec3 N1 = vec3(texture2D(perlin_normalmap, vec2(waterTex1 + disdis * sca) * windScale) * 2.0 - 1.0); N0 += vec3(texture2D(water_normalmap, vec2(waterTex1 * tscale) * windScale) * 2.0 - 1.0); N1 += vec3(texture2D(perlin_normalmap, vec2(waterTex2 * tscale) * windScale) * 2.0 - 1.0); rotationmatrix(radians(2.0 * sin(osg_SimulationTime * 0.005)), RotationMatrix); N0 += vec3(texture2D(water_normalmap, vec2(waterTex2 * RotationMatrix * (tscale + sca2)) * windScale) * 2.0 - 1.0); N1 += vec3(texture2D(perlin_normalmap, vec2(waterTex2 * RotationMatrix * (tscale + sca2)) * windScale) * 2.0 - 1.0); rotationmatrix(radians(-4.0 * sin(osg_SimulationTime * 0.003)), RotationMatrix); N0 += vec3(texture2D(water_normalmap, vec2(waterTex1 * RotationMatrix + disdis * sca2) * windScale) * 2.0 - 1.0); N1 += vec3(texture2D(perlin_normalmap, vec2(waterTex1 * RotationMatrix + disdis * sca) * windScale) * 2.0 - 1.0); N0 *= windEffect_low; N1 *= windEffect_low; N0.r += (ddx + ddx1 + ddx2 + ddx3); N0.g += (ddy + ddy1 + ddy2 + ddy3); vec3 N = normalize(mix(Normal + N0, Normal + N1, mixFactor) * waveRoughness); N = -N; //dds fix // specular vec3 specular_color = vec3(gl_LightSource[0].diffuse) * pow(max(0.0, dot(N, H)), water_shininess) * 6.0; vec4 specular = vec4(specular_color, 0.5); specular = specular * saturation * 0.3 ; //calculate fresnel vec4 invfres = vec4( dot(vNorm, viewt) ); vec4 fres = vec4(1.0) + invfres; refl *= fres; //calculate the fog factor // float fogFactor; // float fogCoord = ecPosition.z; // const float LOG2 = 1.442695; // fogFactor = exp2(-gl_Fog.density * gl_Fog.density * fogCoord * fogCoord * LOG2); // // if(gl_Fog.density == 1.0) // fogFactor=1.0; //calculate final colour vec4 ambient_light = gl_LightSource[0].diffuse; vec4 finalColor; if(cover >= 1.5){ finalColor = refl + specular; } else { finalColor = refl; } //add foam float foamSlope = 0.10 + 0.1 * windScale; //float waveSlope = mix(N0.g, N1.g, 0.25); vec4 foam_texel = texture2D(sea_foam, vec2(waterTex2 * tscale) * 25.0); float waveSlope = N.g; if (windEffect >= 8.0) if (waveSlope >= foamSlope){ finalColor = mix(finalColor, max(finalColor, finalColor + foam_texel), smoothstep(0.01, 0.50, N.g)); } // float deltaN0 = 1.0 - N0.g; //float deltaN1 = 1.0 - N1.g; //if (windEffect >= 8.0){ // if (N0.g >= foamSlope){ // if (deltaN0 > 0.8){ // finalColor = mix(finalColor, max(finalColor, finalColor + foam_texel), smoothstep(0.01, 0.50, N0.g)); // } else { // finalColor = mix(finalColor, max(finalColor, finalColor + foam_texel), smoothstep(0.15, 0.25, deltaN0)); // } // } // if (N1.g >= foamSlope){ // if (deltaN1 > 0.85){ // finalColor = mix(finalColor, max(finalColor, finalColor + foam_texel), smoothstep(0.01, 0.13, N1.g)); // } else { // finalColor = mix(finalColor, max(finalColor, finalColor + foam_texel), smoothstep(0.01, 0.20, deltaN1)); // } // } //} finalColor *= ambient_light; //gl_FragColor = mix(gl_Fog.color, finalColor, fogFactor); finalColor.rgb = fog_Func(finalColor.rgb, fogType); gl_FragColor = finalColor; }