
FlightGear READMEs

FlightGear Community

September 25, 2018

Contents

1 Introduction 1

2 3DClouds 1

3 Add-ons 7

4 Airspeed-indicator 28

5 Checklists 31

6 Commands 32

7 Conditions 40

8 Digitalfilters 46

9 Effects 57

10 Electrical 67

11 Embedded-resources 71

12 Fgjs 83

13 Flightrecorder 84

14 Gui 92

1

15 Hud 109

16 Introduction 119

17 IO 122

18 Joystick 125

19 JSBsim 125

20 Jsclient 127

21 Layout 127

22 Logging 130

23 Materials 132

24 Mingw 138

25 Minipanel 142

26 Multiplayer 143

27 Multiscreen 146

28 Osgtext 154

29 Properties 157

30 Protocol 164

31 Scenery 170

32 Sound 185

33 Submodels 188

34 Systems 193

35 Tutorials 196

2

36 Wildfire 209

37 Xmlhud 212

38 Xmlpanel 223

39 Xmlparticles 239

40 Xmlsound 246

41 Xmlsyntax 254

42 Yasim 259

1 Introduction

This document is autogenerated from the various plain text README files
found in the Docs/ directory of your FlightGear installation, presented in
PDF format for ease of use. These are targetted at those delving into the
internals of FG, or developing aircraft.

For help running or using FlightGear, please see Docs/getstart.pdf.

2 3DClouds

Configuring 3D Clouds

=====================

3D clouds can be created in two ways:

- By placing individual clouds using a command (e.g. from Nasal)

- Using the global weather function, which reads cloud definition from

an XML file.

Placing Clouds Individually

===========================

Clouds are created using the "add-cloud" command, passing a property

node defining the location and characterstics of the cloud.

3

Location is defined by the following properties:

<layer> - The cloud layer number to add the cloud to. (default 0)

<index> - A unique identifier for the cloud in the layer. If a cloud

already exists with this index, the new cloud will not be

created, and 0 is returned.

<lon-deg> - Longitude to place the cloud, in degrees (default 0)

<lat-deg> - Latitude t place the cloud, in degrees (default 0)

<alt-ft> - Altitude to place the cloud, relative to the layer (!) in ft

(default 0)

<x-offset-m> - Offset in m from the lon-deg. +ve is south (default 0)

<y-offset-m> - Offset in m from the lat-deg. +ve is east (default 0)

The cloud itself is built up of a number of "sprites" - simple 2D textures

that are always rotated to be facing the viewer. These sprites are handled

by a OpenGL Shader - a small program that is run on your graphics card.

The cloud is defined by the following properties:

<min-cloud-width-m> - minimum width of the cloud in meters (default 500)

<max-cloud-width-m> - maximum width of the cloud (default min-cloud-width-m*1.5)

<min-cloud-height-m> - minimum height of the cloud (default 400)

<max-cloud-height-m> - maximum height of the cloud (default min-cloud-height-m*1.5)

<texture> - texture file of sprites to use (default cl_cumulus.png)

<num-textures-x> - number of cloud textures defined horizontally in the

texture file (default 4)

<num-textures-y> - number of cloud textures defined vertically in the

texture file (default 4)

<height-map-texture> - whether to choose the vertical texture index based on

sprite height within the clouds (default false)

<num-sprites> - Number of sprite to generate for the cloud (default 20)

<min-sprite-width-m> - minimum width of the sprites used to create the cloud

(default 200)

<max-sprite-width-m> - maximum width of the sprites used to create the cloud

(default min-sprite-width-m*1.5)

<min-sprite-height-m> - minimum height of the spites used to create the cloud

(default 150)

<max-sprite-height-m> - maximum height of the sprites used to create the cloud

(default min-sprite-height-m*1.5)

<z-scale> - vertical scaling factor to apply to to the sprite after

4

billboarding. A small value would create a sprite that

looks squashed when viewed from the side. (default 1.0)

<min-bottom-lighting-factor> - See Shading below (default 1.0)

<max-bottom-lighting-factor> - See Shading below (default min-...-factor + 0.1)

<min-middle-lighting-factor> - See Shading below (default 1.0)

<max-middle-lighting-factor> - See Shading below (default min-...-factor + 0.1)

<min-top-lighting-factor> - See Shading below (default 1.0)

<max-top-lighting-factor> - See Shading below (default min-...-factor + 0.1)

<min-shade-lighting-factor> - See Shading below (default 0.5)

<max-shade-lighting-factor> - See Shading below (default min-...-factor + 0.1)

Shading

the [min|max]-...-lighting-factor properties allow you to define diffuse lighting

multipliers to the bottom, middle, top, sunny and shaded parts of the cloud. In

each case, individual clouds will have a random multiplier between the min and

max values used to allow for some variation between individual clouds.

The top, middle and bottom lighting factors are applied based on the pixels vertical

positon in the cloud. A linear interpolation is used either between top/middle (if

the pixel is above the middle of the cloud) or middle/bottom (if the pixel is below

the middle of the cloud).

The top factor is also applied to _all_ pixels on the sunny side of the cloud. The

shade factor is applied based on the pixel position away from the sun, linearly

interpolated from top to shade. E.g this is not a straight linear interpolation

from top to shade across the entire cloud.

The final lighting factor is determined by the minimum of the vertical factor and

the sunny/shade factor. Note that this is applied to the individual pixels, not

sprites.

Textures

The texture to use for the sprites is defined in the <texture> tag.

To allow some variation, you can create a texture file containing multiple

sprites in a grid, and define the <num-textures-x/y> tags. The code

decides which texture to use for a given sprite : randomly in the x-direction

5

and based on the altitude of the sprite within the cloud in the y-direction

if <height-map-texture> is set. Therefore, you should put sprite textures

you want to use for the bottom of your cloud at the bottom of the texture

file, and those you want to use for the top of the cloud at the top of the

texture file.

For example, the following Nasal snippet will create a cloud immediately above the

aircraft at an altitude of 1000 ft above /environment/clouds/layer[0]/elevation-ft :

var p = props.Node.new({ "layer" : 0,

"index": 1,

"lat-deg": getprop("/position/latitude-deg"),

"lon-deg": getprop("/position/longitude-deg"),

"alt-ft" : 1000 });

fgcommand("add-cloud", p);

Moving Individual Clouds

========================

Clouds may be moved by using the "move-cloud" command. This takes the following

property arguments.

<layer> - The cloud layer number containing the cloud to move. (default 0)

<index> - The unique identifier of the cloud to move.

<lon-deg> - Longitude to place the cloud, in degrees (default 0)

<lat-deg> - Latitude t place the cloud, in degrees (default 0)

<alt-ft> - Altitude to place the cloud, relative to the layer (!) in ft

(default 0)

<x-offset-m> - Offset in m from the lon-deg. +ve is south (default 0)

<y-offset-m> - Offset in m from the lat-deg. +ve is east (default 0)

Deleting Individual Clouds

===========================

Clouds may be deleted by using the "del-cloud" command. This takes the following

property arguments.

<layer> - The cloud layer number containing the cloud to delete. (default 0)

<index> - The unique identifier of the cloud to delete.

6

Global 3D Clouds

================

The global weather system uses sets of clouds defined in

FG_ROOT/Environment/cloudlayers.xml

The file has 3 distinct sections: layers, cloud boxes and clouds,

described below.

Notes for those editing clouds:

- All distances are in m. Note that this is in contrast to cloud heights

in METAR etc. which are in ft.

- The XML file is loaded into the properties system, so you can modify

the settings in-sim, and see the results by re-generating the cloud

layer. The simplest way to do this is to disable METAR, and control

the cloud layers using the Clouds dialog, and in particular the coverage.

- Texture files are in .png format, and have a transparent background.

To make the textures easier to edit, create a black layer behind them,

so there is some contrast between the background and the white cloud.

Having a grid based on the texture dimensions also helps, so you don’t

bleed over the edges, which causes ugly sharp horizontal and vertical

lines.

Clouds

======

The cloud definitions are as described above for placing individual

clouds, but no position information is used (this is defined in the

cloud box and layers below).

Cloud Boxes

===========

The <boxes> section contains definitions of groups of cloads,for example

an entire towering CB mass.

The <boxes> section contains a number of named types, which are referenced

by the <layers> section, described below. Therefore, the names used are

completely user-defined.

7

Each of the named section consists of one or more <box> section,

defining a particular cloud type

Each <box> section contains the following tags:

<type> - The cloud to use, defined above

<count> - The number of clouds to generate (+/- 50%)

<width> - The x and y within which these clouds should be generated

<height> - The height within which the clouds should be generated

<hdist> - The horizontal distribution of the clouds within the area.

Equates to a sum of random distributions. Defaults to 1.

1 = even distribution, 2 = distributed towards the center.

3 = very strongly distributed towards the center.

<vdist> - The vertical distribution of the clouds. As for hdist.

If the /sim/rendering/clouds3d-density is less than 1.0 (100%), then a

proportional number of clouds will be displayed.

The following example shows a stratus cloud group, which consists of 5

st-large clouds and 5 st-small clouds, distributed in a box 2000mx2000m,

and 100m high, evenly distributed.

<st>

<box>

<type>st-large</type>

<count>5</count>

<width>2000</width>

<height>100</height>

</box>

<box>

<type>st-small</type>

<count>5</count>

<width>2000</width>

<height>100</height>

</box>

</st>

Layers

8

======

The <layers> section contains definitions for a specific layer type.

The layer type is derived from the METAR/Weather settings by FG itself.

Each layer type is a named XML tag, i.e.: ns, sc, st, ac, cb, cu.

If a layer type is not defined, then a 2D layer is used instead.

The layer type contains one or more <cloud> definitions. This

defines a type of cloud box, and a weighting for that type (<count>).

For example, the following XML fragment will produce 3 "cb" cloud boxes

for every 1 "cu":

<cloud>

<name>cb</name>

<count>3</count>

</cloud>

<cloud>

<name>cu</name>

<count>1</count>

</cloud>

Clouds are randomly distributed across the sky in the x/y plane, but the

height of them is set by the weather conditions, with a random height range

applied, defined by <grid-z-rand>

3 Add-ons

-*- coding: utf-8; fill-column: 72; -*-

Add-ons in FlightGear

=====================

This document explains how add-ons work in FlightGear. The add-on

feature was first added in FlightGear 2017.3. This document describes an

evolution of the framework that appeared in FlightGear 2017.4.

9

Contents

1. Terminology

2. The addon-metadata.xml file

3. Add-ons and the Property Tree

a) Add-on metadata

b) Subtree reserved for add-on developers

4. Resources under the add-on directory

5. Persistent storage location for add-ons

6. Add-on-specific menus and dialogs

a) Add-on-specific menus

b) Add-on-specific dialogs

7. How to run code after an add-on is loaded

8. Overview of the C++ API

9. Nasal API

Introduction

fgfs can be passed the --addon=<path> option, where <path> indicates an

add-on directory. Such a directory, when used as the argument of

--addon, receives special treatment :

1) The add-on directory is added to the list of aircraft paths.

2) The add-on directory must contain a PropertyList file called

addon-metadata.xml that gives the name of the add-on, its

identifier (id), its version and possibly a few other things (see

10

details below).

3) The add-on directory may contain a PropertyList file called

addon-config.xml, in which case it will be loaded into the Property

Tree at FlightGear startup, as if it were passed to the --config

fgfs option.

4) The add-on directory must contain a Nasal file called

addon-main.nas. This file will be loaded at startup too, and its

main() function run in the namespace __addon[ADDON_ID]__, where

ADDON_ID is the add-on identifier specified in the

addon-metadata.xml file. The main() function is passed one

argument: the addons.Addon object (a Nasal ghost, see below)

corresponding to the add-on being loaded. This operation is done by

$FG_ROOT/Nasal/addons.nas at the time of this writing.

Also, the Property Tree is populated (under /addons) with information

about registered add-ons. More details will be given below.

The --addon option can be specified zero or more times; each of the

operations indicated above is carried out for every specified add-on in

the order given by the --addon options used: that’s what we call add-on

registration order, or add-on load order. In other words, add-ons are

registered and loaded in the order specified by the --addon options

used.

1. Terminology

~~~~~~~~~~~

add-on base path

Path to a directory containing all of the add-on files. This is the

path passed to the --addon fgfs option, when one wants to load the

add-on in question.

add-on identifier (id)

A string such as org.flightgear.addons.ATCChatter or

user.joe.MyGreatAddon, used to uniquely identify an add-on. The add-on

11



identifier is declared in <path>/addon-metadata.xml, where <path> is

the add-on base path.

add-on registration

When a --addon option is processed, FlightGear ensures that the add-on

identifier found in the corresponding addon-metadata.xml file isn’t

already used by an add-on from a previous --addon option on the same

command line, and stores the add-on metadata inside dedicated C++

objects. This process is called add-on registration.

add-on loading

The following sequence of actions:

a) loading an add-on’s addon-main.nas file in the namespace

__addon[ADDON_ID]__

b) calling its main() function

is performed later (see $FG_ROOT/Nasal/addons.nas) and called add-on

loading.

2. The addon-metadata.xml file

~~~~~~~~~~~~~~~~~~~~~~~~~~~

Every add-on must have in its base directory a file called

’addon-metadata.xml’. This section explains how to write this file.

Sample addon-metadata.xml file

==============================

Here is an example of an addon-metadata.xml file, for a hypothetical

add-on called âFlying Turtleâ distributed by Joe User:

<?xml version="1.0" encoding="UTF-8"?>

<PropertyList>

<meta>

<file-type type="string">FlightGear add-on metadata</file-type>

12

<format-version type="int">1</format-version>

</meta>

<addon>

<identifier type="string">user.joe.FlyingTurtle</identifier>

<name type="string">Flying Turtle</name>

<version type="string">1.0.0rc2</version>

<authors>

<author>

<name type="string">Joe User</name>

<email type="string">optional_address@example.com</email>

<url type="string">http://joe.example.com/foobar/</url>

</author>

<author>

<name type="string">Jane Maintainer</name>

<email type="string">jane@example.com</email>

<url type="string">https://jane.example.com/</url>

</author>

</authors>

<maintainers>

<maintainer>

<name type="string">Jane Maintainer</name>

<email type="string">jane@example.com</email>

<url type="string">https://jane.example.com/</url>

</maintainer>

</maintainers>

<short-description type="string">

Allow flying with new foobar powers.

</short-description>

<long-description type="string">

This add-on enables something really great involving turtles...

</long-description>

<license>

<designation type="string">

13

GNU GPL version 2 or later

</designation>

<file type="string">

COPYING

</file>

<url type="string">

https://www.gnu.org/licenses/old-licenses/gpl-2.0.en.html

</url>

</license>

<min-FG-version type="string">2017.4.0</min-FG-version>

<max-FG-version type="string">none</max-FG-version>

<urls>

<home-page type="string">

https://example.com/quux

</home-page>

<download type="string">

https://example.com/quux/download

</download>

<support type="string">

https://example.com/quux/support

</support>

<code-repository type="string">

https://example.com/quux/code-repository

</code-repository>

</urls>

<tags>

<tag type="string">first tag</tag>

<tag type="string">second tag</tag>

<tag type="string">etc.</tag>

</tags>

</addon>

</PropertyList>

14

General rules

=============

We use the terms âfieldâ or ânodeâ interchangeably here to refer to

nodes of the addon-metadata.xml PropertyList file (technically, a field

always has a value, possibly empty, therefore fields are all leaf

nodes).

Leading and trailing whitespace in each field of addon-metadata.xml is

removed. All other whitespace is a priori preserved (this could depend

on the particular field, though).

Most fields are optional. In most cases, omitting a field is the same as

leaving it empty. But don’t write empty tag fields, it is really too

ugly. ;-)

Name and id

===========

Nodes: /addon/name and /addon/identifier

The add-on name is the pretty form. It should not be overly long, but

otherwise isn’t constrained. On the other hand, the add-on identifier

(id), which serves to uniquely identify an add-on:

- must contain only ASCII letters (A-Z, a-z) and dots (’.’);

- must be in reverse DNS style (even if the domain doesn’t exist),

e.g., org.flightgear.addons.ATCChatter for an add-on distributed in

FGAddon, or user.joe.FlyingTurtle for Joe User’s âFlying Turtleâ

add-on. Of course, if Joe User owns a domain name and uses it to

distribute his add-on, he should put it here.

Authors and maintainers

=======================

Nodes: /addon/authors and /addon/maintainers

Authors are people who contributed significantly to the add-on.

Maintainers are people currently in charge of maintaining it.

15

It is possible to declare any number of authors and any number of

maintainers---the example above shows only one maintainer for shortness,

but this is not a restriction.

For each author and maintainer, you can give a name, an email address

and a URL. The name must be non-empty, but the email address and URL

need not be specified or may be left empty, which is equivalent.

Obviously, if no email address nor URL is given for any maintainer, it

is highly desirable that /addon/urls/support contains a usable URL for

contacting the add-on maintainers.

The data in children nodes of /addon/maintainers may refer either to

real persons or to more abstract entities such as mailing-lists. In case

of a real person, the corresponding URL, if specified, is expected to be

the person’s home page. On the other hand, if a declared âmaintainerâ is

a mailing-list, a good use for the ’url’ field is to indicate the

address of a web page from which people can subscribe to the

mailing-list.

Short and long descriptions

===========================

Nodes: /addon/short-description and /addon/long-description

The short description should fit on one line (try not to exceed, say, 78

characters), and in general consist of only one sentence.

The long description is essentially free-form, but only break lines when

you do want a line break at this point. In other words, don’t wrap lines

manually in the XML file: this will be automatically done by the

software displaying the add-on description, according to the particular

line width it uses (which can depend on the user’s screen or

configuration, etc.). A single \n inside a paragraph (see footnote [1])

means a hard line break. Two \n in a row (i.e., a blank line) should be

used to separate paragraphs. Example:

This is a paragraph.

This is the second line of the same paragraph. It can be very, very, very long and contain several sentences.

This is a different paragraph. Again, don’t break lines (i.e., don’t press Enter) unless a particular formatting reason makes it necessary. For instance, it is okay to break lines in order to present a list of items, but not for line wrapping.

16

Licensing terms

===============

Nodes: /addon/license/designation

/addon/license/file

/addon/license/url

The /add-on/license/designation node should describe the add-on

licensing terms in a short but accurate way, if possible. If this is not

practically doable, use the value âCustomâ. If the add-on is distributed

under several licenses, use the value âMultipleâ. In all cases, make

sure the licensing terms are clearly specified in other files of the

add-on (typically, at least README.txt or COPYING). Values for

/add-on/license/designation could be âGNU GPL version 2 or laterâ, âCC0

1.0 Universalâ, â3-clause BSDâ, etc.

In most cases, the add-on should contain a file containing the full

license text. Use the /add-on/license/file node to point to this file:

it should contain a file path that is relative to the add-on base

directory. This path must use slash separators (’/’), even if you use

Windows.

The /add-on/license/url node should contain a single URL if there is an

official, stable URL for the license under which the add-on is

distributed. The term âofficialâ here is to be interpreted in the

context of the particular license. For instance, for a GNU license

(GPL2, LGPL2.1, etc.), the URL domain must be gnu.org; for a CC license

(CC0 1.0 Universal, CC-BY-SA 4.0...), it must be creativecommons.org,

etc.

Minimum and maximum FlightGear versions

=======================================

Nodes: /addon/min-FG-version and /addon/max-FG-version

These two nodes are optional and may be omitted unless the add-on is

known not to work with particular FlightGear versions.

/addon/min-FG-version defaults to 2017.4.0 and /addon/max-FG-version to

the special value ’none’ (only allowed for /addon/max-FG-version). Apart

17

from this special case, every non-empty value present in one of these

two fields must be a proper FlightGear version number usable with

simgear::strutils::compare_versions(), for instance ’2017.4.1’.

Add-on version

==============

Node: /addon/version

The /addon/version node gives the version of the add-on and must obey a

strict syntax[2], which is a subset of what is described in PEP 440:

https://www.python.org/dev/peps/pep-0440/

Valid examples are, in increasing sort order:

1.2.5.dev1 # first development release of 1.2.5

1.2.5.dev4 # fourth development release of 1.2.5

1.2.5

1.2.9

1.2.10a1.dev2 # second dev release of the first alpha release of 1.2.10

1.2.10a1 # first alpha release of 1.2.10

1.2.10b5 # fifth beta release of 1.2.10

1.2.10rc12 # twelfth release candidate for 1.2.10

1.2.10

1.3.0

2017.4.12a2

2017.4.12b1

2017.4.12rc1

2017.4.12

.devN suffixes can of course be used on beta and release candidates too,

just as with the 1.2.10a1.dev2 example given above for an alpha release.

Note that a development release always sorts before the corresponding

non-development release (e.g., 2017.2.1b5.dev4 comes before 2017.2.1b5).

Other fields

============

The other nodes of ’addon-metadata.xml’ should be self-explanatory. :-)

18

3. Add-ons and the Property Tree

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

a) Add-on metadata

^^^^^^^^^^^^^^^

The most important metadata for each registered add-on is made

accessible in the Property Tree under /addons/by-id/ADDON_ID and the

property /addons/by-id/ADDON_ID/loaded can be checked or listened to, in

order to determine when a particular add-on is loaded. There is also a

Nasal interface to access add-on metadata in a convenient way (see

below).

More precisely, when an add-on is registered, its name, id, base path,

version (converted to a string), loaded status (boolean) and load

sequence number (int) become available in the Property Tree as

/addons/by-id/ADDON_ID/{name,id,path,version,loaded,load-seq-num}. The

loaded status is initially false, and set to true when the add-on

loading phase is complete.

There are also /addons/addon[i]/path nodes where i is 0 for the first

registered add-on, 1 for the second one, etc.

b) Subtree reserved for add-on developers

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

For each add-on, the subtree of the global Property Tree starting at

/addons/by-id/ADDON_ID/addon-devel is reserved for the specific needs of

the add-on, where ADDON_ID stands for the add-on identifier. For

instance, developers of the add-on whose identifier is

user.joe.FlyingTurtle can store whatever they want under

/addons/by-id/user.joe.FlyingTurtle/addon-devel with the assurance that

doing this won’t clash with properties used by the add-on framework.

Example:

/addons/by-id/user.joe.FlyingTurtle/addon-devel/some/property and

19



/addons/by-id/user.joe.FlyingTurtle/addon-devel/other/property

could be two properties used for the specific needs of the

add-on whose identifier is user.joe.FlyingTurtle.

Add-on developers should *not* use other places in the /addons subtree

of the Property Tree for their custom properties.

4. Resources under the add-on directory

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Many functions in FlightGear use files that are located using the

SimGear ResourceManager class. This class allows one to point to files

by relative path in aircraft source files and other places. The resource

manager queries a set of providers, some of which look inside aircraft

paths (starting with the current aircraft), others inside scenery paths,

others under $FG_ROOT, etc. The first file that matches the specified

resource path is used.

One of these providers only handles resource paths with a very specific

syntax, which is:

[addon=ADDON_ID]path/relative/to/the/addon/directory

(for instance, [addon=user.joe.FlyingTurtle]images/eject-button.png)

When you use such a syntax in a place that is expected to contain a

resource path, it will only find the specified file under the directory

of the add-on whose identifier is ADDON_ID. This allows one to

specifically target a particular file inside a particular add-on,

instead of crossing fingers and hoping that the specified resource won’t

be found by coincidence in another place such as an aircraft directory,

a scenery directory or inside $FG_ROOT (such mistakes can easily happen

when unrelated places use files with rather generic names, such as

button.png, system.xml, etc.).

The [addon=ADDON_ID]relative/path syntax is useful where resources are

specified inside non-Nasal files (e.g., in property-rule configuration

files, which use the XML format). For the particular case of Nasal code,

20

there is a better way that is explained below (see âNasal APIâ): the

resourcePath() method of addons.Addon objects returns a string like

"[addon=ADDON_ID]relative/path" when you pass it the string

"relative/path". This is a good thing to use, because then your Nasal

code doesn’t need to know about the particular syntax for

add-on-specific resources and, more interestingly, doesn’t have to

hardcode the add-on identifier every time you need to access a resource

inside the add-on directory.

5. Persistent storage location for add-ons

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

If an add-on needs to store data that persists across FlightGear

sessions, it can use a specific directory tree whose path is obtained

with addon.storagePath, where ’addon’ is an addons.Addon instance. This

corresponds to $FG_HOME/Export/Addons/ADDON_ID, however it is simpler

and better to use addon.storagePath instead of hardcoding and manually

assembling this path in each add-on. Since the directory is likely not

to exist until the add-on creates it, the recommended usage pattern is

the following:

1) Create the add-on-specific storage directory if it doesn’t already

exist, and optionally get its path at the same time:

storageDir = addon.createStorageDir();

Typically, you’ll run this in the add-on main() function (at least,

early enough) if your add-on uses the storage directory. Note that

there is no need to check yourself whether the directory already

exists: addon.createStorageDir() does that for you.

2) At any time, you can get a path to the add-on-specific storage

directory with:

storageDir = addon.storagePath

Accessing addon.storagePath doesn’t check for the existence nor the

type of $FG_HOME/Export/Addons/ADDON_ID, thus it is a bit faster

than addon.createStorageDir(). Use addon.storagePath whenever you

21



know that the directory has already been created.

The features described in this section were added in FlightGear 2018.2.

6. Add-on-specific menus and dialogs

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

a) Add-on-specific menus

^^^^^^^^^^^^^^^^^^^^^

Add-ons can easily provide their own menus. If an add-on is loaded that

has a file named ’addon-menubar-items.xml’ in its base directory, the

menus described in this file are added to the FlightGear menu bar. The

file should look like this:

<?xml version="1.0" encoding="UTF-8"?>

<PropertyList>

<meta>

<file-type type="string">FlightGear add-on menu bar items</file-type>

<format-version type="int">1</format-version>

</meta>

<menubar-items>

<menu>

...

</menu>

...

<menu>

...

</menu>

</menubar-items>

</PropertyList>

In this file, each <menu> element must be a valid menu description for

the FlightGear menu system (the FlightGear standard menubar in

$FG_ROOT/gui/menubar.xml provides good examples). Here is an example

22

that adds one menu with an entry for running some Nasal code and another

entry for opening a custom dialog (see below for add-on-specific dialogs):

<menu>

<label>My Menu</label>

<enabled type="bool">true</enabled>

<item>

<label>Run Foobar Nasal</label>

<binding>

<command>nasal</command>

<script>foobar.doBaz();</script>

</binding>

</item>

<item>

<label>My Foobar Dialog</label>

<binding>

<command>dialog-show</command>

<dialog-name>my-foobar-dialog</dialog-name>

</binding>

</item>

</menu>

This feature was added in FlightGear 2018.2.

For older versions, one can add menus via addon-config.xml, but it’s a

bit hackish because of the menu index problem.

b) Add-on-specific dialogs

^^^^^^^^^^^^^^^^^^^^^^^

As is the case for aircraft, add-ons can provide their own dialogs by

shipping the corresponding XML files in the subfolder gui/dialogs of the

add-on base directory. In other words, with a file like

<addon-base-path>/gui/dialogs/my-foobar-dialog.xml

starting with:

23

<?xml version="1.0" encoding="UTF-8"?>

<PropertyList>

<name>my-foobar-dialog</name>

...

the following <item> element inside ’addon-menubar-items.xml’ (see

above) describes a valid menu entry for showing the custom dialog.

<item>

<label>My Foobar Dialog</label>

<binding>

<command>dialog-show</command>

<dialog-name>my-foobar-dialog</dialog-name>

</binding>

</item>

See $FG_ROOT/gui/dialogs to get inspiration from FlightGear’s standard

dialogs.

This feature was added in FlightGear 2018.2.

7. How to run code after an add-on is loaded

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

You may want to set up Nasal code to be run after an add-on is loaded;

here is how to do that:

var addonId = "user.joe.FlyingTurtle";

var loadedFlagNode = props.globals.getNode("/addons")

.getChild("by-id", 0, 1)

.getChild(addonId, 0, 1)

.getChild("loaded", 0, 1);

if (loadedFlagNode.getBoolValue()) {

logprint(5, addonId ~ " is already loaded");

} else {

# Define a function to be called after the add-on is loaded

24



var id = setlistener(

loadedFlagNode,

func(changedNode, listenedNode) {

if (listenedNode.getBoolValue()) {

removelistener(id);

logprint(5, addonId ~ " is loaded");

};

},

0, 0);

}

8. Overview of the C++ API

~~~~~~~~~~~~~~~~~~~~~~~

The add-on C++ infrastructure mainly relies on the following classes:

AddonManager, Addon and AddonVersion. AddonManager is used to register

add-ons, which later leads to their loading. AddonManager relies on an

std::map<std::string, AddonRef>, where keys are add-on identifiers and

AddonRef is SGSharedPtr<Addon> at the time of this writing (changing it

to another kind of smart pointer should be a mere one-line change). This

map holds the metadata of each registered add-on. Accessor methods are

available for:

- retrieving the lists of registered and loaded add-ons;

- checking if a particular add-on has already been registered or

loaded;

- for each add-on, obtaining an Addon instance which can be queried

for its identifier, its name, identifier, version, base path, the

minimum and maximum FlightGear versions it requires, its base node

in the Property Tree, its order in the load sequence...

The AddonVersion class handles everything about add-on version numbers:

- initialization from the individual components or from a string;

- conversion to a string and output to an std::ostream;

- access to every component;

- comparisons using the standard operators: ==, !=, <, <=, >, >=.

25

Registering an add-on using AddonManager::registerAddon() ensures

uniqueness of the add-on identifier and makes its name, identifier, base

path, version (converted to a string), loaded status (boolean) and load

sequence number (int) available in the Property Tree as

/addons/by-id/ADDON_ID/{name,id,path,version,loaded,load-seq-num}.

Note: if C++ code needs to use the add-on base path, better use

AddonManager::addonBasePath() or Addon::getBasePath(), whose

return values can’t be tampered with by Nasal code.

AddonManager::registerAddon() fails with a specific exception if the

running FlightGear instance doesn’t match the min-FG-version and

max-FG-version requirements declared in the addon-metadata.xml file, as

well as in the obvious other cases (required files such as

addon-metadata.xml not found, invalid syntax in such files, etc.). The

code in options.cxx (fgOptAddon()) catches such exceptions and displays

the appropriate error message with SG_LOG() and

fatalMessageBoxThenExit().

9. Nasal API

~~~~~~~~~

The Nasal add-on API all lives in the ’addons’ namespace. It gives Nasal

code easy access to add-on metadata, for instance like this:

var myAddon = addons.getAddon("user.joe.FlyingTurtle");

print(myAddon.id);

print(myAddon.name);

print(myAddon.version.str());

foreach (var author; myAddon.authors) {

print(author.name, " ", author.email, " ", author.url);

}

foreach (var maintainer; myAddon.maintainers) {

print(maintainer.name, " ", maintainer.email, " ", maintainer.url);

}

print(myAddon.shortDescription);

26



print(myAddon.longDescription);

print(myAddon.licenseDesignation);

print(myAddon.licenseFile);

print(myAddon.licenseUrl);

print(myAddon.basePath);

print(myAddon.minFGVersionRequired);

print(myAddon.maxFGVersionRequired);

print(myAddon.homePage);

print(myAddon.downloadUrl);

print(myAddon.supportUrl);

print(myAddon.codeRepositoryUrl);

foreach (var tag; myAddon.tags) {

print(tag);

}

print(myAddon.loadSequenceNumber);

# myAddon.node is a props.Node object for /addons/by-id/ADDON_ID

print(myAddon.node.getPath());

Among other things, the Nasal add-on API allows one to get the version

of any registered add-on as a ghost and reliably compare it to another

instance of addons.AddonVersion:

var myAddon = addons.getAddon("user.joe.FlyingTurtle");

var firstVersionOK = addons.AddonVersion.new("2.12.5rc1");

# Or alternatively:

# var firstVersionOK = addons.AddonVersion.new(2, 12, 5, "rc1");

if (myAddon.version.lowerThan(firstVersionOK)) {

...

Here follows the complete Nasal add-on API, at the time of this writing.

All strings are encoded in UTF-8.

Queries to the AddonManager:

addons.isAddonRegistered(string addonId) -> bool (1 or 0)

addons.registeredAddons() -> vector<addons.Addon>

(in registration/load order)

27



addons.isAddonLoaded(string addonId) -> bool (1 or 0)

addons.loadedAddons() -> vector<addons.Addon>

(in lexicographic order)

addons.getAddon(string addonId) -> addons.Addon instance (ghost)

Read-only data members (attributes) of addons.Addon objects:

id the add-on identifier, in reverse DNS style (string)

name the add-on âpretty nameâ (string)

version the add-on version (instance of addons.AddonVersion,

ghost)

authors the add-on authors (vector of addons.Author ghosts)

maintainers the add-on maintainers (vector of addons.Maintainer

ghosts)

shortDescription the add-on short description (string)

longDescription the add-on long description (string)

licenseDesignation licensing terms: "GNU GPL version 2 or later",

"CC0 1.0 Universal", etc. (string)

licenseFile relative, slash-separated path to a file under

the add-on base directory containing the license

text (string)

licenseUrl stable, official URL for the add-on license text

(string)

basePath path to the add-on base directory (string)

storagePath path to the add-on storage directory (string)

This is $FG_HOME/Export/Addons/ADDON_ID.

[added in FlightGear 2018.2]

minFGVersionRequired minimum required FG version for the add-on (string)

maxFGVersionRequired max. required FG version... or "none" (string)

homePage add-on home page (string)

downloadUrl add-on download URL (string)

supportUrl add-on support URL (string)

codeRepositoryUrl URL pointing to the development repository of

the add-on (Git, Subversion, etc.; string)

tags vector containing the add-on tags used to help

users find add-ons (vector of strings)

node base node for the add-on in the Property Tree:

/addons/by-id/ADDON_ID (props.Node object)

loadSequenceNumber 0 for the first registered add-on, 1 for the

second one, etc. (integer)

28



Member functions (methods) of addons.Addon objects:

createStorageDir() -> string

Create the add-on storage directory if it

doesn’t already exist (that is,

$FG_HOME/Export/Addons/ADDON_ID). Return its

path as a string.

[added in FlightGear 2018.2]

resourcePath(string relPath) -> string

Return a resource path suitable for use with the

simgear::ResourceManager. ’relPath’ must be

relative to the add-on base directory, and

mustn’t start with a ’/’. You can use this

method for instance to specify an image file for

display in a Canvas widget.

In you want a full path to the resource file

(e.g., for troubleshooting), call resolvepath()

with the return value of addons.Addon.resourcePath().

Read-only data members (attributes) of addons.AddonVersion objects:

majorNumber non-negative integer

minorNumber non-negative integer

patchLevel non-negative integer

suffix string such as "", "a1", "b2.dev45", "rc12"...

Member functions (methods) of addons.AddonVersion objects:

new(string version) | construct from string

new(int major, int minor=0, int patchLevel=0, | construct

string suffix="") | from components

str() | string representation

equal(addons.AddonVersion other) |

nonEqual(addons.AddonVersion other) | compare to another

lowerThan(addons.AddonVersion other) | addons.AddonVersion

29



lowerThanOrEqual(addons.AddonVersion other) | instance

greaterThan(addons.AddonVersion other) |

greaterThanOrEqual(addons.AddonVersion other) |

Read-only data members (attributes) of addons.Author objects:

name author name (non-empty string)

email email address of the author (string)

url home page of the author (string)

Read-only data members (attributes) of addons.Maintainer objects:

name maintainer name (non-empty string)

email email address of the maintainer (string)

url home page of the maintainer, if a person; if the

maintainer is a mailing-list, the URL can point

to a web page from which people can subscribe to

that mailing-list (string)

Footnotes

---------

[1] \n represents end-of-line in string literals of languages such as C,

C++, Python and many others. We use this convention here to

represent the end-of-line character sequence in the XML data.

[2] MAJOR.MINOR.PATCHLEVEL[{a|b|rc}N1][.devN2] where MAJOR, MINOR and

PATCHLEVEL are non-negative integers, and N1 and N2 are positive

integers.

4 Airspeed-indicator

The airspeed indicator can be initialized in an instrumentation.xml file.

If not specified, the generic indicator will be loaded

from the Aircraft/Generic/generic-instrumentation.xml.

The normal setup is :

<airspeed-indicator>

30



<name>airspeed-indicator</name>

<number>0</number>

<total-pressure>/systems/pitot/total-pressure-inhg</total-pressure>

<static-pressure>/systems/static/pressure-inhg</static-pressure>

<has-overspeed-indicator>1</has-overspeed-indicator>

</airspeed-indicator>

Of course the total and static pressure may be sourced from any other

pitot and static system when defined:

<airspeed-indicator>

<name>airspeed-indicator</name>

<number>1</number>

<total-pressure>/systems/pitot[1]/total-pressure-inhg</total-pressure>

<static-pressure>/systems/static[1]/pressure-inhg</static-pressure>

<has-overspeed-indicator>0</has-overspeed-indicator>

</airspeed-indicator>

Note that the Aircraft/Generic/generic-systems.xml only initiates one

pitot and one static system, see also README.systems

<total-pressure> is optional --- defaults to "/systems/pitot/total-pressure-inhg"

For supersonic aircraft with an airspeed indicator NOT compensating for

a shockwave in front of the pitot tube (most probably the case), use:

<total-pressure>/systems/pitot/measured-total-pressure-inhg</total-pressure>

<static-pressure> is optional --- defaults to "/systems/static/pressure-inhg"

<has-overspeed-indicator> is optional --- defaults to 0 / off

The <has-overspeed-indicator> provides a property for "barber-pole" animation,

and is set to 0 / false by default ,

If enabled , these properties should be added in the aircraft -set file,

with that aircraft’s correct figures.

<airspeed-indicator>

<ias-limit>248.0</ias-limit>

<mach-limit>0.48</mach-limit>

<alt-threshold>13200.0</alt-threshold>

</airspeed-indicator>

31



The default values are for a Beechcraft B1900D .

<ias-limit> is the aircraft’s VNE (never exceed speed) in KIAS

<mach-limit> Mach speed limit.

<alt-threshold> altitude at which these figures were calculated.

Note : <mach-limit> is the mach limit at <alt-threshold>

This was designed for indicated airspeed limits, but could probably be extended

for mach limits.

To initiate additional airspeed indicators, add in your instrumentation

file (for airspeed indicator index 1):

<airspeed-indicator>

<name>airspeed-indicator</name>

<number>1</number>

<total-pressure>/systems/pitot[1]/total-pressure-inhg</total-pressure>

<static-pressure>/systems/static[1]/pressure-inhg</static-pressure>

<has-overspeed-indicator>0</has-overspeed-indicator>

</airspeed-indicator>

Note: this airspeed indicator sources its pressures from the second

pitot and static system (with index 1).

and in the aircraft -set file:

<airspeed-indicator n="1">

<serviceable type="bool" archive="y">true</serviceable>

</airspeed-indicator>

And if "has-overspeed-indicator" = 1, the appropriate limits as explained

above in the airspeed-indicator brackets.

32



5 Checklists

CHECKLISTS

You can create one or more checklist for an aircraft under /sim/checklists. These

are intended to mimic the checklists of aircraft themselves, and can be found under

the Help->Checklists menu within the simulator.

Tutorials are automatically generated from checklists on startup.

Each checklist is defined as a property tree under /sim/checklists/checklist[n]

or /sim/checklists/group[n]/checklist[m]

with the following tags

<title> - Name of the checklist

<page> - Zero or more pages for the checklist containing:

<item> - One or more checklist items containing:

<name> - name of the checklist item (e.g. Carb Heat), to appear on the left

<value> - One or more values for the checklist item, to appear on the right

hand side

<marker> - A tutorial marker (displayed when the user presses the ? button)

This can be easily placed using the Help->Display Tutorial Marker.

Contains x-m, y-m, z-m and scale tag.

<condition> - Optional standard FlightGear condition node that evaluates when the

checklist item has been completed.

<binding> - Zero or more bindings to execute the checklist item. Allows the user

to have their virtual co-pilot perform the action if they select the

">" button next to the checklist item.

The <page> tag may be omitted for single-page checklists, with the <item> tags

immediately under the <checklist[n]> node.

Checklists may be grouped under <group> nodes with a <name> tag decribing the

group. For example

<group>

<name>Emergency</name>

<checklist>...

<checklist>...

33



</group>

<group>

<name>Normal</name>

<checklist>...

<checklist>...

</group>

See the c172p for an example of this in action (Aircraft/c172p/c172-checklists.xml).

6 Commands

FlightGear Commands Mini-HOWTO

David Megginson

Started: 2002-10-25

Last revised: 2007-12-01

In FlightGear, a *command* represents an action, while a *property*

represents a state. The trigger for a command can be any kind of user

input, including the keyboard, mouse, joystick, GUI, instrument panel,

or a remote network client.

XML Command Binding Markup

--------------------------

Most of the command-binding in FlightGear is handled through static

XML configuration files such as $FG_ROOT/keyboard.xml for the

keyboard, $FG_ROOT/mice.xml for the mouse, and

$FG_ROOT/gui/menubar.xml for the menubar. In all of these files, you

reference a command through a binding. This binding advances the

first throttle by 1%, up to a maximum value of 1.0:

<binding>

<command>property-adjust</command>

<property>/controls/throttle[0]</property>

<step type="double">0.01</step>

<max>1.0</max>

34



</binding>

A command binding always consists of the XML ’binding’ element, with

one subelement named ’command’ containing the command name (such as

’property-adjust’). All other subelements are named parameters to the

command: in this case, the parameters are ’property’, ’step’, and

’max’. Here is a simpler binding, with no parameters:

<binding>

<command>exit</command>

</binding>

Bindings always appear inside some other kind of markup, depending on

the input type. For example, here is the binding from keyboard.xml

that links the ESC key to the ’exit’ command:

<key n="27">

<name>ESC</name>

<desc>Prompt and quit FlightGear.</desc>

<binding>

<command>exit</command>

</binding>

</key>

Usually, more than one binding is allowed for a single input trigger,

and bindings are executed in order from first to last. Bindings support

conditions (see README.conditions):

<key n="113">

<name>q</name>

<desc>Test</desc>

<binding>

<condition>

<property>/devices/status/mice/mouse/button[0]</property>

</condition>

<command>nasal</command>

<script>print("mouse button 0 pressed")</script>

</binding>

</key>

35



Keyboard definitions can embed bindings in tags <mod-up> (key released),

<mod-shift>, <mod-ctrl>, <mod-alt>, <mod-meta>, <mod-super>, and <mod-hyper>.

Nesting is supported. Meta, Super, and Hyper modifier tags are for local

use only, and must be supported by the operating system to work.

<key n="113">

<name>q</name>

<desc>Test</desc>

<binding>

<command>nasal</command>

<script>print("q pressed")</script>

</binding>

<mod-alt>

<binding>

<command>nasal</command>

<script>print("Alt-q pressed")</script>

</binding>

<mod-super>

<binding>

<command>nasal</command>

<script>print("Alt-Super-q pressed")</script>

</binding>

<mod-meta>

<binding>

<command>nasal</command>

<script>print("Alt-Super-Meta-q pressed")</script>

</binding>

</mod-meta>

</mod-super>

</mod-alt>

</key>

Built-in Commands

36



-----------------

As of the last revision date, the following commands were available

from inside FlightGear; the most commonly-used ones are the commands

that operate on property values (FlightGear’s internal state):

null - do nothing

script - execute a PSL script

script: the PSL script to execute

exit - prompt and quit FlightGear

pause - pause/resume the simulation

load - load properties from an XML file

file: the name of the file to load, relative to the current

directory (defaults to "fgfs.sav")

save - save properties to an XML file

file: the name of the file to save, relative to the current

directory (defaults to "fgfs.sav").

loadxml - load XML file into property tree

filename: the path & filename of the file to load

targetnode: the target node within the property tree where to store the XML

file’s structure. If targetnode isn’t defined, then the data will be stored

in a node "data" under the argument branch.

savexml - save property tree node to XML file

filename: the path & filename for the file to be saved

sourcenode: the source node within the property tree where the XML file’s

structure is assembled from. If sourcenode isn’t defined, then savexml will

try to save data stored in a node "data" in the argument branch.

panel-load - (re)load the 2D instrument panel

path: the path of the XML panel file, relative to $FG_ROOT (defaults

to the value of /sim/panel/path if specified, or

"Panels/Default/default.xml" as a last resort.

37



panel-mouse-click - pass a mouse click to the instrument panel

button: the number of the mouse button (0-based)

is-down: true if the button is down, false if it is up

x-pos: the x position of the mouse click

y-pos: the y position of the mouse click

preferences-load - (re)load preferences

path: the file name to load preferences from, relative to $FG_ROOT.

Defaults to "preferences.xml".

view-cycle - cycle to the next viewpoint

screen-capture - capture the screen to a file

tile-cache-reload - reload the scenery tile cache

lighting-update - update FlightGear’s lighting

property-toggle - swap a property value between true and false

property: the name of the property to toggle

property-assign - assign a value to a property

property[0]: the name of the property that will get the new value.

value: the new value for the property; or

property[1]: the name of the property holding the new value.

property-interpolate - assign a value to a property, interpolated

over time

property[0]: the name of the property that will get the new value

and defines the starting point of the interpolation

value: the new value for the property; or

property[1]: the name of the property holding the new value.

time: the time in seconds it takes for the transition from the

old value to the new value of property[0]; or

rate: the ammount of change per second the value of property[0] changes

to transition to the new value

property-adjust - adjust the value of a property

property: the name of the property to increment or decrement

38



step: the amount of the increment or decrement (defaults to 0)

offset: input offset distance (used for the mouse; multiplied by

factor)

factor: factor for multiplying offset distance (used for the mouse;

defaults to 1)

min: the minimum allowed value (default: no minimum)

max: the maximum allowed value (default: no maximum)

mask: ’integer’ to apply only to the left of the decimal point;

’decimal’ to apply only to the right of the decimal point; ’all’

to apply to the full value (defaults to ’all’)

wrap: true if the value should be wrapped when it passes min or max;

both min and max must be specified (defaults to false)

property-multiply - multiply the value of a property

property: the name of the property to multiply

factor: the amount by which to multiply (defaults to 1.0)

min: the minimum allowed value (default: no minimum)

max: the maximum allowed value (default: no maximum)

mask: ’integer’ to apply only to the left of the decimal point;

’decimal’ to apply only to the right of the decimal point; ’all’

to apply to the full value (defaults to ’all’)

wrap: true if the value should be wrapped when it passes min or max;

both min and max must be specified (defaults to false)

property-swap - swap the values of two properties

property[0]: the name of the first property

property[1]: the name of the second property

property-scale - set the value of a property based on an axis

property: the name of the property to set

setting: the current input setting (usually a joystick axis from -1

or 0 to 1)

offset: the offset to shift by, before applying the factor (defaults

to 0)

factor: the factor to multiply by (use negative to reverse; defaults

to 1.0)

squared: if true will square the resulting value (same as power=2)

power: the resulting value will be taken to the power of this integer

value (overrides squared; default=1)

39



property-cycle - cycle a property through a set of values

property: the name of the property to cycle

value[*]: all of the allowed values

dialog-new - create new dialog from the argument branch

dialog-show - show an XML-configured dialog box

dialog-name - the name of the dialog to show

dialog-close - close the active dialog box

dialog-update - copy values from FlightGear to the active dialog box

object-name: the name of the GUI object to update (defaults to all

objects)

dialog-apply - copy values from the active dialog box to FlightGear

object-name: the name of the GUI object to apply (defaults to all

objects)

presets-commit - commit preset values from /sim/presets

open-browser - open the web browser and show given file

path: name of the local file to be opened.

url: URL to be opened (http://..., ftp://...).

The following commands are temporary, and will soon disappear or be

renamed; do NOT rely on them:

old-save-dialog - offer to save a flight

old-load-dialog - offer to load a flight

old-reinit-dialog - offer to reinit FlightGear

old-hires-snapshot-dialog - save a hires screen shot

old-snapshot-dialog - save a screenshot

old-print-dialog - print the screen (Windows only)

40



old-pilot-offset-dialog - set pilot offsets graphically

old-hud-alpha-dialog - set the alpha value for the HUD

old-properties-dialog - display the property browser

old-preset-airport-dialog - set the default airport

old-preset-runway-dialog - set the default runway

old-preset-offset-distance-dialog - set the default offset distance

old-preset-altitude-dialog - set the default altitude

old-preset-glidescope-dialog - set the default glidescope

old-preset-airspeed-dialog - set the default airspeed

old-preset-commit-dialog - commit preset values

old-ap-add-waypoint-dialog - add a waypoint to the current route

old-ap-pop-waypoint-dialog - remove a waypoint from the current route

old-ap-clear-dialog - clear the current route

old-ap-adjust-dialog - adjust the autopilot settings

old-lat-lon-format-dialog - toggle the lat/lon format in the HUD

Adding New Commands in C++

--------------------------

To add a new command to FlightGear, you first need to create a

function that takes a single SGPropertyNode const pointer as an

argument:

void

41



do_something (SGPropertyNode * arg)

{

something();

}

Next, you need to register it with the command manager:

globals->get_commands()->addCommand("something", do_something);

Now, the command "something" is available to any mouse, joystick,

panel, or keyboard bindings. If the bindings pass any arguments, they

will be children of the SGPropertyNode passed in:

void

do_something (const SGPropertyNode * arg)

{

something(arg->getStringValue("foo"), arg->getDoubleValue("bar"));

}

That’s pretty-much it. Apologies in advance for not making things any

more complicated.

7 Conditions

CONDITIONS IN FLIGHTGEAR PROPERTY FILES

Written by David Megginson, david@megginson.com

Last modified: $Date$

This document is in the Public Domain and comes with NO WARRANTY!

1. Introduction

---------------

Some FlightGear property files contain conditions, affecting whether

bindings or animations are applied. For example, the following

42



binding will apply only when the /sim/input/selected/engine[0]

property is true:

<binding>

<condition>

<property>/sim/input/selected/engine[0]</property>

</condition>

<command>property-assign</command>

<property>/controls/starter[0]</property>

<value type="bool">true</value>

</binding>

Conditions always occur within a property subtree named "condition",

which is equivalent to an "and" condition.

2. Comparison Operators

-----------------------

The simplest condition is "property". It resolves as true when the

specified property has a boolean value of true (i.e. non-zero, etc.)

and false otherwise. Here is an example:

<condition>

<property>/sim/input/selected/engine[0]</property>

</condition>

For more sophisticated tests, you can use the "less-than",

"less-than-equals", "greater-than", "greater-than-equals", "equals",

and "not-equals" comparison operators. These all take two operands,

either two "property" operands or one "property" and one "value"

operand, and return true or false depending on the result of the

comparison. The value of the second operand is always forced to the

type of the first; for example, if you compare a string and a double,

the double will be forced to a string and lexically compared. If one

of the operands is a property, it is always assumed to be first. Here

is an example of a comparison that is true only if the RPM of the

engine is less than 1500:

<condition>

43



<less-than>

<property>/engines/engine[0]/rpm</property>

<value>1500</value>

</less-than>

</condition>

3. Boolean Operators

--------------------

Finally, there are the regular boolean operators "and", "or", and

"not". Each one surrounds a group of other conditions, and these can

be nested to arbitrary depths. Here is an example:

<condition>

<and>

<or>

<less-than>

<property>/engines/engine[0]/rpm</property>

<value>1500</value>

</less-than>

<greater-than>

<property>/engines/engine[0]/rpm</property>

<value>2500</value>

</greater-than>

</or>

<property>/engines/engine[0]/running</property>

</and>

</condition>

The top-level "condition" is an implicit "and".

4. Approximating if...else

--------------------------

There is no equivalent to the regular programming ’else’ statement in

FlightGear conditions; instead, each condition separately must take

the others into account. For example, the equivalent of

44



if (x == 3) ... else if (y == 5) ... else ...

in FlightGear conditions is

<condition>

<equals>

<property>/x</property>

<value>3</value>

</equals>

<not>

<equals>

<property>/y</property>

<value>5</value>

</equals>

</not>

</condition>

and then

<condition>

<equals>

<property>/y</property>

<value>5</value>

</equals>

<not>

<equals>

<property>/x</property>

<value>3</value>

</equals>

</not>

</condition>

and then

<condition>

<not>

<equals>

<property>/x</property>

<value>3</value>

</equals>

45



</not>

<not>

<equals>

<property>/y</property>

<value>5</value>

</equals>

</not>

</condition>

It’s verbose, but it works nicely within existing property-based

formats and provides a lot of flexiblity.

5. Syntax Summary

-----------------

Here’s a quick syntax summary:

* <and>...</and>

Contains one or more subconditions, all of which must be true.

* <condition>...</condition>

The top-level container for conditions, equivalent to an "and" group

* <equals>...</equals>

Contains two properties or a property and value, and is true if the

properties have equivalent values.

* <not-equals>...</not-equals>

Contains two properties or a property and value, and is true if the

properties have different values.

* <greater-than>...</greater-than>

Contains two properties or a property and a value, and is true if

the second property or the value has a value greater than the first

46



property.

* <greater-than-equals>...</greater-than-equals>

Contains two properties or a property and a value, and is true if

the second property or the value has a value greater than or equal

to the first property.

* <less-than>...</less-than>

Contains two properties or a property and a value, and is true if

the second property or the value has a value less than the first

property.

* <less-than-equals>...</less-than-equals>

Contains two properties or a property and a value, and is true if

the second property or the value has a value less than or equal

to the first property.

* <not>...</not>

Contains one subcondition, which must not be true.

* <not-equals>...</not-equals>

Contains two properties or a property and value, and is true if the

properties do not have equivalent values.

* <or>...</or>

Contains one or more subconditions, at least one of which must be

true.

* <property>...</property>

The name of a property to test.

* <value>...</value>

47



A literal value in a comparison.

8 Digitalfilters

COMMON SETTINGS

==============================================================================

Currently four types of digital filter implementations are supported. They all

serve an individual purpose or are individual implementations of a specific

filter type. Each filter implementation uses the same set of basic configuration

tags and individual configuration elements. These individual elements are

described in the section of the filter.

The InputValue

==============================================================================

Each filter has several driving values, like the input value itself, sometimes

a reference value, a gain value and others. Most of these input values can be

either a constant value or the value of a property. They all use the same syntax

and will be referred to as InputValue in the remaining document.

The complete XML syntax for a InputValue is

<some-element>

<condition>

<!-- any condition as defined in README.conditions -->

</condition>

<property>/some/property/name</property>

<value>0.0</value>

<scale>1.0</value>

<offset>0.0</offset>

<max>infinity</max>

<min>-infinity<min>

<abs>false</abs>

<period>

<min>-180.0</min>

<max>-180.0</max>

</period>

</some-element>

48



The enclosing element <some-element> is the element defined in each filter, like

<input>, <u_min>, <reference> etc. These elements will be described later.

The value of the input is calculated based on the given value, scale and offset as

value * scale + offset

and the result is clipped to min/max, if given.

With the full set of given elements, the InputValue will initialize the named

property to the value given, reduced by the given offset and reverse scaled by

the given scale.

Example:

<input>

<property>/controls/flight/rudder</property>

<value>0.0</value>

<scale>0.5</scale>

<offset>0.5</offset>

</input>

Will use the property /controls/flight/rudder as the input of the filter. The

property will be initialized at a value of zero and since the property usually is

in the range [-1..+1], the the value of <input> will be in the range

(-1)*0.5+0.5 to (+1)*0.5+0.5 which is [0..1].

The default values for elements not given are:

<value/> : 0.0

<scale/> : 1.0

<offset/>: 0.0

<property/> : none

<min/> : unclipped

<max/> : unclipped

<abs/> : false

Some examples:

<input>

<property>/position/altitude-ft</property>

<scale>0.3048</scale>

</input>

Gives the altitude in meters. No initialization of the property is performed, no

offset applied.

<reference>

49



<value>0.0</value>

</reference>

A constant reference of zero.

A abbreviated method of defining values exist for using a just constant or a

property. The above example may be written as

<reference>0.0</reference>

Or if the reference is defined in a property

<reference>/some/property/name</reference>

No initialization, scaling or offsetting is performed here.

The logic behind this is: If the text node in the element (the text between the

opening and closing tag) can be converted to a double value, it will be interpreted

as a double value. Otherwise the text will

be interpreted as a property name.

Examples:

<reference>3.1415927</reference> - The constant of PI (roughly)

<reference>/position/altitude-ft</reference> - The property /position/altitude-ft

<reference>3kings</reference> - The constant 3. The word kings is

ignored

<reference>food4less</reference> - The property food4less

The <property> element may also be written as <prop> for backward compatibility.

There may be one or more InputValues for the same input of a filter which may be

bound to conditions. Each InputValue will have its condition checked in the order

of InputValues given in the configuration file. The first InputValue that returns

true for its condition will be evaluated. Chaining a number of InputValues with

conditions and an unconditioned InputValue works like the C language equivalent

if( condition ) {

// compute value of first element

} else if( condition2 ) {

// compute value of second element

} else if( condition3 ) {

// compute value of third element

} else {

// compute value of last element

}

Example: Set the gain to 3.0 if /autopilot/locks/heading equals dg-heading-hold or

2.0 otherwise.

50



<digital-filter>

<gain>

<condition>

<equals>

<property>/autopilot/locks/heading</property>

<value>dg-heading-hold</value>

</equals>

</condition>

<value>3.0</value>

<gain>

<!-- Hint: omit a condition here as a fallthru else condition -->

</gain>

<value>2.0</value>

<gain>

<digital-filter>

If the element <abs> is used and set to the value "true", only the absolute

value of the input (the positive part) is used for further computations. The

abs function is applied after all other computations are completed.

OutputValue

==============================================================================

Each filter drives one to many output properties. No scaling or offsetting is

implemented for the output value, these should be done in the filter itself.

The output properties are defined in the <output/> element by adding <property/>

elements within the <output/> element. For just a single output property, the

<property/> element may be ommited. For backward compatibility, <property/> may

be replaced by <prop/>. Non-existing properties will be created with type double.

Example: (Multiple output properties)

<output>

<property>/some/output/property</property>

<property>/some/other/output/property</property>

<property>/and/another/output/property</property>

</output>

Example: a single output property

<output>/just/a/single/property</output>

Other Common Settings

51



==============================================================================

<name> String The name of the filter. Used for debug purpose.

Example:

<name>pressure rate filter</name>

<debug> Boolean If true, this filter puts out debug information when

updated. Example: <debug>false</debug>

<input> InputValue The input property driving the filter.

Refer to InputValue for details.

<reference> InputValue The reference property for filter that need one.

Refer to InputValue for details.

<output> Complex Each filter can drive one to many output properties.

Refer to OutputValue for details.

<u_min> InputValue This defines the optional minimum and maximum value the

<u_max> output is clamped to. If neither <u_min> nor <u_max>

exists, the output is only limited by the internal limit

of double precision float computation. If either <u_min>

or <u_max> is given, clamping is activated. A missing min

or max value defaults to 0 (zero).

Note: <u_min> and <u_max> may also occour within a <config>

element. <min> and <max> may be used as a substitude for

the corresponding u_xxx element.

<period> Complex Define a periodical input or output value. The phase width

is defined by the child elements <min> and <max> which are

of type InputValue

Example: Limit the pilot’s body temperature to a constant minimum of 36 and a

maximum defined in /pilots/max-body-temperature-degc, initialized to 40.0

<u_max>

<prop>/pilots/max-body-temperature-degc</prop>

<value>40.0</

</u_max>

<min>

<value>36.0</value>

</min

52



Implicit definition of the minimum value of 0 (zero) and defining a maximum of 100.0

<config>

<u_max>100.0</u_max>

</config>

This defines the input or output as a periodic value with a phase width of 360, like

the compass rose. Any value reaching the filter’s input or leaving the filter at the

output will be transformed to fit into the given range by adding or substracting one

phase width of 360. Values of -270, 90 or 450 applied to this periodical element will

always result in +90. A value of 630, 270 or -90 will be normalized to -90 in the

given example.

<period>

<min>-180.0</min>

<max>180.0</max>

</period>

<enable> Complex Define a condition to enable or disable the filter. For

disabled filters, no output computations are performed.

Only enabled filters fill the output properties. The

default for undefined conditions is enabled.

Several way exist to define a condition. The most simple

case is checking a boolean property. For this, just a

<prop> element naming this boolean property is needed.

The boolean value of the named property defines the

enabled state of the filter. To compare the value of a

property with a constant, a <prop> and a <value> element

define the property name and the value to be compared.

The filter is enabled, if the value of the property equals

the given value. A case sensitive string compare is

performed here.

To define more complex conditions, a <condition> element

may be used to define any condition described in

README.conditions. If a <condition> element is present

and if it contains a valid condition, this conditions has

precedence over a given <prop>/<value> condition.

The child element <honor-passive>, a boolean flag, may be

present within the <enable> element. If this element is

true, the property /autopilot/locks/passive-mode is checked

and if it is true, the filter output is computed, but the

53



output properties are not set. The default for

honor-passive is false

Example: Check a boolean property, only compute this filter if gear-down is true and

/autopilot/locks/passive-mode is false

<enable>

<prop>/gear/gear-down</prop>

<honor-passive>true</honor-passive>

</enable>

Check a property for equality, only compute this filter if the autopilot is locked

in heading mode.

<enable>

<prop>/autopilot/locks/heading</prop>

<value>dg-heading-hold</value>

</enable>

Use a complex condition, only compute this filter if the autopilot is serviceable

and the lock is either dg-heading-hold or nav1-heading-hold

<enable>

<condition>

<property>/autopilo/serviceable</property>

<or>

<equals>

<property>/autopilot/locks/heading</property>

<value>dg-heading-hold</value>

</equals>

<equals>

<property>/autopilot/locks/heading</property>

<value>nav1-heading-hold</value>

</equals>

</or>

</condition>

</enable>

INDIVIDUAL FILTER CONFIGURATION

==============================================================================

Digital Filter

Six different types of digital filter can be configured inside the autopilot

54



configuration file. There are four low-pass filter types and two gain filter

types.

The low-pass filter types are:

* Exponential

* Double exponential

* Moving average

* Noise spike filter

The gain filter types are:

* gain

* reciprocal

To add a digital filter, place a <filter> element under the root element. Next to

the global configuration elements described above, the following elements configure

the digital filter:

<filter-time> InputValue This tag is only applicable for the exponential and

double-exponential filter types. It controls the

bandwidth of the filter. The bandwidth in Hz of the

filter is: 1/filter-time. So a low-pass filter with a

bandwidth of 10Hz would have a filter time of 1/10 = 0.1

<samples> InputValue This tag only makes sense for the moving-average filter.

It says how many past samples to average.

<max-rate-of-change>

InputValue This tag is applicable for the noise-spike filter.

It says how much the value is allowed to change per

second.

<gain> InputValue This is only applicable to the gain and reciprocal filter

types. The output for gain filter is computed as input*gain

while the reciprocal filter computes output as gain/input

for input values != 0 (zero). Gain may be a constant, a

property name defined by a <prop> element within the <gain>

element or a property name initialized to a value by using

a <prop> and <value> element.

55



Example: a pressure-rate-filter implemented as a double exponential low pass filter

with a bandwith of 10Hz

<filter>

<name>pressure-rate-filter</name>

<debug>false</debug>

<type>double-exponential</type>

<enable>

<prop>/autopilot/locks/pressure-rate-filter</prop>

<value>true</value>

</enable>

<input>/autopilot/internal/pressure-rate</input>

<output>/autopilot/internal/filtered-pressure-rate</output>

<filter-time>0.1</filter-time>

</filter>

This will filter the pressure-rate property. The output will be to a new

property called filtered-pressure-rate. You can select any numerical property

from the property tree. The input property will not be affected by the filter,

it will stay the same as it would if no filter was configured.

Example 2:

<filter>

<name>airspeed elevator-trim gain reciprocal filter</name>

<debug>false</debug>

<enable>

<prop>/autopilot/locks/airspeed-elevator-trim-gain</prop>

<value>true</value>

</enable>

<type>reciprocal</type>

<gain>

<prop>/autopilot/settings/elevator-trim-airspeed-reciprocal-gain</prop>

<value>7</value>

</gain>

<input>/velocities/airspeed-kt</input>

<output>/autopilot/internal/elevator-trim-gain</output>

<u_min>0.005</u_min>

<u_max>0.02</u_max>

</filter>

56



This will use the /velocities/airspeed-kt property to produce a gain factor

that reduces as airspeed increases. At airspeeds up to 350kt the gain will

be clamped to 0.02, at 700kt the gain will be 0.01 and at 1400kt the gain will

be 0.005. The gain will be clamped to 0.005 for airspeeds > 1400kt.

The output from this filter could then be used to control the gain in a PID

controller:

<pid-controller>

<name>Pitch hold</name>

<debug>false</debug>

<enable>

<prop>/autopilot/locks/pitch</prop>

<value>true</value>

</enable>

<input>

<prop>/orientation/pitch-deg</prop>

</input>

<reference>

<prop>/autopilot/settings/target-pitch-deg</prop>

</reference>

<output>

<prop>/autopilot/internal/target-elevator-trim-norm</prop>

</output>

<config>

<Ts>0.05</Ts>

<Kp>

<prop>/autopilot/internal/elevator-trim-gain</prop>

<value>0.02</value>

</Kp>

<beta>1.0</beta>

<alpha>0.1</alpha>

<gamma>0.0</gamma>

<Ti>2.0</Ti>

<Td>0.2</Td>

<u_min>-1.0</u_min>

<u_max>1.0</u_max>

</config>

</pid-controller>

57



IMPORTANT NOTE: The <Kp> tag in PID controllers has been revised to operate in

the same way as the <gain> elements in filters. However, the original format

of <Kp> will continue to function as before i.e. <Kp>0.02</Kp> will specify a

fixed and unalterable gain factor, but a warning message will be output.

The gain type filter is similar to the reciprocal filter except that the gain

is applied as a simple factor to the input.

-------------------------------------------------------------------------------

Parameters

<name> The name of the filter. Give it a sensible name!

<debug> If this tag is set to true debugging info will be printed on the

console.

<enable> Encloses the <prop> and <value> tags which are used to enable or

disable the filter. Instead of the <prop> and <value> tags, a <condition>

tag may be used to define a condition. Check README.conditions for more

details about conditions. Defaults to enabled if unspecified.

<type> The type of filter. This can be exponential, double-exponential,

moving-average, noise-spike, gain or reciprocal.

<input> The input property to be filtered. This should of course be a

numerical property, filtering a text string or a boolean value does not make

sense.

<output> The filtered value. You can make up any new property.

<u_min> The minimum output value from the filter. Defaults to -infinity.

<u_max> The maximum output value from the filter. Defaults to +infinity.

These are the tags that are applicable to all filter types. The following tags

are filter specific.

<filter-time> This tag is only applicable for the exponential and

double-exponential filter types. It controls the bandwidth of the filter. The

bandwidth in Hz of the filter is: 1/filter-time. So a low-pass filter with a

58



bandwidth of 10Hz would have a filter time of 1/10 = 0.1

<samples> This tag only makes sense for the moving-average filter. It says how

many past samples to average.

<max-rate-of-change> This tag is applicable for the noise-spike filter. Is

says how much the value is allowed to change per second.

<gain> This, and it’s enclosed <prop> and <value> tags, are only applicable to

the gain and reciprocal filter types. The <prop> tag specifies a property node

to hold the gain value and the <value> tag specifies an initial default value.

The gain defaults to 1.0 if unspecified.

The output from the gain filter type is: input * gain.

The output from the reciprocal filter type is: gain / input.

The gain can be changed during run-time by updating the value in the property

node.

9 Effects

Effects

-------

Effects describe the graphical appearance of 3d objects and scenery in

FlightGear. The main motivation for effects is to support OpenGL

shaders and to provide different implementations for graphics hardware

of varying capabilities. Effects are similar to DirectX effects files

and Ogre3D material scripts.

An effect is a property list. The property list syntax is extended

with new "vec3d" and "vec4d" types to support common computer graphics

values. Effects are read from files with a ".eff" extension or can be

created on-the-fly by FlightGear at runtime. An effect consists of a

"parameters" section followed by "technique" descriptions. The

"parameters" section is a tree of values that describe, abstractly,

the graphical characteristics of objects that use the effect. Techniques

refer to these parameters and use them to set OpenGL state or to set

parameters for shader programs. The names of properties in the

59



parameter section can be whatever the effects author chooses, although

some standard parameters are set by FlightGear itself. On the other

hand, the properties in the techniques section are all defined by the

FlightGear.

Techniques

----------

A technique can contain a predicate that describes the OpenGL

functionality required to support the technique. The first

technique with a valid predicate in the list of techniques is used

to set up the graphics state of the effect. A technique with no

predicate is always assumed to be valid. The predicate is written in a

little expression language that supports the following primitives:

and, or, equal, less, less-equal

glversion - returns the version number of OpenGL

extension-supported - returns true if an OpenGL extension is supported

property - returns the boolean value of a property

float-property - returns the float value of a property, useful inside equal, less

or less-equal nodes

shader-language - returns the version of GLSL supported, or 0 if there is none.

The proper way to test whether to enable a shader-based technique is:

<predicate>

<and>

<property>/sim/rendering/shader-effects</property>

<less-equal>

<value type="float">1.0</value>

<shader-language/>

</less-equal>

</and>

</predicate>

There is also a property set by the user to indicate what is the level

of quality desired. This level of quality can be checked in the predicate

like this :

<predicate>

<and>

<property>/sim/rendering/shader-effects</property>

60



<less-equal>

<value type="float">2.0</value>

<float-property>/sim/rendering/quality-level</float-property>

</less-equal>

<!-- other predicate conditions -->

</and>

</predicate>

The range of /sim/rendering/quality-level is [0..5]

* 2.0 is the threshold for relief mapping effects,

* 4.0 is the threshold for geometry shader usage.

A technique can consist of several passes. A pass is basically an Open

Scene Graph StateSet. Ultimately all OpenGL and OSG modes and state

attributes will be accessable in techniques. State attributes -- that

is, technique properties that have children and are not just boolean

modes -- have an <active> parameter which enables or disables the

attribute. In this way a technique can declare parameters it needs,

but not enable the attribute at all if it is not needed; the decision

can be based on a parameter in the parameters section of the

effect. For example, effects that support transparent and opaque

geometry could have as part of a technique:

<blend>

<active><use>blend/active</use></active>

<source>src-alpha</source>

<destination>one-minus-src-alpha</destination>

</blend>

So if the blend/active parameter is true blending will be activated

using the usual blending equation; otherwise blending is disabled.

Values of Technique Attributes

------------------------------

Values are assigned to technique properties in several ways:

* They can appear directly in the techniques section as a

constant. For example:

<uniform>

61



<name>ColorsTex</name>

<type>sampler-1d</type>

<value type="int">2</value>

</uniform>

* The name of a property in the parameters section can be

referenced using a "use" clause. For example, in the technique

section:

<material>

<ambient><use>material/ambient</use></ambient>

</material>

Then, in the parameters section of the effect:

<parameters>

<material>

<ambient type="vec4d">0.2 0.2 0.2 1.0</ambient>

</material>

</parameters>

It’s worth pointing out that the "material" property in a

technique specifies part of OpenGL’s state, whereas "material"

in the parameters section is just a name, part of a

hierarchical namespace.

* A property in the parameters section doesn’t need to contain

a constant value; it can also contain a "use" property. Here

the value of the use clause is the name of a node in an

external property tree which will be used as the source of a

value. If the name begins with ’/’, the node is in

FlightGear’s global property tree; otherwise, it is in a local

property tree, usually belonging to a model [NOT IMPLEMENTED

YET]. For example:

<parameters>

<chrome-light><use>/rendering/scene/chrome-light</use></chrome-light>

</parameters>

The type is determined by what is expected by the technique

attribute that will ultimately receive the value. [There is

no way to get vector values out of the main property system

yet; this will be fixed shortly.] Values that are declared

this way are dynamically updated if the property node

changes.

62



OpenGL Attributes

-----------------

The following attributes are currently implemented in techiques:

alpha-test - children: active, comparison, reference

Valid values for comparision:

never, less, equal, lequal, greater, notequal, gequal,

always

alpha-to-coverage - true, false

blend - children: active, source, destination, source-rgb,

source-alpha, destination-rgb, destination-alpha

Each operand can have the following values:

dst-alpha, dst-color, one, one-minus-dst-alpha,

one-minus-dst-color, one-minus-src-alpha,

one-minus-src-color, src-alpha, src-alpha-saturate,

src-color, constant-color, one-minus-constant-color,

constant-alpha, one-minus-constant-alpha, zero

cull-face - front, back, front-back

lighting - true, false

material - children: active, ambient, ambient-front, ambient-back, diffuse,

diffuse-front, diffuse-back, specular, specular-front,

specular-back, emissive, emissive-front, emissive-back, shininess,

shininess-front, shininess-back, color-mode

polygon-mode - children: front, back

Valid values:

fill, line, point

program

vertex-shader

geometry-shader

fragment-shader

attribute

geometry-vertices-out - integer, max number of vertices emitted by geometry

shader

63



geometry-input-type - points, lines, lines-adjacency, triangles,

triangles-adjacency

geometry-output-type - points, line-strip, triangle-strip

render-bin - (OSG) children: bin-number, bin-name

rendering-hint - (OSG) opaque, transparent

shade-model - flat, smooth

texture-unit - has several child properties:

unit - The number of an OpenGL texture unit

point-sprite - true, false - Whether this should rendered as a point-sprite

type - This is either an OpenGL texture type or the name of a

builtin texture. Currently supported OpenGL types are 1d, 2d,

3d which have the following common parameters:

image (file name)

filter - nearest, linear, [nearest|linear]-mipmap-[nearest|linear]

mag-filter - nearest, linear, [nearest|linear]-mipmap-[nearest|linear]

wrap-s - clamp, clamp-to-border, clamp-to-edge, mirror, repeat

wrap-t - clamp, clamp-to-border, clamp-to-edge, mirror, repeat

wrap-r - clamp, clamp-to-border, clamp-to-edge, mirror, repeat

mipmap-control - control the mipmap on a per-channel basis. Children:

function-r - auto, average, sum, product, min, max

function-g - auto, average, sum, product, min, max

function-b - auto, average, sum, product, min, max

function-a - auto, average, sum, product, min, max

The following built-in types are supported:

white - 1 pixel white texture

noise - a 3d noise texture. (size parameter defines size of texture)

light-sprite - a procedurally generated sprite suitable for point lights

cubemap - build a cube-map. Children:

images - build from 6 images. Children: [positive|negative]-[x|y|z]

image - build from a single cross-image

environment

mode - add, blend, decal, modulate, replace

color

64



texenv-combine

combine-[rgb|alpha] - replace, modulate, add, add-signed, interpolate, subtract, dot3-rgb, dot3-rgba

source[0|1|2]-[rgb|alpha] - constant, primary_color, previous, texture, texture[0-7]

operand[0|1|2]-[rgb|alpha] -src-color, one-minus-src-color, src-alpha, one-minus-src-alpha

scale-[rgb|alpha]

constant-color

texgen

mode - object-linear, eye-linear, sphere-map, normal-map, reflection-map

planes - s, t, r, q

uniform

name

type - float, float-vec3, float-vec4, sampler-1d, sampler-2d,

sampler-3d

vertex-program-two-side - true, false

vertex-program-point-size - true, false

Inheritance

-----------

One feature not fully illustrated in the sample below is that

effects can inherit from each other. The parent effect is listed in

the "inherits-from" form. The child effect’s property tree is

overlaid over that of the parent. Nodes that have the same name and

property index -- set by the "n=" attribute in the property tag --

are recursively merged. Leaf property nodes from the child have

precedence. This means that effects that inherit from the example

effect below could be very short, listing just new

parameters and adding nothing to the techniques section;

alternatively, a technique could be altered or customized in a

child, listing (for example) a different shader program. An example

showing inheritance Effects/crop.eff, which inherits some if its

values from Effects/terrain-default.eff.

FlightGear directly uses effects inheritance to assign effects to 3D

models and terrain. As described below, at runtime small effects are

created that contain material and texture values in a "parameters"

65



section. These effects inherit from another effect which references

those parameters in its "techniques" section. The derived effect

overrides any default values that might be in the base effect’s

parameters section.

Generate

--------

Often shader effects need tangent vectors to work properly. These

tangent vectors, usually called tangent and binormal, are computed

on the CPU and given to the shader as vertex attributes. These

vectors are computed on demand on the geometry using the effect if

the ’generate’ clause is present in the effect file. Exemple :

<generate>

<tangent type="int">6</tangent>

<binormal type="int">7</binormal>

<normal type="int">8</normal>

</generate>

Valid subnodes of ’generate’ are ’tangent’, ’binormal’ or ’normal’.

The integer value of these subnode is the index of the attribute

that will hold the value of the vec3 vector.

The generate clause is located under PropertyList in the xml file.

In order to be available for the vertex shader, these data should

be bound to an attribute in the program clause, like this :

<program>

<vertex-shader>my_vertex_shader</vertex-shader>

<attribute>

<name>my_tangent_attribute</name>

<index>6</index>

</attribute>

<attribute>

<name>my_binormal_attribute</name>

<index>7</index>

</attribute>

</program>

66



attribute names are whatever the shader use. The index is the one

declared in the ’generate’ clause. So because generate/tangent has

value 6 and my_tangent_attribute has index 6, my_tangent_attribute

holds the tangent value for the vertex.

Default Effects in Terrain Materials and Models

-----------------------------------------------

Effects for terrain work in this way: for each material type in

materials.xml an effect is created that inherits from a single default

terrain effect, Effects/terrain-default.eff. The parameters section of

the effect is filled in using the ambient, diffuse, specular,

emissive, shininess, and transparent fields of the material. The

parameters image, filter, wrap-s, and wrap-t are also initialized from

the material xml. Seperate effects are created for each texture

variant of a material.

Model effects are created by walking the OpenSceneGraph scene graph

for a model and replacing nodes (osg::Geode) that have state sets with

node that uses an effect instead. Again, a small effect is created

with parameters extracted from OSG objects; this effect inherits, by

default, from Effects/model-default.eff. A larger set of parameters is

created for model effects than for terrain because there is more

variation possible from the OSG model loaders than from the terrain

system. The parameters created are:

* material active, ambient, diffuse, specular, emissive,

shininess, color mode

* blend active, source, destination

* shade-model

* cull-face

* rendering-hint

* texture type, image, filter, wrap-s, wrap-t

Specifying Custom Effects

-------------------------

You can specify the effects that will be used by FlightGear as the

base effect when it creates terrain and model effects.

67



In the terrain materials.xml, an "effect" property specifies the name

of the model to use.

In model .xml files, A richer syntax is supported. [TO BE DETERMINED]

Material animations will be implemented by creating a new effect

that inherits from one in a model, overriding the parameters that

will be animated.

Examples

--------

The Effects directory contains the effects definitions; look there for

examples. Effects/crop.eff is a good example of a complex effect.

Application

-----------

To apply an effect to a model or part of a model use:

<effect>

<inherits-from>Effects/light-cone</inherits-from>

<object-name>Cone</object-name>

</effect>

where <inherits-from> </inherits-from> contains the path to the effect you want to

apply. The effect does not need the file extension.

NOTE:

Chrome, although now implemented as an effect, still retains the old method of

application:

<animation>

<type>shader</type>

<shader>chrome</shader>

<texture>glass_shader.png</texture>

<object-name>windscreen</object-name>

</animation>

68



in order to maintain backward compatibility.

10 Electrical

Specifying and Configuring and Aircraft Electrical System

=========================================================

Written by Curtis L. Olson <curt@flightgear.org>

February 3, 2003 - Initial revision.

Introduction

============

The FlightGear electrical system model is an approximation. We don’t

model down to the level of individual electrons, but we do try to

model a rich enough subset of components so that a realistic (from the

pilot’s perspective) electrical system may be implemented. We try to

model enough of the general flow so that typical electrical system

failures can be implimented and so that the pilot can practice

realistic troubleshooting techniques and learn the basic structure and

relationships of the real aircraft electrical system.

An electrical system can be built from 4 major components: suppliers,

buses, outputs, and connectors. Suppliers are things like batteries

and generators. Buses collect input from multiple suppliers and feed

multiple outputs. Outputs are not strictly necessary, but are

included so we can name generic output types and provide a consistent

naming scheme to other FlightGear subsystems. Finally connectors

connect a supplier to a bus, or a bus to an output, and optionally can

specify a switch property (either a physical switch or a circuit

breaker.)

At run time, the structure specified in the electrical system config

file is parsed and a directional graph (in the computer science sense)

is built. Each frame, the current is propagated through the system,

69



starting at the suppliers, flowing through the buses, and finally to

the outputs. The system follows the path of connectors laid out in

the config file and honors the state of any connector switch.

Suppliers

=========

A supplier entry could look like the following:

<supplier>

<name>Battery 1</name>

<prop>/systems/electrical/suppliers/battery[0]</prop>

<kind>battery</kind>

<volts>24</volts>

<amps>60</amps> <!-- WAG -->

</supplier>

<name> can be anything you choose to call this entry.

<prop> is the name of a property that will be updated with the state

of this supplier.

<kind> can be "battery", "alternator", or "external".

<volts> specifies the volts of the source

<amps> specifies the amps of the source

Currently <volts> and <amps> are not really modeled in detail. This

is more of a place holder for the future.

For alternators, you must additionally specify:

<rpm-source>/engines/engine[0]/rpm</rpm-source>

The value of the rpm source determines if the generator is able to

produce power or not.

Buses

=====

A bus entry could look like the following:

70



<bus>

<name>Essential/Cross Feed Bus</name>

<prop>/systems/electrical/outputs/bus-essential</prop>

<prop>/systems/electrical/outputs/annunciators</prop>

<prop>/systems/electrical/outputs/master-switch</prop>

</bus>

<name> is whatever you choose to call this bus

You can have an arbitrary number of <prop> entries. Each entry is the

name of a property that will be updated with the value of the current

at that bus. This allows you to wire devices directly to the bus but

does not allow you to insert a switch or circuit breaker in between.

See "Outputs" and "Connectors" if you want to do that.

Outputs

=======

An output entry could look like the following:

<output>

<name>Starter 1 Power</name>

<prop>/systems/electrical/outputs/starter[0]</prop>

</output>

An output isn’t entirely unlike a bus, but it’s nice conceptually to

have a separate entity type. This enables us to specify a common set

of output property names so that other subsystems can automatically

work with any electrical system that follows the same conventions. An

output lives on the other side of a switch, so this is how you can

wire in cockpit switches to model things like fuel pump power,

avionics master switch, or any other switch on the panel.

<name> is whatever you choose to call this bus

You can have an arbitrary number of <prop> entries. Each entry is the

name of a property that will be updated with the value of the current

at that bus. This allows you to wire devices directly to the bus but

71



does not allow you to insert a switch or circuit breaker in between.

See "Outputs" and "Connectors" if you want to do that.

Other FlightGear subsystems can monitor the property name associated

with the various outputs to decide how to render an instrument,

whether to run the fuel pump, whether to spin a gyro, or any other

subsystem that cares about electrical power.

Connectors

==========

An connector entry could look like the following:

<connector>

<input>Alternator 1</input>

<output>Virtual Bus 1</output>

<switch>/controls/switches/master-alt</switch>

<initial-state>off</initial-state> <!-- optional tag -->

</connector>

A connector specifies and input, and output, and any number of

switches that are wired in series. In other words, all switches need

to be true/on in order for current to get from the input to the output

of the connector.

<input> specifies the <name> of the input. Typically you would

specify a "supplier" or a "bus".

<output> specifies the <name> of the output. Typically you would

specify a bus or an output.

You can have an arbitrary number of <switch> entries. The switches

are wired in series so all of them need to be on (i.e. true) in order

for current to pass to the output.

Note: by default the system forces any listed switches to be true.

The assumption is that not every aircraft or cockpit may impliment

every available switch, so rather than having systems be switched off,

with no way to turn them on, we default to switched on.

72



This is a problem however with the starter switch which we want to be

initialized to "off". To solve this problem you can specify

<initial-state>off</initial-state> or

<initial-state>on</initial-state> Switches default to on, so you

really only need to specify this tag if you want the connector’s

switch to default to off.

Summary

=======

The electrical system has a lot of power and flexibility to model a

variety of electrical systems. However, it is not yet perfect or

finished. One major weakness is that it doesn’t yet model degraded

battery or generator power, and it doesn’t model the "charge" of the

batteries in case of a generator failure.

11 Embedded-resources

-*- coding: utf-8; fill-column: 72; -*-

The Embedded Resources System

=============================

This document gives an overview of FlightGear’s embedded resources

system and related classes. For specific information on the C++

functions, the reference documentation is in the corresponding header

files.

Contents

--------

1. The CharArrayStream and ZlibStream classes

2. The âembedded resourcesâ system

3. About the XML resource declaration files

4. The EmbeddedResourceProxy class

73



Introduction

------------

The embedded resources system allows FlightGear to use data from files

without relying on FG_ROOT to be set. This can be used, for instance, to

grab the contents of XML files at FG build time, from any repository[1],

and use said contents in the C++ code. The term âembeddedâ is used to

avoid confusion with the ResourceProvider and ResourceManager classes

provided by SimGear, which have nothing to do with the system described

here.

The embedded resources system relies on classes present in

simgear/io/iostreams/{zlibstream.cxx,CharArrayStream.cxx}, which were

implemented as a way to address a concern that embedding a few XML files

in the fgfs binary could use precious memory. The resource compiler

(fgrcc) compresses resources before writing them in C++ form---except

for some extensions, and it’s configurable on a per-resource basis

anyway. Then, the EmbeddedResourceManager instance, which lives in the

fgfs process, can decompress them on-the-fly, incrementally,

transparently. So, there is really no reason to worry about memory

consumption, even for several dozens of XML files.

fgrcc is the resource compiler: it turns arbitrary files into C++ code

the EmbeddedResourceManager can make use of, in order to âserveâ the

files’ contents at runtime. It is named this way, because it fulfills

the same role as Qt’s rcc tool. It supports a thin superset of the

XML-based format used by rcc for declaring resources[2][3].

’fgrcc --help’ gives a lot of info.

1) The CharArrayStream and ZlibStream classes

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

The CharArrayStream* files in simgear/io/iostreams/ implement

CharArrayStreambuf and related IOStreams classes for working with char

arrays, namely:

- CharArrayStreambuf subclass of std::streambuf stream buffer

- ROCharArrayStreambuf subclass of CharArrayStreambuf stream buffer

- CharArrayIStream subclass of std::istream input stream

74

- CharArrayOStream subclass of std::ostream output stream

- CharArrayIOStream subclass of std::iostream input/output stream

(in the ’simgear’ namespace, of course)

CharArrayStreambuf is a stream buffer class allowing to read from, and

write to char arrays (std::strstream has been deprecated since C++98).

Contrary to std::strstream, this class does no dynamic allocation: it is

very simple, strictly staying for both reads and writes within the

bounds of the buffer specified in its constructor. Contrary to

std::stringstream, CharArrayStreambuf allows one to work on an array of

char (that could be static data, on the stack, whatever) without having

to make a whole copy of it.

ROCharArrayStreambuf is a read-only subclass of CharArrayStreambuf

(useful for const-correctness). CharArrayIStream, CharArrayOStream and

CharArrayIOStream are very simple convenience stream classes using

either CharArrayStreambuf or ROCharArrayStreambuf as their associated

stream buffer class.

While these classes can be of general-purpose usefulness, the particular

reason they have been written for is to make the embedded resources

system clean and memory-friendly. Concretely, this system supports both

compressed and uncompressed resources, all of which can be read from

their respective static arrays like this (think pipelines):

static char array

(uncompressed ---------------> data available via an std::istream

resource) CharArrayIStream or std::streambuf interface

or ROCharArrayStreambuf

static char array

(compressed ---------------> compressed data -------------------> ditto

resource) CharArrayIStream ZlibDecompressorIStream

or ZlibDecompressorIStreambuf

where ditto = uncompressed data available via an std::istream or

std::streambuf interface

So, whether the resource data stored in static arrays by fgrcc is

75

compressed or not, end-user code can read it in uncompressed form using

an std::istream or std::streambuf interface, which means the resource

never needs to be copied in memory a second time. This is particularly

interesting with compressed resources, because:

1) The in-memory static data is much smaller in general than the

uncompressed contents, and it’s the only one we really have to

âpayâ for if one uses these stream-based interfaces.

2) The data is transparently decompressed on-demand as the end-user

code reads from the ZlibDecompressorIStream or

ZlibDecompressorIStreambuf instance.

In other words, these CharArrayStream classes complement the ones in

zlibstream.cxx and make it easy to implement all kinds of pipelines to

incrementally read or write, and possibly on-the-fly compress or

decompress data from or to in-memory buffers (cf.

writeCompressedDataToBuffer() in

simgear/simgear/embedded_resources/embedded_resources_test.cxx, or

ResourceCodeGenerator::writeEncodedResourceContents() in

flightgear/src/EmbeddedResources/fgrcc.cxx for examples).

Since all of these provide standard IOStreams interfaces, they can be

easily plugged into existing code. For instance, readXML() in

simgear/simgear/xml/easyxml.cxx and readProperties() in

simgear/props/props_io.cxx can incrementally read and parse data from an

std::istream instance, and thus are able to directly read from a

resource containing the compressed version of an XML file.

This incremental stuff is of course really interesting with large

resources... which probably won’t be used in FlightGear, in order not to

waste RAM[4][5]. The EmbeddedResourceManager also has a getString()

method to simply get an std::string when you don’t care about the fact

that this operation, by std::string design, will necessarily make a copy

of the whole resource contents (in uncompressed form in the case of a

compressed resource). This getString() method should be convenient and

quite acceptable for reasonably-sized resources.

Finally, all of these classes---CharArray*Stream*, the classes in

zlibstream.cxx, the EmbeddedResourceManager and related classes---can

76

handle text and binary data in exactly the same way (std::string doesn’t

care, and neither do the other classes).

2) The âembedded resourcesâ system

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

The embedded resources system works this way:

(1) The fgrcc resource compiler reads an XML file which has almost the

same syntax[2] as Qt’s .qrc files[3] and writes a .cxx file

containing:

- static char arrays initialized with resource contents

(possibly compressed, this is automatic unless explicitly

specified in the XML file);

- a function definition containing calls to

EmbeddedResourceManager::addResource() that register each of

these resources with the EmbeddedResourceManager instance.

If you pass the --output-header-file option to fgrcc, it also

writes a header file that goes with the generated .cxx file. For

other options, see the output of ’fgrcc --help’.

It is quite possible to call fgrcc several times, each time with a

different (XML input file, .cxx/.hxx output files) tuple: for

instance, one call for resources present in the FlightGear repo,

and possibly another call for resources in FGData. The point of

this is that paths in the XML input file should be relative to

avoid being system-dependent, and fgrcc accepts a --root option to

indicate what you want them to be relative to, in order to let it

find the real files. Thus, on a first invocation of fgrcc, one can

make --root point to a path to the FlightGear repository when

building, and on the second call use it to indicate a path to the

FGData repository. Other variations are possible, of course.

Notes:

1) The example given here with FGData would *not* freeze the

FGData location at FG compile time; this is only to allow

files from FGData to be turned into generated .cxx files

77



inside the FG source tree, that will make their contents

available as embedded resources at runtime.

2) At the time of this writing, resources from the FlightGear

repository are compiled at build time, and resources from the

FGData repository are compiled offline using the

’rebuild-fgdata-embedded-resources’ script[6] (a

convenience wrapper for fgrcc), before being committed to the

FlightGear repository.

(2) SimGear contains an EmbeddedResourceManager class with, among

others, createInstance() and instance() methods similar to the

ones of NavDataCache. See [7] for the corresponding code.

FlightGear creates an EmbeddedResourceManager instance at startup

and calls the various init functions generated by fgrcc, each of

which registers the resources present in its containing .cxx file

(using EmbeddedResourceManager::addResource()).

End-user FG code can then use EmbeddedResourceManager methods such

as getResource(), getString(), getStreambuf() and getIStream()

to access resource contents:

- getResource() returns an

std::shared_ptr<const AbstractEmbeddedResource>

- getString() returns an std::string

- getStreambuf() returns an std::unique_ptr<std::streambuf>

- getIStream() returns an std::unique_ptr<std::istream>

AbstractEmbeddedResource is an abstract base class that you can

think of as a resource descriptor: it points to (not contains!)

the resource data (which is normally of static storage class), and

contains + gives access to metadata such as the compression type

and resource size (compressed and uncompressed).

AbstractEmbeddedResource currently has two derived concrete

classes: RawEmbeddedResource for resources stored as-is

(uncompressed) and ZlibEmbeddedResource for resources compressed by

fgrcc. It’s quite easy to add new subclasses if wanted, e.g. for

LZMA compression or other things.

78



Resource fetching requires two things:

- an std::string key (fgrcc manipulates them with SGPath, but the

EmbeddedResourceManager code in SimGear is so far completely

agnostic of the kind of data stored in keys; this could be

changed, though, if we wanted for example to be able to query

at runtime all available resources in a given âvirtual

directoryâ);

- a âlocaleâ name, similar to what FlightGear’s XML translation

files and FGLocale use. We used double quotes here, because

fgrcc and the EmbeddedResourceManager expect âlocaleâ names to

be of one of these forms:

* empty string: default locale, typically but not necessarily

English (it is âengineering Englishâ in FlightGear, i.e.,

English written by programmers in the code, before

translators possibly fix it up :)

* en, fr, de, es, it...

* en_GB, en_US, fr_FR, fr_CA, de_DE, de_CH, it_IT...

There is no encoding part, contrary to POSIX locales, hence the

use of double quotes around the term âlocaleâ in this context.

The FGLocale::getPreferredLanguage() method returns the preferred

âlocaleâ in the form described above, according to user choice

(from fgfs’ --language option) and/or settings (system locale).

This allows FG to tell the EmbeddedResourceManager the preferred

âlocaleâ for resource fetching (same syntax as in Qt’s rcc tool for

declaration in the XML file, using the ’lang’ attribute on

’qresource’ elements).

[ Regarding the default locale, the way things are currently set

up, I would use no ’lang’ attribute for resources suitable for

English in the XML input file for fgrcc, except when a

country-specific variant is desired (en_GB, en_US, en_AU...). In

such a case, there should also be a generic variant with no

’lang’ attribute declared for the same resource virtual path.

This matches what I did for FGLocale::getPreferredLanguage(),

that maps unset locales and locales such as C and C.UTF-8 to the

default locale for the EmbeddedResourceManager, which is the

79



empty string. This is a matter of policy, of course, and could be

changed if desired. ]

The EmbeddedResourceManager class has getLocale() and

selectLocale() methods to manage the _selected locale_. Each

resource-fetching method of this class (getResourceOrNullPtr(),

getResource(), getString(), getStreambuf() and getIStream()) has

two overloads:

- one taking only a virtual path (the key mentioned above);

- one taking a virtual path and a âlocaleâ name.

(we’ll write âlocaleâ without enclosing double-quotes from now on,

otherwise it gets too painful to read; but we’re *not* talking

about POSIX-style locales ending with an encoding part)

The first kind of overload uses the selected locale to look up the

resource, whereas the second kind uses the explicitly specified

locale. Then resource lookup behaves as one could expect. For

instance, assuming a resource is looked up for in the "fr_FR"

locale, then the EmbeddedResourceManager tries in this order:

- "fr_FR";

- if no resource has been registered for "fr_FR" with the provided

virtual path, it then tries with the "fr" locale;

- if this is also unsuccessful, it finally tries with the default

locale: "";

- if this third attempt fails, the resource-fetching method

throws an sg_exception, except for getResourceOrNullPtr(),

which returns a null

std::shared_ptr<const AbstractEmbeddedResource> instead.

To see how this is used, you can look at

simgear/simgear/embedded_resources/embedded_resources_test.cxx. The

only difference with real use is that in this file, resource

contents and registering calls with the EmbeddedResourceManager

have been written manually instead of by fgrcc. Apart from

embedded_resources_test.cxx, here are two examples of client usage

of the EmbeddedResourceManager:

(a) With EmbeddedResourceManager::getString():

80



#include <simgear/embedded_resources/EmbeddedResourceManager.hxx>

#include <simgear/debug/logstream.hxx>

[...]

const auto& resMgr = simgear::EmbeddedResourceManager::instance();

SG_LOG(SG_GENERAL, SG_INFO,

"Resource contents: ’" <<

resMgr->getString("/virtual/path/to/resource") << "’");

(b) With EmbeddedResourceManager::getIStream():

#include <cstddef> // std::size_t

#include <simgear/io/iostreams/sgstream.hxx>

#include <simgear/embedded_resources/EmbeddedResourceManager.hxx>

[...]

sg_ofstream outFile(SGPath("/tmp/whatever"));

if (!outFile) {

<handle open error>

}

const auto& resMgr = simgear::EmbeddedResourceManager::instance();

auto resStream = resMgr->getIStream("/virtual/path/to/resource");

// One possible way of handling errors from resStream[8]:

// resStream->exceptions(std::ios_base::badbit);

constexpr std::size_t bufSize = 4096;

std::unique_ptr<char[]> buf(new char[bufSize]); // intermediate buffer

do {

resStream->read(buf.get(), bufSize);

outFile.write(buf.get(), resStream->gcount());

} while (*resStream && outFile); // resStream *points* to an std::istream

<handle possible errors that might have caused to loop to stop

prematurely>

81



3) About the XML resource declaration files

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

You may want to read the output of ’fgrcc --help’, which explains a few

things, in particular how to write an XML resource declaration file that

fgrcc can use. At the time of this writing, such files are already

present as flightgear/src/EmbeddedResources/FlightGear-resources.xml and

flightgear/src/EmbeddedResources/FGData-resources.xml in the FlightGear

repository. In case you need resources from elsewhere, it’s easy to add

other XML resource declaration files:

1) If you want the .cxx/.hxx resource files to be automatically

generated as part of the FlightGear build:

Copy and adapt the add_custom_command() call in

flightgear/src/Main/CMakeLists.txt[9] that invokes fgrcc on

flightgear/src/EmbeddedResources/FlightGear-resources.xml.

2) In flightgear/src/Main/CMakeLists.txt, add paths for your new

fgrcc-generated .cxx and .hxx files to the SOURCES and HEADERS

CMake variables for the ’fgfs’ target.

3) Assuming you passed for instance

--init-func-name=initFoobarEmbeddedResources in step 1, add a call

to initFoobarEmbeddedResources() after this code in fgMainInit()

(flightgear/src/Main/main.cxx):

simgear::EmbeddedResourceManager::createInstance();

initFlightGearEmbeddedResources();

4) The EmbeddedResourceProxy class

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

SimGear contains an EmbeddedResourceProxy class that allows one to

access real files or embedded resources in a unified way. When using it,

one can switch from one data source to the other with minimal code

changes, possibly even at runtime (in which case there is obviously no

code change at all).

82



Sample usage (from FlightGear):

simgear::EmbeddedResourceProxy proxy(globals->get_fg_root(), "/FGData");

proxy.setUseEmbeddedResources(false); // can also be set via the constructor

std::string s = proxy.getString("/some/path");

std::unique_ptr<std::istream> streamp = proxy.getIStream("/some/path");

This example would retrieve contents from the real file

$FG_ROOT/some/path. If true had been passed in the

proxy.setUseEmbeddedResources() call, it would instead have used the

default-locale version of the embedded resource whose virtual path is

/FGData/some/path.

For more information about this class, see [10] and [11].

Footnotes

=========

[1] E.g., FlightGear or FGData, as long as the path to the latter is

provided to the FG build system, which is currently possible but not

required (passing ’-D FG_DATA_DIR:PATH=...’ to CMake when

configuring the FlightGear build).

[2] The differences with the QRC format[3] are explained in the output

of ’fgrcc --help’. Here is the relevant excerpt:

,----

| 1. The <!DOCTYPE RCC> declaration at the beginning should be omitted (or

| replaced with <!DOCTYPE FGRCC>, however such a DTD currently doesn’t

| exist). I suggest to add an XML declaration instead, for instance:

|

| <?xml version="1.0" encoding="UTF-8"?>

|

| 2. <RCC> and </RCC> must be replaced with <FGRCC> and </FGRCC>,

| respectively.

|

| 3. The FGRCC format supports a ’compression’ attribute for each ’file’

| element. At the time of this writing, the allowed values for this

83



| attribute are ’none’, ’zlib’ and ’auto’. When set to a value that is

| not ’auto’, this attribute of course bypasses the algorithm for

| determining whether and how to compress a given resource (algorithm

| which relies on the file extension).

|

| 4. Resource paths (paths to the real files, not virtual paths) are

| interpreted relatively to the directory specified with the --root

| option. If this option is not passed to ’fgrcc’, then the default root

| directory is the one containing INFILE, which matches the behavior of

| Qt’s ’rcc’ tool.

‘----

[3] http://doc.qt.io/qt-5/resources.html

[4] The main reason why I wrote the classes in

simgear/simgear/io/iostreams/{CharArrayStream,zlibstream}.cxx is

thus not to maximize memory-efficiency with very large resources;

rather, it is to make the implementation of the following parts

simple, clean and modular:

- the resource compiler (fgrcc);

- the EmbeddedResourceManager.

[5] The EmbeddedResourceManager architecture would make it quite easy to

also support runtime loading of resources from files (a thing the Qt

resource system supports), but it is not very clear how interesting

this would be, compared to having the files loaded from $FG_ROOT.

Well, maybe for large files [apt.dat.gz & Co] that we would want to

load but not see in the FGData repository at all. But then there

would be the requirement, of course, that âsomethingâ puts the files

in a clearly-defined, platform-dependent location known to the

EmbeddedResourceManager.

[6] https://sourceforge.net/p/flightgear/fgmeta/ci/next/tree/python3-flightgear/rebuild-fgdata-embedded-resources

[7] https://sourceforge.net/p/flightgear/simgear/ci/next/tree/simgear/embedded_resources/

[8] We know that in some buggy C++ implementations, the

std::ios_base::failure exception can’t be caught, at least not under

its name, due to some ABI compatibility mess:

84



https://gcc.gnu.org/bugzilla/show_bug.cgi?id=66145

However, it stills causes the program to abort, and since this

error handling technique makes for much more readable and less

error-prone code, I think it’s still a good way to handle IOStreams

errors even now, unless you really need to *catch* the

std::ios_base::failure exception.

[9] flightgear/CMakeModules/GenerateFlightgearResources.cmake in my

’i18n-and-init-work-v2’ branch (not merged into ’next’ at the time

of this writing).

[10] https://sourceforge.net/p/flightgear/simgear/ci/next/tree/simgear/embedded_resources/EmbeddedResourceProxy.hxx

[11] https://sourceforge.net/p/flightgear/simgear/ci/next/tree/simgear/embedded_resources/embedded_resources_test.cxx

12 Fgjs

fgjs -- a small program for creating a basic FlightGear joystick

configuration

fgjs requires plib to be installed on your system. If you’ve

successfully installed and built FlightGear then you should be

all set

Build instructions

At this point, fgjs has only been built and tested under Linux,

so the makefile is a simple one. cd into the directory in which

the fgjs source resides and type ’make’ and, if you are lucky,

all will go well. You can e-mail me (apeden@earthlink.net) any

changes needed to make it work on other systems. It’s quite

possible that this program will become part of the regular

FlightGear package so

Running

Set up your joystick and make sure it works with js_demo from the

FlightGear distribution. Upon executing fgjs, it will prompt you

to move the control you wish to use for elevator, ailerons, etc.

Note that when being prompted for an analog control, you can skip

85



the current one by pressing any button and vice-versa when being

prompted for a button. You may want to do this if for, as an

example, rudder if you have only one joystick or your joystick

doesn’t have as many analog axes as FlightGear supports.

Once you’ve run with this configuration, you may wish to tune

the dead-band a bit (see fgfsrc.js) as the default, 0.02, may

be too narrow for your particular hardware/taste.

And last, but not least, this thing needs a GUI!!!! Hopefully,

the joystick handling code and interface code are separate

enough that using that a GUI version could be built using this

source as a starting point.

13 Flightrecorder

FlightGear Flight Recorder Mini-HOWTO

Thorsten Brehm

Started in August 2011

Last revised: 2011-09-26

FlightGear provides a customizable flight recorder capable of capturing

any selection of properties described via XML configuration files.

The recorder is currently used for the replay system.

86



Feature Brief

-------------

* Generic recording system, adaptable to any aircraft/data, provided that

data is accessible via the property tree. No hard-coded selections or

assumptions on properties to be recorded.

* Configuration read from XML files or the property tree itself.

* Interpolation method configurable per recorded/replayed signal.

* Adaptable recording resolution per signal.

* Multiple configurations supported.

Quick Start: Basic Configuration

--------------------------------

To configure and adapt the flight recorder, add a "/sim/flight-recorder"

section to your aircraft -set.xml file.

Example:

<sim>

<!-- ... -->

<flight-recorder>

<replay-config type="int">0</replay-config>

<config n="0"

include="/Aircraft/Generic/flightrecorder/generic-piston-propeller-1.xml">

<name type="string">My Aircraft’s Flight Recorder</name>

<!-- Custom properties -->

<signal>

<type>float</type>

<property type="string">/controls/gear/nosegear-steering-cmd-norm</property>

<interpolation>linear</interpolation>

</signal>

<!-- More custom signals here -->

</config>

</flight-recorder>

<!-- ... -->

</sim>

87



Default type for each signal is "float". Default "interpolation" method

is "linear" (for float/double). Default values may be omitted. See

configuration details below.

Generic Configuration Files

---------------------------

Select one of the default configuration files to specify the basic

properties to be recorded. It’s not recommended to specify all

properties to be recorded individually.

The following generic files are provided:

* /Aircraft/Generic/flightrecorder/generic-piston-propeller-4.xml

Matches propeller aircraft with 4 piston engines, 4 tanks,

3 retractable gear.

It is the same configuration that was hard-coded for the replay system

up to FlightGear 2.4.0. To provide backward compatibility this

configuration is loaded by default, unless an aircraft provides a

specific flight recorder configuration.

* /Aircraft/Generic/flightrecorder/generic-piston-propeller-1.xml

Matches propeller aircraft with 1 piston engines, 2 tanks, 3 fixed

gear.

* /Aircraft/Generic/flightrecorder/generic-turboprop-2.xml

Matches turboprop aircraft with 2 turbines/propellers, 4 tanks,

3 retractable gear.

* /Aircraft/Generic/flightrecorder/generic-jet.xml

Matches jet aircraft with 2 jet engines, 4 tanks.

* /Aircraft/Generic/flightrecorder/generic-glider.xml

Matches gliders (no engines, no tanks, single fixed gear).

* /Aircraft/Generic/flightrecorder/generic-helicopter.xml

Matches helicopters with main and tail rotor (tested with YASim).

If none of the generic files matches your aircraft, simply use a

configuration which covers more than you need. Alternatively, copy the

88



contents of one of these generic files to your aircraft, and adapt as

needed (see below).

FDM experts are welcome to add more generic configuration files to

/Aircraft/Generic/flightrecorder - such as YASim-/JSBSim-specific

configurations, and configurations for other types of aircraft

(balloons, airships, ...).

Generic Components

-----------------

The generic configuration files in turn include a set of generic

components. If you copy the contents of a generic file to your aircraft,

you can adapt the components to your needs. See examples.

It is not recommended to copy the contents of the _component_ files to

an aircraft though (causes too much hassle and dependencies).

Engine Selection:

* /Aircraft/Generic/flightrecorder/components/engine-jet.xml

Records properties of a single jet engine.

For multiple jet engines, use "count". Example for 4 jets:

<signals include="/Aircraft/Generic/flightrecorder/components/engine-jet.xml">

<count>4</count>

</signals>

* /Aircraft/Generic/flightrecorder/components/engine-piston.xml

Records properties of a single piston engine and propeller.

For multiple piston engines, use "count" (see "jet" example).

* /Aircraft/Generic/flightrecorder/components/rotor.xml

Records properties of a single helicopter rotor (tested with YASim).

To use this, provide the base property path to the rotor as "prefix".

Example recording the rotor below "/rotors/main":

<signals include="/Aircraft/Generic/flightrecorder/components/rotor.xml">

<prefix type="string">/rotors/main</prefix>

</signals>

Gear Selection:

* /Aircraft/Generic/flightrecorder/components/gear-fixed.xml

Records properties of a single non-retractable gear.

89



For multiple fixed gear, use "count" (see "jet" example).

* /Aircraft/Generic/flightrecorder/components/gear-retractable.xml

Records properties of a single retractable gear.

For multiple retractable gear, use "count" (see "jet" example).

Tanks:

* /Aircraft/Generic/flightrecorder/components/tanks.xml

Records properties of a single fuel tank.

For multiple fuel tanks, use "count" (see "jet" example).

Other:

* /Aircraft/Generic/flightrecorder/components/surfaces.xml

Records properties of flight control surfaces. Include this

for aircraft (with wings). Not useful for helicopters,

balloons, ...

* /Aircraft/Generic/flightrecorder/components/faults-engines.xml

Records fault properties of a single engine. Only include this

if your aircraft supports fault simulation.

For multiple engines, use "count" (see "jet" example). If used,

it should be compined with piston or jet engine.

* /Aircraft/Generic/flightrecorder/components/environment.xml

Records properties of environment/weather (visibility,

temperature - but _not_ cloud position...).

* /Aircraft/Generic/flightrecorder/components/position.xml

Records properties of a the aircrafts main position (latitude,

longitude, velocities, ...).

This is the most important component. Always include this.

* /Aircraft/Generic/flightrecorder/components/controls.xml

Records most important flight controls (rudder, aileron,

elevator, ...). Always include this.

Custom Properties

-----------------

When the generic or component files are not be sufficient to record or

90



replay aircraft-specific effects, you can add custom properties (signals

to be recorded) to the configuration.

Each signal consits of a recording type/resolution (which does _not_

need to match the actual type in the property tree!), the path to the

property and interpolation type.

Example recording some additional custom properties:

<sim>

<flight-recorder>

<config n="0"

include="/Aircraft/Generic/flightrecorder/generic-piston-propeller-1.xml">

<!-- Add custom properties here -->

<signal>

<type>float</type>

<property type="string">/controls/gear/nosegear-steering-cmd-norm</property>

</signal>

<signal>

<type>double</type>

<interpolation>rotational-deg</interpolation>

<property type="string">/ai/model/carrier/alpha-angle-deg</property>

</signal>

<signal>

<type>bool</type>

<property type="string">/controls/panel/custom-switch</property>

</signal>

</config>

</flight-recorder>

</sim>

Signal Configuration

--------------------

Template:

<signal>

<type>bool</type>

<interpolation>angular-deg</interpolation>

<property type="string">/controls/panel/custom-switch</property>

</signal>

* type: The signal’s type specifies the recording resolution - not the

91



type of the original property. The following types are supported:

- double: 8 byte/sample

- float: 4 byte/sample (default)

- int: 4 byte/sample, integer

- int16: 2 byte/sample, integer

- int8: 1 byte/sample, integer

- bool: 1 bit/sample (yes, 1 bit. 8 bools per byte).

String type is unsupported (too expensive).

* interpolation: Specifies how values are interpolated during replay, i.e.

when replay is in slow-motion mode and more frames/second are required

than recorded, or when replaying data from the medium/long term memory.

Supported methods:

- discrete: No interpolation. Default for integer/bool types.

- linear: Standard linear interpolation. Default for float/double.

- angular-rad (or angular): Angular values in radians (0-2pi).

- angular-deg: Angular values in degrees (0-360).

* property: Path to the property to be recorded.

Advanced Configuration

----------------------

- Multipe recorder configurations for a single aircraft are supported

(multiple "<config n=..>" sections for n=0,1,...).

Active configuration to be used for the replay system is selected via

/sim/flight-recorder/replay-config (= 0,1,...).

This can be useful for specific recorders for specific scenarios,

which should not be used by default. For example, a specific recorder

configuration could be provided which also records the position of

an aircraft carrier, of other AI aircraft, ...

This may also be useful for future use, i.e. to select another flight

recorded configuration for a different purpose, such as for the

multiplayer system.

- Flight recorder configuration can be adapted during run-time

(configuration is visible in the property browser below

/sim/flight-recorder). However it is necessary to reset (reinit) the

92



replay subsystem first - which also erases earlier recordings. It is

not possible to mix recordings of different configurations on to a

single "tape".

- Each configuration should be given a name. Useful for a (future)

selection GUI, when multiple configurations are available.

Optimizing Performance

----------------------

- Recording properties consumes memory and also CPU time. A few

additional properties don’t matter much, but avoid execessive numbers.

Reduce the resolution (type) of signals to the minimum necessary to

save space.

- Use "bool" types where possible, they are most efficient.

- Avoid recording with "double" resolution (type "double"). Use "float"

instead - even if the original property in the property tree is a

"double" (almost all of them do). "float" precision is almost always

sufficient for recording/replay purposes, with few exceptions (like

latitude/longitude properties).

- Use int16/int8 for "small" integer values.

Recording/Replay Limits

-----------------------

- All properties can be recorded, however, only writable properties can

be replayed. Properties marked as read-only, or tied properties not

implementing the "set" method cannot be replayed.

- Replaying a property overwrites the property’s value. However, other

sources may also write to the same property - such as Nasal code,

autopilot rules etc. When multiple sources "fight" over a property’s

value then the last update "wins" - resulting in a dependency to an

unknown/random sequence. Hence, during deplay, try to disable other

sources writing to properties which were recorded and should be

replayed.

If the other source cannot be disabled, check if you’re recording the

right property. It may be better to record the input properties of the

other source instead (i.e. the inputs processed by the Nasal or

autopilot rule).

93



__end__

14 Gui

FlightGear GUI Mini-HOWTO

David Megginson

Started: 2003-01-20

Last revised: 2003-01-20

FlightGear creates its drop-down menubar and dialog boxes from XML

configuration files under $FG_ROOT/gui. This document gives a quick

explanation of how to create or modify the menubar and dialogs. The

toolkit for the FlightGear GUI is PUI, which is part of plib.

All of the XML files use the standard FlightGear PropertyList format.

MENUBAR

-------

FlightGear reads the configuration for its menubar from

$FG_ROOT/gui/menubar.xml. The file consists of a series of top-level

elements named "menu", each of which defines on of the drop-down

menus, from left to right. Each menu contains a series of items,

representing the actual items a user can select from the menu, and

each item has a series of bindings that FlightGear will activate when

the user selects the item.

Here’s a simplified grammar:

[menubar] : menu*

menu : label, item*

item : label, enabled, binding*

94



The bindings are standard FlightGear bindings, the same as the ones

used for the keyboard, mouse, joysticks, and the instrument panel.

Any commands allowed in those bindings are allowed here as well.

Here’s an example of a simple menubar with a "File" drop-down menu and

a single "Quit" item:

<PropertyList>

<menu>

<label>File</label>

<item>

<label>Quit</label>

<binding>

<command>exit</command>

</binding>

</item>

</PropertyList>

PUI menus do not allow advanced features like submenus or checkmarks.

The most common command to include in a menu item binding is the

’dialog-show’ command, which will open a user-defined dialog box as

described in the next section.

DIALOGS

-------

The configuration files for XML dialogs use a nested structure to set

up dialog boxes. The top-level always describes a dialog box, and the

lower levels describe the groups and widgets that make it up. Here is

a simple, "hello world" dialog:

<PropertyList>

<name>hello</name>

<width>150</width>

95



<height>100</height>

<modal>false</modal>

<draggable>true</draggable>

<resizable>true</resizable>

<text>

<x>10</x>

<y>50</y>

<label>Hello, world</label>

<color>

<red>1.0</red>

<green>0.0</green>

<blue>0.0</blue>

</color>

</text>

<button>

<x>40</x>

<y>10</y>

<legend>Close</legend>

<binding>

<command>dialog-close</command>

</binding>

</button>

</PropertyList>

The dialog contains two sub-objects: a text field and a button. The

button contains one binding, which closes the active dialog when the

user clicks on the button.

Coordinates are pseudo-pixels. The screen is always assumed to be

1024x768, no matter what the actual resolution is. The origin is the

bottom left corner of the screen (or parent dialog or group); x goes

from left to right, and y goes from bottom to top.

All objects, including the top-level dialog, accept the following

properties, though they will ignore any that are not relevant:

x - the X position of the bottom left corner of the object, in

96



pseudo-pixels. The default is to center the dialog.

y - the Y position of the bottom left corner of the object, in

pseudo-pixels. The default is to center the dialog.

width - the width of the object, in pseudo-pixels. The default is

the width of the parent container.

height - the height of the object, in pseudo-pixels. The default is

the width of the parent container.

border - the border thickness, in pseudo-pixels. The default is 2.

color - a subgroup to specify the dialogs color:

red - specify the red color component of the color scheme.

green - specify the green color component of the color scheme.

blue - specify the blue color component of the color scheme.

alpha - specify the alpha color component of the color scheme.

font - a subgroup to specify a specific font type

name - the name of the font (excluding it’s .txf extension)

size - size of the font

slant - the slant of the font (in pseudo-pixels)

legend - the text legend to display in the object.

label - the text label to display near the object.

property - the name of the FlightGear property whose value will

be displayed in the object (and possibly modified through it).

binding - a FlightGear command binding that will be fired when the

user activates this object (more than one allowed).

keynum - the key code of a key that can be used to trigger the

widget bindings via keyboard (e.g. <keynum>97</keynum> for

the "a" key.

key - like "keynum", but takes a character ("a", "A", "Shift-a",

"Shift-A", "Ctrl-a", "%", etc.), or symbolic key name ("Tab",

97



"Return" = "Enter", "Esc" = "Escape", "Space", "&amp;" = "and",

"&lt;", "&gt;", "F1" -- "F12", "Left", "Up", "Right", "Down",

"PageUp", "PageDn", "Home", "End", "Insert"). Note that you

can’t use "<", ">", and "&" directly.

default - true if this is the default object for when the user

presses the [RETURN] key.

visible - if set to false, hides the whole widget that it is used

in, along with its children. There’s no empty space reserved

for such widgets. The "visible" property can also be used to hide

other XML groups from the layouter.

Objects may appear nested within the top-level dialog or a "group"

or a "frame" object. Here are all the object types allowed, with their

special properties:

dialog

------

The top-level dialog box; the name does not actually appear in the

file, since the root element is named PropertyList.

name - (REQUIRED) the unique name of the dialog for use with the

"dialog-show" command.

modal - true if the dialog is modal (it blocks the rest of the

program), false otherwise. The default is false.

draggable - false if the dialog is not draggable. The default is true.

resizable - false if the dialog is not resizable. The default is false.

nasal - Nasal definition block

open - Nasal script to be executed on dialog open

close - Nasal script to be executed on dialog close

All Nasal code runs in a dialog namespace. Nasal bindings can

directly access variables and functions defined in an <open> block.

98



settimer() and setlistener() functions have to be removed manually

in the <close> block if they shouldn’t remain active.

Example:

<PropertyList>

<name>sample</name>

<width>500</width>

<height>210</height>

<modal>false</modal>

<text>

...

</text>

<button>

...

</button>

</PropertyList>

group and frame

---------------

A group of subobjects. This object does not draw anything on the

screen, but all of its children specify their coordinates relative to

the group; using groups makes it easy to move parts of a dialog

around.

A frame is a visual representation of a group and has a border and an

adjustable background color.

Example:

<group>

<x>0</x>

<y>50</y>

99



<text>

...

</text>

<input>

...

</input>

<button>

...

</button>

</group>

input

-----

A simple editable text field.

Example:

<input>

<x>10</x>

<y>60</y>

<width>200</width>

<height>25</height>

<label>sea-level temperature (degC)</label>

<property>/environment/temperature-sea-level-degc</property>

</input>

text

----

A non-editable text label.

Example:

100



<text>

<x>10</x>

<y>200</y>

<label>Heading</label>

</text>

<text>

<x>10</x>

<y>200</y>

<label>-9.9999</label> <!-- placeholder for width -->

<format>%-0.4f m</format>

<property>/foo/altitude</property>

</text>

checkbox

--------

A checkbox, useful for linking to boolean properties.

Example:

<checkbox>

<x>150</x>

<y>200</y>

<width>12</width>

<height>12</height>

<property>/autopilot/locks/heading</property>

</checkbox>

button

------

A push button, useful for firing command bindings.

one-shot - true if the button should pop up again after it is

pushed, false otherwise. The default is true.

101



<button>

<x>0</x>

<y>0</y>

<legend>OK</legend>

<binding>

<command>dialog-apply</command>

</binding>

<binding>

<command>dialog-close</command>

</binding>

<default>true</default>

</button>

combo

-----

A pop-up list of selections.

value - one of the selections available for the combo. There may be

any number of "value" fields.

Example:

<combo>

<x>10</x>

<y>50</y>

<width>200</width>

<height>25</height>

<property>/environment/clouds/layer[0]/type</property>

<value>clear</value>

<value>mostly-sunny</value>

<value>mostly-cloudy</value>

<value>overcast</value>

<value>cirrus</value>

</combo>

102



list

----

like "combo", but displays all values in a scrollable list box with

slider on the right side. Updates the <property> to the selected

entry. On <dialog-update> re-scans the <value> nodes and updates

the list.

airport-list

------------

like "list", but fills the list automatically with all airports known

to FlightGear. Calls bindings on airport selection and returns the

selected entry in <property> on dialog-apply. Interprets <property>

as search term on dialog-update.

property-list

-------------

like "list", but shows a list of properties from the global property

tree. The widget handles navigation in the property tree. It calls its

bindings on property selection and returns the path of the selected

property in <property> on dialog-apply. It’s up to the caller to check

if the path belongs to a dir node or a value node. The widget shows

the contents of the dir property given in <property> on dialog-apply.

It does *not* handle setting of property values! Clicking on some

entries with the "control" or "shift" key pressed has a special meaning:

Ctrl +

"." -> toggle verbose mode (shows flags, listeners, dir-values)

".." -> go to root node

(bool) -> toggle bool value

Shift +

"." -> dump contents of that tree level to the terminal

103



The flags printed after the node type have the following meaning:

r -> read protected

w -> write protected

R -> trace read operations (in the terminal window)

W -> trace write operations

A -> archive bit set

U -> user archive bit set

P -> preserved bit set (value is preserved on sim-reset)

T -> property is "tied"

Ln -> number of listeners attached to this node

select

------

A box with arrow buttons that cycle through a list of values.

Example:

<select>

<x>10</x>

<y>50</y>

<width>200</width>

<height>25</height>

<property>/sim/aircraft</property>

<value>bo105</value>

<value>ufo</value>

</select>

slider

------

A horizontal or vertical slider for setting a value.

vertical - true if the slider should be vertical, false if it should

104



be horizontal. The default is false.

min - the minimum value for the slider. The default is 0.0.

max - the maximum value for the slider. The default is 1.0.

step - set to non-null if slider should move in steps. The default is 0.0 (off).

pagestep - set to non-null to enable page-stepping. The default is 0.0 (off).

fraction - size of the slider handle. Range: 0..1. The default is 0.0 (minimum).

Example:

<slider>

<x>10</x>

<y>50</y>

<width>200</width>

<property>/environment/visibility-m</property>

<min>5</min>

<max>50000</max>

</slider>

dial

----

A circular dial for choosing a direction.

wrap - true if the dial should wrap around, false otherwise. The

default is true.

min - the minimum value for the dial. The default is 0.0.

max - the maximum value for the dial. The default is 1.0.

Example:

<dial>

<x>10</x>

105



<y>50</y>

<width>20</width>

<property>/environment/wind-from-direction-deg</property>

<min>0</min>

<max>360</max>

</dial>

textbox

-------

The text will be retrieved/buffered from/within a specified

property tree, like:

<textbox>

<!-- position -->

<x>100</x>

<y>100</y>

<!-- dimensions -->

<width>200</width>

<height>400</height>

<property>/gui/path-to-text-node/contents</property>

<slider>15</slider> <!--width for slider -->

<wrap>false</wrap> <!-- don’t wrap text; default: true -->

<top-line>0</top-line <!-- line to show at top, -ve numbers: show last line -->

<editable>true</editable> <!-- if the puLargeInput is supposed to be editable -->

</textbox>

hrule/vrule

-----------

Draws a horizontal/vertical line that, by default, expands to full width/height.

Its thickness can be set with <pref-height>/<pref-width>.

<hrule>

106



<color>

<red>1.0</red>

<green>0.0</green>

<blue>0.0</blue>

</color>

<pref-height>2</pref-height>

</hrule>

GLOBAL SETTINGS ("THEMES")

--------------------------

FlightGear reads GUI style information from /sim/gui/, which is by default

loaded from file $FG_ROOT/gui/style.xml. This file contains one <font> and

one <colors> group:

global font settings

--------------------

<sim>

<gui>

<font>

<name type="string">Helvetica.txf</name>

<size type="float">15</size>

<slant type="float">0</slant>

</font>

</gui>

<sim>

<name> can either be the name of a built-in bitmap font (one of:

"FIXED_8x13", "FIXED_9x15", "TIMES_10", "TIMES_24", "HELVETICA_10",

"HELVETICA_12", "HELVETICA_14", "HELVETICA_18", "SANS_12B"), or the

name of a texture font in the $FG_FONT directory. $FG_FONT is by

default set to $FG_ROOT/Fonts/. Properties <size> and <slant> are

only applied to texture fonts, and otherwise ignored.

107



global color settings

---------------------

These define the color of the splash screen font, and the color of the

GUI elements. All colors are in /sim/gui/colors/ and follow the same

pattern:

<sim>

<gui>

<colors>

<!-- splash screen font color; ignores <alpha> value -->

<splash>

<red type="float">1.0</red>

<green type="float">0.9</green>

<blue type="float">0.0</blue>

</splash>

</colors>

</gui>

</sim>

As listed above, FlightGear implements several GUI elements:

(1) "dialog" "group" "frame" "hrule" "vrule"

"list" "airport-list" "input" "text" "checkbox"

"radio" "button" "combo" "slider" "dial"

"textbox" "select"

The underlying plib library uses six colors for each GUI element.

These are:

(2) "background" "foreground" "highlight"

"label" "legend" "misc"

"button", for example, uses the first four colors from (2), while it

ignores "legend" and "misc" color. "text" only uses "label", and ignores

the rest. In some cases the use of colors isn’t obvious and you have to

108



try or look up the plib sources to be sure. GUI colors can be defined

for each of the categories from (1) and (2), and for combinations of

them:

(3) "button-legend" "input-misc" etc.

FlightGear has default colors for (2) built-in. Let’s call them (0).

And this is how colors for individual GUI elements are determined,

if, for example, a button is to be drawn:

For the button’s background:

a. read the hard-coded default "background" color from (0) as base

b. merge the global "background" color from (2) in (if defined)

c. merge a global color "button-background" from (3) in (if defined)

d. merge a specific <color> from the dialog’s XML file in (if defined)

Repeat the four steps for the button’s "foreground", "highlight",

etc. color.

If you write a style file, you’ll most likely start with the colors

from (2):

<sim>

<gui>

<colors>

<background>

<red type="float">0.6</red>

<green type="float">0.0</green>

<blue type="float">0.0</blue>

<alpha type="float">1.0</alpha>

</background>

<foreground>

...

This makes all dialogs dark red. But you don’t, for example, want buttons

109



to be red, but yellow. So you define another color for buttons:

<button>

<red type="float">1.0</red>

<green type="float">0.9</green>

<blue type="float">0.0</blue>

<alpha type="float">1.0</alpha>

</button>

...

This sets all of a button’s six colors (2) to some shades of red. plib

does this automatically. The lower and right border ("foreground") will

be darker, the upper and left border will be lighter ("highlight").

If you aren’t happy with plib’s choice, you can set each of the colors

explicitly. Let’s say, we want the text on the button blue (3):

<button-legend>

<red type="float">0.3</red>

<green type="float">0.3</green>

<blue type="float">1.0</blue>

<alpha type="float">1.0</alpha>

</button-legend>

...

To set the cursor color from input fields, you’d define "input-misc",

etc.

You can change colors and font at runtime. Just open the property

browser, go to /sim/gui/colors and change whatever you like. The

new color will only take effect, though, if you re-init the GUI.

There’s a menu entry for that, and you can define a key binding

for it:

<key n="99">

<name>c</name>

<desc>Re-init GUI</desc>

<binding>

<command>reinit</command>

<subsystem>gui</subsystem>

110



</binding>

</key>

Note that this will currently close all open dialogs!

__end__

15 Hud

This document describes the *new* HUD system that will be first released

with fgfs >0.9.10. For the old system see $FG_ROOT/Docs/README.xmlhud.

Note that the old system is scheduled for removal, and that the new system

is work in progress. So it’s up to you to choose the lower risk. :-)

###############################################################################

A HUD configuration file may contain 3 types of information:

(1) global settings

(2) HUD instrument definitions

(3) imports of further HUD config files

(1) global settings ===========================================================

These can be used to override settings in the global property tree. Currently

only bool <enbale-3d> is supported. It allows a HUD to define itself if it is

a 2D HUD (false) or a 3D HUD (true). 2D HUDs always remain in the screen plane,

while 3D HUDs always remain in a position relative to the aircraft.

111



Example:

<enable-3d>true</enable-3d>

(2) HUD instrument definitions ================================================

These define one single HUD "item" (instrument or label), and consist of several

properties. Some of those are standardized property groups that can be used

in many places. These shall be explained first.

(2.1) standardized property groups --------------------------------------------

1. <condition> group

2. input channel group

3. <option>s

(2.1.1) <condition> ...........................................................

These define conditions that are either "true" or "false". They are used to

hide/unhide whole items, or to set other item states (blinking on/off) etc.

You find detailed documentation about them in $FG_ROOT/Docs/README.conditions.

(2.1.2) input channel groups .................................................

These define an input channel to the HUD instrument and serve as interface

between property system and the instrument. A complete channel definition

looks like this (defaults in comments):

<input>

112



<property>/position/altitude-agl-ft</property> <!-- no default -->

<factor>0.3048</factor> <!-- 1.0 -->

<offset>2.0</offset> <!-- 0.0 -->

<damp>1.5</damp> <!-- 0.0 (no damping) -->

<min>0.0</min> <!-- -infinity -->

<max>10000</max> <!-- +infinity -->

</input>

Input channels are only called <input> for instruments that only have one

channel. Other instruments may have two or more channels, called <bank-input>,

<pitch-input> etc. All of them will have the same member properties and behave

the same.

An input channel will preprocess the raw property value for the HUD instrument.

The property may be of any type (bool, int, long, float, double, string), but

not all types will make sense in every situation. The HUD instrument will only

see the final value, which is calculated as:

v = <property> * <factor> + <offset>

if (<damp>) v = EWMA_lowpass(v, <damp>)

if (v < <min>) v = <min>

if (v > <max>) v = <max>

The EWMA_lowpass filter (Exponentially Weighted Moving Average) is calculated

like so:

coeff = 1.0 - 1.0 / 10^<damp>

v = average = (average * coeff) + (v * (1.0 - coeff))

That is, a <damp> value of 0 will cause no damping. A damping value of 1 will

make a coefficient of 0.9, which means that the resulting value will be 9/10

of the average plus 1/10 of the new value. A damping value of 2 will make

a coefficient of 0.99 and hence result in a value of 99/100 the average plus

1/100 the new value etc. The higher the <damp> value, the more damped will

the output value be.

113



2.1.3 <option> ................................................................

Most HUD instruments accept one or more options from a common set. It will be

explaind in the respective intrument descriptions which options are actually

used by that instrument. Possible values are:

<option> autoticks </option>

<option> vertical </option> \___orientation of <tape>

<option> horizontal </option> /

<option> top </option> \

<option> left </option> |___place of numbers in <tape>, <gauge>

<option> bottom </option> | top/bottom for turn-bank-indicator, etc.

<option> right </option> /

<option> both </option> _left/right for vert. and top/bottom for hor.

<option> noticks </option>

<option> arithtic </option>

<option> decitics </option>

<option> notext </option> ___no numbers on <tape>

Example:

<tape>

<option>left</option>

<option>vertical</option>

...

</tape>

(2.1) properties common to all instruments ------------------------------------

All HUD instruments will accept the following common properties (shown on

a <tape> instrument):

114



<tape>

<name>foo tape</name>

<x>-100</x> <!-- 0 == center -->

<y>-60</y> <!-- 0 == center -->

<width>20</width> <!-- 0 -->

<height>120</height> <!-- 0 -->

<condition>...</condition> <!-- see section 2.1.1; default: true -->

...

</tape>

The <name> is only a description for the instrument to make reading the config

easier. It’s output in --log-level=info, but not otherwise used. The coordinates

define the place and size of the instrument. They are relative to the origin of

their parent, which is the middle of the HUD/screen by default. Positive <x> are

on the right, positive <y> in the upper half. The <condition> hides/reveals the

whole instrument.

(2.2) HUD instruments ---------------------------------------------------------

(2.2.1) <label> ...............................................................

Draws a formatted string or number.

Text:

<format> ... printf-style format with only one % item. Example: "%2.3lf ft"

<prefix> ... prefix text \___ in addition to the <format>

<postfix> ... postfix text /

<halign> ... one of "left", "center" (default), "right".

Box:

115



<box> ... draw box around label (default: false)

<option> ... one of (left|right|top|bottom) ... draw arrow on this side

<pointer-width> ... size of pointer base

<pointer-lenfth> ... distance of base--peak

<blinking>

<interval> ... on/off-time in seconds (default: -1 == off)

<condition>...</condition> ... see secion 2.1.1 (default: true)

</blinking>

TODO:

<digit> ... number of insignificant digits (those will be printed smaller)

Example:

<label>

<name>G Load</name>

<x>-40</x>

<y>25.5</y>

<width>1</width>

<height>1</height>

<input>

<property>/accelerations/pilot/z-accel-fps_sec</property>

<factor>-0.03108095</factor>

<damp>1.3</damp>

</input>

<format>%2.1f</format>

<halign>right</halign>

<box>true</box>

<option>bottom</option> <!-- pointer on the lower edge -->

<blinking>

<interval>0.25</interval>

<condition>

<or>

<less-than> <!-- G load > 2.0 -->

116



<property>/accelerations/pilot/z-accel-fps_sec</property>

<value>-64.3481</value>

</less-than>

<greater-than> <!-- G load < -1.0 -->

<property>/accelerations/pilot/z-accel-fps_sec</property>

<value>31.17405</value>

</greater-than>

</or>

</condition>

</blinking>

</label>

(2.2.2) <tape> ................................................................

SCALE:

input

major-divisions

minor-divisions

modulo

display-span

TAPE:

tick-bottom

tick-top

tick-right

tick-left

cap-bottom

cap-top

cap-right

cap-left

marker-offset

enable-pointer

117



zoom

pointer-type (moving|fixed)

tick-type (circle|line)

tick-length (constant|variable)

(2.2.3) <dial> ................................................................

SCALE:

input

major-divisions

minor-divisions

modulo

display-span

TAPE:

radius

divisions

(2.2.4) <gauge> ...............................................................

SCALE:

input

major-divisions

minor-divisions

modulo

display-span

118



(2.2.5) <turn-bank-indicator> .................................................

bank-input

sideslip-input

gap-width

bank-scale

(2.2.6) <ladder> ..............................................................

pitch-input

roll-input

display-span

divisions

screen-hole

compression-factor

enable-fuselage-ref-line

enable-target-spot

enable-velocity-vector

enable-drift-marker

enable-alpha-bracket

enable-energy-marker

enable-climb-dive-marker

enable-glide-slope-marker

glide-slope

enable-energy-marker

enable-waypoint-marker

enable-zenith

enable-nadir

enable-hat

119



type (pitch|climb-dive)

(2.2.7) <runway> ..............................................................

arrow-scale

arrow-radius

line-scale

scale-dist-nm

outer_stipple

center-stipple

arrow-always

reads directly:

/position/altitude-agl-ft,

/sim/view[0]/config/pitch-pitch-deg

/sim/view[0]/config/pitch-heading-deg

(2.2.8) <aiming-reticle> ......................................................

Draws MIL-STD-1787B aiming reticle. Size of bullet and inner circle are

determined from <width>. The outer circle radius is changeable at runtime.

<active-condition> ... true: stadiametric (4.2.4.4) (default)

false: standby (4.2.4.5)

<diameter-input> ... input channel: diameter of outer circle relative to

inner circle; default: 2.0 (= twice as big)

120



(3) <import> ==================================================================

Imports another HUD config into the current one. This can be a file defining

a single instrument ($FG_ROOT/Huds/Instruments/*.xml), a set of instruments

($FG_ROOT/Huds/Sets/*.xml) or a mixture of both (for example a complete HUD

on its own). The x/y offets moves the reference point for the included items

relative to the current reference point.

<import>

<path>Huds/Sets/controls.xml</path>

<x-offset>-100</x-offset>

<y-offset>70</y-offset>

</import>

Imported files can import further files. This is allowed for up to 10 levels.

This is an arbitrary number and can easily be changed in the code if necessary.

When fgfs is called with --log-level=info, then it outputs a graphical trees

of all loaded/imported files, with the instruments shown as leafs.

16 Introduction

Internals

---------

The core of FlightGear is the property system. This is a tree like internal

representation of global variables. The property system is explained more

in detail later on.

FlightGear’ way of doing things is breaking it up into small pieces. There is

(for example) animation code that reacts on property changes. There is also a

Flight Dynamics model (FDM) that (amongst other things) updates properties.

There is a menu system that can display and alter properties. Then we have

121



sound code that plays sound based on ... properties.

Maybe you see a pattern evolve by now.

All subsystems are almost self containing. Most of the time they only read the

values of some properties, and sometimes they alter other properties. This is

the basic way of communicating between subsystems.

Property System

---------------

The property system is best described as an in-memory LDAP database which holds

the state of global variables. The system has a tree like hierarchy (like a

file system) and has a root node, sub nodes (like subdirectories) and end-nodes

(variables).

All variables are kept internally as raw values and can be converted to any

other supported type (boolean, int, float double and string).

Like a file system, every node can be accessed relative to the current node, or

absolute to the root node.

The property system also allows aliasing nodes to other nodes (like symbolic

linking files or directories to other files or directories) and may be assigned

read-only or read-write.

If necessary it would be possible for parts of the program to hold it’s own

property tree, which is inaccessible from the global property tree, by keeping

track of it’s own root-node.

Property I/O code allows one to easily read the tree from, or write the tree to

an XML file.

Subsystems

----------

To add a new subsystem you would have to create a derived class from

SGSubsystem and define at least a small set of functions:

122



class FGFX : public SGSubsystem

{

public:

FGFX ();

virtual ~FGFX ();

virtual void init ();

virtual void reinit ();

virtual void bind ();

virtual void unbind ();

virtual void update (double dt);

}

The init() functions should make sure everything is set and ready so the

update() function can be run by the main loop. The reinit() function handles

everything in case of a reset by the user.

The bind() and unbind() functions can be used to tie and untie properties.

After that you can register this class at the subsystem manager:

globals->add_subsystem("fx", new FGFX);

Now the subsystem manager calls the update() function of this class every

frame. dt is the time (in seconds) elapsed since the last call.

Scripting

---------

The scripting langage Nasal can also read and modify properties but it can also

be incorporated into the menu system. The documentation for Nasal can be found

here: http://www.plausible.org/nasal/flightgear.html

123



17 IO

This document describes how to invoke FlightGear’s generic IO subsystem.

FlightGear has a fairly flexible generic IO subsystem that allows you

to "speak" any supported protocol over any supported medium. The IO

options are configured at runtime via command line options. You can

specify multiple entries if you like, one per command line option.

The general form of the command line option is as follows:

--protocol=medium,direction,hz,medium_options,...

protocol = { native, nmea, garmin, fgfs, rul, pve, ray, etc. }

medium = { serial, socket, file, etc. }

direction = { in, out, bi }

hz = number of times to process channel per second (floating

point values are ok.

Generic Communication:

--generic=params

With this option it is possible to output a pre-configured

ASCII string or binary sequence using a predefined separator.

The configuration is defined in an XML file located in the

Protocol directory of the base package.

params can be:

serial port communication: serial,dir,hz,device,baud,protocol

socket communication: socket,dir,hz,machine,port,style,protocol

i/o to a file: file,dir,hz,filename,protocol

See README.protocol for how to define a generic protocol.

Serial Port Communication:

124



--nmea=serial,dir,hz,device,baud

device = OS device name of serial line to be open()’ed

baud = {300, 1200, 2400, ..., 230400}

example to pretend we are a real gps and output to a moving map application:

--nmea=serial,out,0.5,COM1,4800

Note that for unix variants you might use a device name like "/dev/ttyS0"

Socket Communication:

--native=socket,dir,hz,machine,port,style

machine = machine name or ip address if client (leave empty if server)

port = port, leave empty to let system choose

style = tcp or udp

example to slave one copy of fgfs to another

fgfs1: --native=socket,out,30,fgfs2,5500,udp

fgfs2: --native=socket,in,30,,5500,udp --fdm=external

This instructs the first copy of fgfs to send UDP packets in the

native format to a machine called fgfs2 on port 5500.

The second copy of fgfs will accept UDP packets (from anywhere) on

port 5500. Note the additional --fdm=external option. This tells

the second copy of fgfs to not run the normal flight model, but

instead set the FDM values based on an external source (the

network in this case.)

File I/O:

--garmin=file,dir,hz,filename

filename = file system file name

125



example to record a flight path at 10 hz:

--native=file,out,10,flight1.fgfs

example to replay your flight

--native=file,in,10,flight1.fgfs --fdm=external

You can make the replay from a file loop back to the beginning

when it reaches the end of the file with the "repeat" flag:

--generic=file,in,20,flight.out,playback,repeat

With a numeric argument, FlightGear will exit after that number of repeats.

--generic=file,in,20,flight.out,playback,repeat,5

Moving Map Example:

Per Liedman has developed a moving map program called Atlas

(atlas.sourceforge.net) The initial inspiration and much code came

from Alexei Novikov.

The moving map supports NMEA format input either via network or

via serial port. Either way will work, but this example

demonstrates the use of a socket connection.

Start up fgfs with:

fgfs --nmea=socket,out,0.5,atas-host-name,5500,udp

Start up the Atlas program with:

Atlas --udp=5500 --fgroot=path-to-fg-root --glutfonts

Once both programs are running, the Atlas program should display

your current location. Atlas is a really nifty program with many

neat options such as the ability to generate and use background

bitmaps that show the terrain, cities, lakes, oceans, rivers, etc.

126



HTTP Server Example

You can now interact with a running copy of FlightGear using your

web browser. You can view all the key internal variables and even

change the ones that are writable. If you have support in your

favorite [scripting] language for interacting with an http server,

you should be able to use this as a mechanism to interface your

script with FlightGear.

Start up fgfs with the --httpd=<port#> option:

For example:

fgfs --httpd=5500

Now point your web browser to:

http://host.domain.name:5500/

When a value is displayed, you can click on it to bring up a form

to assign it a new value.

ACMS flight data recorder playback

fgfs --fdm=acms --generic=file,in,1,<path_to_replay_file>,acms

18 Joystick

Replaced by Docs/README.Joystick.html in the base package.

19 JSBsim

JSBSim

127



JSBSim is an ongoing attempt at producing an OO Flight Dynamics Model

(FDM) to replace LaRCsim as the default FDM for FlightGear. It can

also be used standalone.

JSBSim uses config files to represent aircraft, engines, propellers,

etc. Also, the flight control system is described in the config

file. Normally, for use with FlightGear, the config files are named

this way [case is significant]:

<FG_ROOT>/Aircraft/<aircraft name>/<aircraft name>.xml

Engines are named like this:

<FG_ROOT>/Engines/<engine name>.xml

Aircraft and engine config files are present in the FGFS Base package

which must be downloaded. See the FlightGear web site for more

information.

How to run FGFS using JSBSim

All the various FDMs are currently compiled into FGFS. You can specify

which FDM you want at run time. You can also specify which aircraft

you want. Currently, for JSBSim only the X-15 and C-172 aircraft are

available. Here is an example command line used to start up FlightGear

using JSBSim as the FDM:

fgfs --fdm=jsb --aircraft=X15 --units-feet --altitude=60000 --uBody=2000 --wBody=120

or,

fgfs --fdm=jsb --aircraft=c172

[Note: uBody is the forward velocity of the aircraft, wBody is the

downward velocity - from the aircraft point of view. This essentially

means that the aircraft is going forward fast and has an angle of

attack of about 4 degrees or so]

The first command line sets up the initial velocity and altitude to

allow the X15 to glide down. Note that if you fire up the engine, it

128



will burn for only about two minutes and then run out of fuel - but

you will go very, very fast! The second command line example will

start up the C172 on the end of the runway.

Check out the JSBSim home page at http://jsbsim.sf.net. Please report

any bugs to jsb@hal-pc.org, or apeden@earthlink.net, or post on the

jsbsim web site using the SourceForge bug tracking system for the

project.

JSBSim is written by Jon S. Berndt and Tony Peden with contributions

by other FlightGear programmers, as well.

20 Jsclient

Start flightgear with

fgfs --jsclient=socket,in,<hz>,,<port>,udp \

--prop:/jsclient/axis[i]="/property/you/want/to/control" \

--prop:/jsclient/axis[i+1]="/another/property/you/want/to/control" ...

eg:

# fgfs --aircraft=yf23-yasim --airport=KEMT --jsclient=socket,in,5,,16759,udp \

--prop:/jsclient/axis[0]="/controls/flight/spoilers" \

--prop:/jsclient/axis[1]="/radios/comm/volume"

Start the server on the machine with the remote gameport:

JsServer <host> <port>

eg:

# JsServer 192.168.1.1 16759

(JsServer can be started before or after fgfs)

21 Layout

I just commited an implementation of GUI layout management, ported

over from my game project last year*. What this means is that you no

longer need to position your widgets manually in dialogs, and can

instead lay them out in tables and boxes like the pros do. :) I’ve

redone a few of the dialogs using the new scheme (I’m especially proud

of the autopilot dialog: http://plausible.org/andy/autopilot-new.png),

129



so you can see what the possibilities look like.

* FWIW, this is almost the last of my useful code from last spring.

Nasal and the Plib vertex splitting code are two other bits that

were useful in isolation. I also had a terrain engine and stencil

shadow implementation, but those weren’t really production quality.

Basically, the implementation is a preprocessor on top of the existing

dialog properties, which sets x/y/width/height values based on

constraints. The <group> objects, including the top-level one which

represents the whole dialog, can now have a <layout> property, which

can be "hbox", "vbox", or "table".

The boxes simply lay out their children in order, either top-to-bottom

or left-to-right. The box name comes from Qt and Gtk, but this is

also the same thing that Java calls a "flow layout", or what the Tk

"packer" does. You can set "constraint" properties on the children,

to give the layout manager hints as to how to place the children. For

the boxes, these are:

equal: The box manager makes sure that all the widgets with this

constraint set to true get equal sizes big enough to fit the

largest one. This is very useful for button boxes to make

the "OK" and "Cancel" buttons match, for example.

stretch: Cells with "stretch" set to true get all the extra space,

if any, the box has to allocate. These are useful for

alignment purposes, especially when combined with <empty>

"widgets" (which are ignored by the dialog creation code,

but honored by the layout engine).

The table layout will be a little more familiar to anyone with HTML

experience. Children of tables get the following constraints:

row: The row number containing the upper left corner of the widget.

Table rows are zero-indexed.

col: The column number containing the upper left corner of the widget.

Table columns are zero-indexed.

rowspan: The number of rows spanned by the widget. Defaults to one.

colspan: The number of columns spanned by the widget. Defaults to

one.

130



Inside of each "cell", regardless of parent layout, there are some

constraints that are used to position the widget within the space

available:

halign: The horizontal alignment. Can be "left", "right",

"center", or "fill" (i.e. stretch to available space).

valign: The vertical alignment. Can be "top", "bottom",

"center", or "fill".

padding: The number of pixels to leave between the edge of the

cell and the widget.

pref-height:

pref-width: Overrides the default preferred size of the widget.

Note that this is the size of the widget only, not the

cell (which includes padding).

Also, the padding values for cells in a group can be set to a default

value with a <default-padding> property on the group widget.

Some will ask why didn’t I implement this as part of Pui. The problem

is the pui just isn’t set up for it. Not only is there no notion of

"preferred" size for a widget, there isn’t anything remote like a

"constraint" system for attaching arbitrary values to widgets. With

the property system, I have that for free (the original code was

written to work with Nasal objects, btw). I can do the layout with

the properties and on the properties, and our existing dialog code

hardly needs to change at all.

Anyway, give it a try and see if I’ve broken anything. Also, note

that some of these changes *do* modify the visual appearance of the

GUI. I think it looks better, but opinions will no doubt vary. Shout

if you hate it.

And finally, the text alignment doesn’t quite look right with current

plib due to some minor rendering bugs. Bug Steve to apply the patch I

submitted a week or so ago. :)

Andy

131



22 Logging

Logging in FlightGear

---------------------

[Note: JSBSim also has its own independent logging facilities, which

are not discussed here.]

FlightGear can log any property values at any interval to one or more

CSV files (which can be read and graphed using spreadsheets like

Gnumeric or Excel). Logging is defined in the ’/logging’ subbranch of

the main property tree; under ’/logging’, each ’/log’ subbranch

defines a separate log with its own output file and interval. Here is

a simple example that logs the rudder and aileron settings every

second (1000ms) to the file steering.csv, using a comma (the default,

anyway) as the field delimiter:

<PropertyList>

<logging>

<log>

<enabled>true</enabled>

<filename>steering.csv</filename>

<interval-ms>1000</interval-ms>

<delimiter>,</delimiter>

<entry>

<enabled>true</enabled>

<title>Rudder</title>

<property>/controls/flight/rudder</property>

</entry>

<entry>

<enabled>true</enabled>

<title>Ailerons</title>

<property>/controls/flight/aileron</property>

</entry>

</log>

</logging>

</PropertyList>

Each ’log’ subbranch contains a required ’enabled’ property, an

optional ’filename’ property (defaults to "fg_log.csv"), an optional

132



’delimiter’ property (defaults to a comma), an optional ’interval-ms’

property (defaults to 0, which logs every frame), and a series of

’entry’ subbranches. The ’delimiter’ property uses only the first

character of the property value as the delimiter. Note that the

logger does no escaping, so you must choose a delimiter that will not

appear in the property values (that’s not hard, since most of the

values are numeric, but watch for commas in the titles).

Each ’entry’ subbranch contains a required ’enabled’ property, a

’property’ property specifying the name of the property to be logged,

and an optional ’title’ property specifying the title to use in the

CSV file (defaults to the full path of the property). The elapsed

time in milliseconds since the start of the simulation is always

included as the first entry with the title "Time", so there is no need

to include it explicitly.

Here’s a sample of the logging output for the above log:

Time,Rudder,Ailerons

6522,0.000000,0.000000

7668,-0.000000,0.000000

8702,-0.000000,0.000000

9705,-0.000000,0.000000

10784,-0.000000,0.000000

11792,-0.000000,0.000000

12808,-0.000000,-0.210000

13826,-0.000000,-0.344000

14881,-0.000000,-0.066000

15901,-0.000000,-0.806000

16943,-0.000000,-0.936000

17965,-0.000000,-0.534000

19013,-0.000000,-0.294000

20044,-0.000000,0.270000

21090,-0.000000,-1.000000

22097,-0.000000,-0.168000

Note that the requested interval is only a minimum; most of the time,

the actual interval is slightly longer than the requested one.

The easiest way for an end-user to define logs is to put the log in a

133



separate XML file (usually under the user’s home directory), then

refer to it using the --config option, like this:

fgfs --config=log-config.xml

The output log files are always relative to the current directory.

--

David Megginson, last updated 2002-02-01

23 Materials

README.materials

This README describes the materials.xml file format. It is targeted at those

wanting to change the appearance of the scenery in FlightGear.

As is the norm in FG, the materials.xml file is a properties file. However,

it is only read on startup, is not part of the main property tree and cannot

be changed at runtime.

The properties file consists of a number of <material> entries, each of which

describes a single visually distinct terrain material in the FG world.

The rest of this document describes the children tags of the <material> entry.

name : Scenery type names that map to this material. These are typically taken

from landclass definitions created by TerraGear. Multiple scenery types

may map to a single material. This is recommended to minimize texture

memory usage.

condition : A condition statement used to activate the material. Note that this

if evaluated once at start-up.

texture : A relative path to an SGI RGB, PNG or DDS file containing a texture

for the material. RGB and PNG are recommended for platform compatibility.

You may define more than one <texture> element, in which case the scenery

loader will choose one texture for each contiguous set of scenery

134



triangles.

texture-set : If using an effect (see below), it may be necessary to define more

than one texture. The texture-set element has multiple <texture> element

children which may then be referenced by the effect. You may define more

than one <texture-set> element, in which case the scenery loader will

choose one texture for each contiguous set of scenery triangles.

object-mask : An optional bitmap file used to control random placement of lights,

buildings and vegetation on the terrain. The green channel mask is used

for random vegetation placement, the blue channel for buildings and lights.

and the red channel controls the rotation of buildings (0.0 is North, 0.5

is South). Fractional colour values can be used to give a probability of

placement. Multiple object-masks may be defined to match up with <texture>

or <texture-set> elements.

effect : The effect to be used for this material. (default:

Effects/terrain-default)

ambient, diffuse, specular, emissive, and shininess are copied into the

parameter section of the effect created for this material.

parameters : Additional parameters to be used in the effect. See README.effects

for format information.

wrapu : True if the texture should repeat horizontally over a surface, false if

it should not repeat (default: true).

wrapv : True if the texture should repeat vertically over a surface, false if

it should not repeat (default: true).

mipmap : True if the texture should be mipmapped, false otherwise. (default: true).

xsize : The horizontal size of a single texture repetition, in meters.

ysize : the vertical size of a single texture repetition, in meters

light-coverage : The coverage of a single point of light in m^2. 0 indicates no

lights at all. Minimum value is 1000m^2. May be masked by the blue channel

of an object-mask. Lights are all generated 3m above the surface, and

135



have random colour (50% yellow, 35% white, 10% orange, 5% red)

ambient : The ambient light colour for the material, specified as separate

r, g, b, a components (default: all color components 0.2, alpha 1.0).

diffuse : The diffuse light colour for the material, specified as separate

r, g, b, a components (default: all color components 0.8, alpha 1.0).

specular : The specular light colour for the material, specified as separate

r, g, b, a components (default: all color components 0.0, alpha 1.0).

emissive : The emissive light colour for the material, specified as separate

r, g, b, a components (default: all color components 0.0, alpha 1.0).

solid : Whether the surface is solid from an FDM perspective. If it is not

solid, it is assumed that the material models a fluid (water) surface.

(default: true).

friction-factor : The friction factor for that material. The normalized

factor can be used by a FDM to post-multiply all contact friction forces

with that factor. That is the more slippery a material is the smaller

this value should be. (default: 1.0 for Dry concrete/Asphalt).

rolling-friction : the gear rolling rolling-friction coefficient for this

particular material. (default: 0.02 for Dry concrete/Asphalt).

bumpiness : normalized bumpiness factor for this particular terrain.

(default: 0.0 for a smooth surface).

load-resistance : a pressure value how much force per surface area this

surface can carry without deformation. The value should be in N/m^2

(default: 1e30).

glyph : group that defines one letter/digit/symbol in a font texture

sub-entries: name, left (default: 0.0), right (default: 1.0)

(left and right describe the horizontal position in the texture.)

wood-coverage : The coverage of trees in areas marked as woodland in

m^2. A lower number means a higher density of trees. A value of

0 indicates no woods. May be masked by the green channel of an

136



object-mask. (default: 0)

tree-range-m : The range at which trees become visible. Note that this

is not absolute, as trees are loaded in blocks. A lower number means

trees will not become visible until you are closer.

tree-texture : A texture to use for the trees. Typically this will contain around

8 different trees in a row, duplicate 4 times. From bottom to top, the

rows contain

* summer textures

* summer snow texture

* winter texture

* winter snow texture

Each tree must have space at the top. For a 512x512 texture sheet, this

should be 8 pixels. Otherwise subsequent rendering results in "top hats"

above trees in the distance where the trunk of the tree above in the

textures sheet bleeds downwards when the mipmaps are generated.

tree-varieties : The number of different trees defined in the tree-texture

horizontally. (default: 1)

tree-height-m : The average height of the trees. Actual tree height will

vary by +/- 50%. (default: 0)

tree-width-m : The average width of the tree cover. Actual tree width will

vary by +/- 50%. (default 0)

tree-max-density-angle-deg : The slope angle at which trees begin to thin out

as the slope is too steep to support the full coverage. Shallower

slopes have maximum wood-coverage. Steeper slopes have fewer trees.

(default : 45)

tree-zero-density-angle-deg : The angle at which the slope is too steep to

support significant vegetation. Steeper slopes have no trees.

(default : 60)

object-max-density-angle-deg : The angle at which objects and buildings become

less dense due to a steep slope. (default : 20)

137



object-zero-density-angle-deg : The angle at which the slope is too steep to build

on. No object/buildings will be placed on slopes steeper than this.

(default : 30)

object-group : A group of random objects to be placed on the surface. Contains

<range-m> and one or more <object> children.

range-m : The distance at which objects within this object-group become

visible. Note that for realism, 60% of the objects will become visible

at <range-m>, 30% at 1.5*<range-m>, and 10% at 2*<range-m>.

(default: 2000)

object : A set of random objects to be placed. Contains <coverage-m2>, <path>

and <heading> children.

coverage-m2 : The coverage of a single object in m2. Lower values mean a higher

density. Minimum value is 1000.

spacing-m : The minimum space between this object and any other on the surface in

meters. This helps to avoid objects being placed ontop of each other.

(default 20)

path : Path relative to FG_ROOT to a model definition, usually .ac or .xml file.

More than one <path> may be included within the <object> tag, in which

case a single <path> is chosen at random for each individual object

placement.

heading-type : Indicator of how the heading of the random objects should be

determined. Valid values are:

fixed - Objects all point North. Default.

random - Objects are assigned an individual random heading

mask - Rotation is taken from the red channel of the object-mask

billboard - Object is always rotated to face camera - expensive

Random Buildings

================

Random Buildings come in three sizes, with individual constraints.

138



Small buildings. These have different textures on the sides compared to the front

and back. Small buildings are never deeper than they are wide.

Medium buildings, which are never taller than they are wide.

Large buildings. There are no constraints on their width, depth or height.

building-coverage : The coverage of random buildings in areas marked for random

objects in m^2. A lower number means a higher density of buildings. A

value of 0 indicates no buildings. May be masked by the blue channel of an

object-mask. (default: 0)

building-spacing-m : The minimum spacing between random buildings and other buildings

or random objects. This helps avoid objects being placed on top of each

other. (default: 5)

building-small-ratio: Ratio of small buildings. These buildings are 1-3 stories

in height, and may have a pitched roof. Fraction of small buildings is

(<building-ratio-small> / (<building-ratio-small> + <building-ratio-medium>

+ <building-ratio-large>). (default: 0.8)

building-medium-ratio : Ratio of medium buildings. These buildings are 3-6 stories

in height, and have a flat roof. (default: 0.15)

building-large-ratio : Ratio of large buildings. These buildings are 5-10 stories in

height, and have a flat roof. (default 0.05)

building-small-pitch : Fraction of small buildings with pitched roofs. (default 0.8)

building-medium-pitch : Fraction of small buildings with pitched roofs. (default 0.2)

building-large-pitch : Fraction of small buildings with pitched roofs. (default 0.1)

building-small-min-floors : Min. number of floors for a small building. (default 1)

building-small-max-floors : Max. number of floors for a small building. (default 3)

building-medium-min-floors : Min. number of floors for a medium building. (default 3)

building-medium-max-floors : Max. number of floors for a medium building. (default 8)

building-large-min-floors : Min. number of floors for a medium building. (default 5)

building-large-max-floors : Max. number of floors for a medium building. (default 20)

139



building-small-min-width-m : Min. width of small buildings. (default 15)

building-small-max-width-m : Max. width of small buildings. (default 60)

building-small-min-depth-m : Min. depth of small buildings. (default 10)

building-small-max-depth-m : Max. depth of small buildings. (default 20)

building-medium-min-width-m : Min. width of medium buildings. (default 25)

building-medium-max-width-m : Max. width of medium buildings. (default 50)

building-medium-min-depth-m : Min. depth of medium buildings. (default 20)

building-medium-max-depth-m : Max. depth of medium buildings. (default 50)

building-large-min-width-m : Min. width of large buildings. (default 50)

building-large-max-width-m : Max. width of large buildings. (default 75)

building-large-min-depth-m : Min. depth of large buildings. (default 50)

building-large-max-depth-m : Max. depth of large buildings. (default 75)

building-texture : The texture used for all buildings. See Docs/buildings.png for

details. (default Texture/buildings.png)

building-lightmap: Emissive texture for all buildings, which is faded in at night to

provide illusion of lit windows. Same texture coordinates and

format at building-texture above.

building-range-m: Range at which all buildings are visible. Beyond this point fewer

and fewer buildings are rendered, with no buildings rendered at

2*building-range-m (default 10000)

24 Mingw

How to compile FlightGear with mingw

====================================

MinGW & MSYS

============

You need to install mingw & msys:

http://www.mingw.org

140



You need at least:

MinGW: binutils, gcc-core, gcc-g++, mingw-runtime, mingw-utils, w32api

I would recommed the gcc-3.4.4 versions.

MSYS: msys-1.0.10.exe, msys-autoconf, msys-automake, msys-libtool, msys-DTK.

Please read instructions carefully.

Set the follwing environment variables within msys shell.

export CFLAGS="-I/usr/local/include -O2"

export CXXFLAGS="-I/usr/local/include -O2"

export CPPFLAGS=-I/usr/local/include

export LDFLAGS=-L/usr/local/lib

Pthread-win32

=============

http://sources.redhat.com/pthreads-win32/

compile:

make GCE-inlined

Install:

cp pthread.h sched.h semaphore.h /usr/local/include

cp linpthreadGCE2.a /usr/local/lib/libpthread.a

cp pthread-GCE.dll /usr/local/bin

patch header:

--- pthread.h Sat Oct 1 20:56:43 2005

***************

*** 210,218 ****

* -----------------

*/

! #if HAVE_CONFIG_H

! #include "config.h"

! #endif /* HAVE_CONFIG_H */

141



#ifndef NEED_FTIME

#include <time.h>

--- 210,218 ----

* -----------------

*/

! //#if HAVE_CONFIG_H

! //#include "config.h"

! //#endif /* HAVE_CONFIG_H */

#ifndef NEED_FTIME

#include <time.h>

GLUT

====

use precompiled in order to avoid conflicts with glut32.dll already installed.

http://www.xmission.com/~nate/glut.html

http://www.xmission.com/~nate/glut/glut-3.7.6-bin.zip

The header has to be updated with respect to MINGW.

*** glut.h Tue Dec 12 22:22:52 2000

--- /local_old/include/GL/glut.h Thu Aug 18 20:41:15 2005

***************

*** 20,26 ****

/* XXX This is from Win32’s <windef.h> */

# ifndef APIENTRY

# define GLUT_APIENTRY_DEFINED

! # if (_MSC_VER >= 800) || defined(_STDCALL_SUPPORTED) || defined(__BORLANDC__) || defined(__LCC__)

# define APIENTRY __stdcall

# else

# define APIENTRY

--- 20,26 ----

/* XXX This is from Win32’s <windef.h> */

# ifndef APIENTRY

# define GLUT_APIENTRY_DEFINED

! # if (_MSC_VER >= 800) || defined(_STDCALL_SUPPORTED) || defined(__BORLANDC__) || defined(__LCC__) || defined(__MINGW32__)

# define APIENTRY __stdcall

142



# else

# define APIENTRY

install:

cp glut.h /usr/local/include

cp glut32.dll /usr/local/bin

reimp glut32.lib

cp libglut32.a /usr/local/lib

OpenAL

======

Get OpenAL for instance from Creative

OpenAL win32 package

install Redist

install:

cd libs

reimp OpenAL32.lib

cp libopenal32.a /usr/local/lib

cp alut.lib /usr/local/lib/libalut.a

cd ..

mkdir /usr/local/include/AL

cp Include/* /usr/local/include/AL

zlib-1.2.3

==========

configure --prefix=/usr/local

make

make install

plib-1.6.8

==========

143



configure --prefix=/usr/local

make

make install

simgear

=======

get simgear from CVS

configure --prefix=/usr/local

make

make install

flightgear

=========

configure --prefix=/usr/local --with-threads

make

make install

25 Minipanel

Mini Panels for c172

List of files:

./keyboard.xml - same as release key bindings with "s" added to swap panels.

./preferences.xml - same as release preferences.xml with "panel2" added.

./Aircraft/c172/Panels/c172-panel-mini.xml - mini with sacred six, compass,

mixture knob, flaps, and control indicators.

./Aircraft/c172/Panels/c172-panel-trans-mini.xml - same mini panel with

plexiglass (transparent) background.

./Aircraft/c172/Panels/Textures/panel-mini-bg.rgb - grey background.

./Aircraft/c172/Panels/Textures/panel-trans-mini-bg.rgb - transparent background.

USAGE NOTES:

Hitting "s" will switch between the standard panel and the default.

You may choose other panels for the two that get toggled by changing the

144



preferences or adding command line parameters.

The property for the panels are:

Normal (Primary) panel: /sim/panel/path=<path to xml file>

Mini (Secondary) panel: /sim/panel2/path=<path to xml file>

The new property is /sim/panel2/path, it does not need to be a mini panel, you

can use whatever you want.

For example: to use the grey mini panel change preferences.xml or add this to

your command line:

runfgfs --prop:/sim/panel2/path=Aircraft/c172/Panels/c172-panel-mini.xml

26 Multiplayer

The commands are of the form:

--multiplay=in | out,Hz,destination address,destination port

--callsign=a_unique_name

Below are some examples of startup commands that demonstrate the use of the

multiplayer facilities.

For two players on a local network or across the internet:

----------------------------------------------------------

Player1:

--multiplay=out,10,192.168.0.3,5500 --multiplay=in,10,192.168.0.2,5501

--callsign=player1

Player2:

--multiplay=out,10,192.168.0.2,5501 --multiplay=in,10,192.168.0.3,5500

--callsign=player2

For multiple players on a local network:

----------------------------------------

Player1:

145



--multiplay=out,10,255.255.255.255,5500

--multiplay=in,10,255.255.255.255,5500 --callsign=player1

Playern:

--multiplay=out,10,255.255.255.255,5500

--multiplay=in,10,255.255.255.255,5500 --callsign=playern

Note that the callsign is used to identify each player in a multiplayer game

so the callsigns must be unique. The multiplayer code ignores packets that

are sent back to itself, as would occur with broadcasting when the rx and tx

ports are the same.

Multiple players sending to a single player:

--------------------------------------------

Player1:

--multiplay=out,10,192.168.0.2,5500 --callsign=player1

Player2:

--multiplay=out,10,192.168.0.2,5500 --callsign=player2

Player3:

--multiplay=out,10,192.168.0.2,5500 --callsign=player3

Player4 (rx only):

--multiplay=in,10,192.168.0.2,5500 --callsign=player4

This demonstrates that it is possible to have multiple instances of

Flightgear that send to a single instance that displays all the traffic. This

is the sort of implementation that we are considering for use as a tower

visual simulator.

For use with a server:

----------------------

Oliver Schroeder has created a server for multiplayer flightgear use.

The server acts as a packet forwarding mechanism. When it

receives a packet, it sends it to all other active players

in the vicinity (the server is configured to use 100nm by default).

146



Check out the server homepage <http://www.o-schroeder.de/fg_server/>

for the current status. You can either download the server for

some local use, or join the developers flying at the existing servers.

As with flightgear, the server is free software, released under GPL.

Pigeon <http://pigeond.net> has created a web page monitoring

two such servers, showing the traffic in a Google map environment.

See <http://pigeond.net/flightgear/fg_server_map.html>.

Options needed to enable multiplayer game with a server:

Player1:

--multiplay=out,10,serveraddress,5000 --multiplay=in,10,myaddress,5000

--callsign=player1

Player2:

--multiplay=out,10,serveraddress,5000 --multiplay=in,10,myaddress,5000

--callsign=player2

...

PlayerN:

--multiplay=out,10,serveraddress,5000 --multiplay=in,10,myaddress,5000

--callsign=playerN

Note that if every player using a particular server, such as one of those

listed on the Pigeon’s page, needs to have a unique callsign, not

already in use on that server.

If you are sitting behind a NAT’ting firewall, then you need to forward

the incoming traffic on the firewall outer (visible to the internet)

address arriving at the UDP port you use (5000 in the case above)

over to your private LAN address. In this case, use your PRIVATE LAN address

as <myaddress>. Example (if your private LAN address is 10.0.0.1,

in order to play on pigeond.net):

fgfs --multiplay=in,10,10.0.0.1,5000 --multiplay=out,10,pigeond.net,5000

--callsign=...UNIQUE callsign here...

If you and the server are in the same address space (i.e., both have a public

IP address or both are on the same private LAN), you hopefully don’t need to

147



mess with any firewalls.

If you don’t see other players playing on the same server in your flightgear,

check that you have followed the above router configuration guidelines. Check

that you don’t have any LOCAL firewall running on your computer preventing the

flightgear network traffic flow.

Finally, use ethereal(1) or tethereal(1) to capture the UDP traffic on the port

that you are using, and see if you observe both incoming and outgoing packets.

It’s a good idea to talk to the IRC channel #flightgear on irc.flightgear.org

while flying on one of the public servers. Also, it makes sense for every user

on the same server to use the same weather setup, e.g., the real weather

METAR feed, selected by setting to true the real-world-weather-fetch and

control-fdm-atmosphere properties.

Further reading (a must if you have a problem):

-----------------------------------------------

[1] The flightgear server homepage <http://fgms.sourceforge.net/>

[2] The wiki howto <http://wiki.flightgear.org/index.php/Howto:_Multiplayer>

[3] If everything else fails, ask for help on

the IRC channel #flightgear on irc.flightgear.org

27 Multiscreen

The Open Scene Graph library, which current FlightGear uses for its 3D

graphics, provides excellent support for multiple views of a

scene. FlightGear uses the osgViewer::Viewer class, which implements a

"master" camera with "slave" cameras that are offset from the master’s

position and orientation. FlightGear provides the "camera group"

abstraction which allows the configuration of slave cameras via the

property tree.

Slave cameras can be mapped to windows that are open on different

screens, or all in one window, or a combination of those two schemes,

according to the video hardware capabilities of a machine. It is not

advisable to open more than one window on a single graphics card due

to the added cost of OpenGL context switching between the

windows. Usually, multiple monitors attached to a single graphics card

148



are mapped to different pieces of the same desktop, so a window can be

opened that spans all the monitors. This is implemented by Nvidia’s

TwinView technology and the Matrox TripleHead2Go hardware.

The camera group is configured by the /sim/rendering/camera-group node

in the property tree. It can be set up by, among other things, XML in

preferences.xml or in an XML file specified on the command line with

the --config option.

Here are the XML tags for defining camera groups.

camera-group

For the moment there can be only one camera group. It can contain

window, camera, or gui tags.

window

A window defines a graphics window. It can be at the camera-group

level or defined within a camera. The window contains these tags:

name - string

The name of the window which might be displayed in the window’s

title bar. It is also used to refer to a previously defined

window. A window can contain just a name node, in which case

the whole window definition refers to a previously defined window.

host-name - string

The name of the host on which the window is opened. Usually this is

empty.

display - int

The display number on which the window is opened.

screen - int

The screen number on which the window is opened.

x, y - int

The location on the screen at which the window is opened. This is in

the window system coordinates, which usually puts 0,0 at the upper

left of the screen XXX check this for Windows.

149



width, height - int

The dimensions of the window.

decoration - bool

Whether the window manager should decorate the window.

fullscreen - bool

Shorthand for a window that occupies the entire screen with no

decoration.

overrideRedirect - bool

Only effective when fullscreen = true.

Provides an extra hint for Gnome-based linux systems that we insist that

the full screen window span *all* physical displays, not just the current

physical display.

camera

The camera node contains viewing parameters.

window

This specifies the window which displays the camera. Either it

contains just a name that refers to a previous window definition, or

it is a full window definition.

viewport

The viewport positions a camera within a window. It is most useful

when several cameras share a window.

x, y - int

The position of the lower left corner of the viewport, in y-up

coordinates.

width, height - int

The dimensions of the viewport

view

The view node specifies the origin and direction of the camera in

relation to the whole camera group. The coordinate system is +y up,

-z forward in the direction of the camera group view. This is the

same as the OpenGL viewing coordinates.

150



x,y,z - double

Coordinates of the view origin.

heading-deg, pitch-deg, roll-deg - double

Orientation of the view in degrees. These are specified using the

right-hand rule, so a positive heading turns the view to the left,

a positive roll rolls the view to the left.

perspective

This node is one way of specifying the viewing volume camera

parameters. It corresponds to the OpenGL gluPerspective function.

fovy-deg - double

The vertical field-of-view

aspect-ratio - double

Aspect ratio of camera rectangle (not the ratio between the

vertical and horizontal fields of view).

near, far - double

The near and far planes, in meters from the camera eye point. Note

that FlightGear assumes that the far plane is far away, currently

120km. The far plane specified here will be respected, but the sky

and other background elements may not be drawn if the view plane is

closer than 120km.

offset-x, offset-y - double

Offsets of the viewing volume specified by the other parameters in

the near plane, in meters.

frustum

This specifies the perspective viewing volume using values for the near

and far planes and coordinates of the viewing rectangle in the near

plane.

left, bottom - double

right, top - double

The coordinates of the viewing rectangle.

151



near, far - double

The near and far planes, in meters from the camera eye point.

ortho

This specifies an orthographic view. The parameters are the sames as

the frustum node’s.

gui

This is a special camera node that displays the 2D GUI.

viewport

This specifies the position and dimensions of the GUI within a

window, *however* at the moment the origin must be at 0,0.

Here’s an example that uses a single window mapped across 3

displays. The displays are in a video wall configuration in a

horizontal row.

<PropertyList>

<sim>

<rendering>

<camera-group>

<window>

<name>wide</name>

<host-name type="string"></host-name>

<display>0</display>

<screen>0</screen>

<width>3840</width>

<height>1024</height>

<decoration type = "bool">false</decoration>

</window>

<camera>

<window>

<name>wide</name>

</window>

<viewport>

<x>0</x>

<y>0</y>

<width>1280</width>

<height>1024</height>

152



</viewport>

<view>

<heading-deg type = "double">0</heading-deg>

</view>

<frustum>

<top>0.133</top>

<bottom>-0.133</bottom>

<left>-.5004</left>

<right>-.1668</right>

<near>0.4</near>

<far>120000.0</far>

</frustum>

</camera>

<camera>

<window>

<name type="string">wide</name>

</window>

<viewport>

<x>1280</x>

<y>0</y>

<width>1280</width>

<height>1024</height>

</viewport>

<view>

<heading-deg type = "double">0</heading-deg>

</view>

<frustum>

<top>0.133</top>

<bottom>-0.133</bottom>

<left>-.1668</left>

<right>.1668</right>

<near>0.4</near>

<far>120000.0</far>

</frustum>

</camera>

<camera>

<window>

<name>wide</name>

</window>

<viewport>

153



<x>2560</x>

<y>0</y>

<width>1280</width>

<height>1024</height>

</viewport>

<view>

<heading-deg type = "double">0</heading-deg>

</view>

<frustum>

<top>0.133</top>

<bottom>-0.133</bottom>

<left>.1668</left>

<right>.5004</right>

<near>0.4</near>

<far>120000.0</far>

</frustum>

</camera>

<gui>

<window>

<name type="string">wide</name>

</window>

</gui>

</camera-group>

</rendering>

</sim>

</PropertyList>

Here’s a complete example that uses a seperate window on each

display. The displays are arranged in a shallow arc with the left and

right displays at a 45.3 degree angle to the center display because,

at the assumed screen dimensions, the horizontal field of view of one

display is 45.3 degrees. Each camera has its own window definition;

the center window is given the name "main" so that the GUI definition

can refer to it. Note that the borders of the displays are not

accounted for.

<PropertyList>

<sim>

<rendering>

<camera-group>

154



<camera>

<window>

<host-name type="string"></host-name>

<display>0</display>

<screen>0</screen>

<fullscreen type = "bool">true</fullscreen>

</window>

<view>

<heading-deg type = "double">45.3</heading-deg>

</view>

<frustum>

<top>0.133</top>

<bottom>-0.133</bottom>

<left>-.1668</left>

<right>.1668</right>

<near>0.4</near>

<far>120000.0</far>

</frustum>

</camera>

<camera>

<window>

<name type="string">main</name>

<host-name type="string"></host-name>

<display>0</display>

<screen>1</screen>

<fullscreen type = "bool">true</fullscreen>

</window>

<view>

<heading-deg type = "double">0</heading-deg>

</view>

<frustum>

<top>0.133</top>

<bottom>-0.133</bottom>

<left>-.1668</left>

<right>.1668</right>

<near>0.4</near>

<far>120000.0</far>

</frustum>

</camera>

<camera>

155



<window>

<host-name type="string"></host-name>

<display>0</display>

<screen>2</screen>

<fullscreen type = "bool">true</fullscreen>

</window>

<view>

<heading-deg type = "double">-45.3</heading-deg>

</view>

<frustum>

<top>0.133</top>

<bottom>-0.133</bottom>

<left>-.1668</left>

<right>.1668</right>

<near>0.4</near>

<far>120000.0</far>

</frustum>

</camera>

<gui>

<window>

<name type="string">main</name>

</window>

</gui>

</camera-group>

</rendering>

</sim>

</PropertyList>

28 Osgtext

This document describes the syntax for text objects in the scene graph.

Text nodes are configured using XML and may appear within a model description

file, like other models or the particlesystem.

For the anxious reader, here is a complete example of a text node:

<!-- Must be enclosed by a <text/> node

<text>

<!-- It should have a name. Can be used for other animations -->

156



<name>My first Text</name>

<!-- Use offsets for the initial placement -->

<offsets>

<pitch-deg>0</pitch-deg>

<heading-deg>0</heading-deg>

<roll-deg>0</roll-deg>

<x-m>0</x-m>

<y-m>0</y-m>

<z-m>0</z-m>

</offsets>

<!-- instead of using pitch/heading/roll offset, one may use

axis-alignment -->

<!-- remember: x backwards, y right and z up -->

<axis-alignment>xy-plane</axis-alignment>

<!--

<axis-alignment>reversed-xy-plane</axis-alignment>

<axis-alignment>xz-plane</axis-alignment>

<axis-alignment>reversed-xz-plane</axis-alignment>

<axis-alignment>yz-plane</axis-alignment>

<axis-alignment>reversed-yz-plane</axis-alignment>

<axis-alignment>screen</axis-alignment>

-->

<!-- what type of text to draw, use on of literal, text-value or number-value -->

<!-- A simple constant, never changing string -->

<type type="string">literal</type>

<text type="string">Hello, world!</text>

<!-- The string value of a property -->

<type type="string">text-value</type>

<property type="string">some/property</property>

<format type="string">%s</format> <!-- the printf() format to display the value -->

<!-- A number from a property -->

<type type="string">number-value</type>

<property type="string">position/latitude-deg</property>

<factor type="double">1.0</factor> <!-- optional, scale the propertie’s value -->

<offset type="double">0.0</offset> <!-- optional, shift the propertie’s value -->

<format type="string">%5.2lf</format> <!-- printf() format to display -->

157



<truncate type="bool">false</truncate> <!-- truncate to an integer value -->

<layout>left-to-right</layout> <!-- default -->

<!--

<layout>right-to-left</layout>

<layout>vertical</layout>

-->

<draw-text type="bool">true</draw-text> <!-- draw the text itself -->

<draw-alignment type="bool">false</draw-alignment> <!-- draw crosshair at object center -->

<draw-boundingbox type="bool">false</draw-boundingbox> <!-- draw a bounding box -->

<font>led.txf</font> <!-- The font file name, relative to data/Fonts -->

<character-size type="double">0.01</character-size> <!-- size (height) im meters -->

<character-aspect-ratio type="double">1.0</character-aspect-ratio>

<max-height>0.012</max-height> <!-- the maximum height of the text -->

<max-width>0.040</max-width> <!-- the maximum width of the text -->

<font-resolution>

<width type="int">32</width>

<height type="int">32</height>

</font-resolution>

<!-- chose one of the kerning types or omit for default -->

<kerning>default</kerning>

<!--

<kerning>unfitted</kerning>

<kerning>none</kerning>

-->

<alignment>center-center</alignment> <!-- alignment of the text itself -->

<!-- possible values are

<alignment>left-top</alignment>

<alignment>left-center</alignment>

<alignment>left-bottom</alignment>

<alignment>center-top</alignment>

<alignment>center-center</alignment>

<alignment>center-bottom</alignment>

<alignment>right-top</alignment>

<alignment>right-center</alignment>

<alignment>right-bottom</alignment>

158



<alignment>left-baseline</alignment>

<alignment>center-baseline</alignment>

<alignment>right-baseline</alignment>

<alignment>baseline</alignment>

-->

</text>

The <text/> node may appear within <model/> or <PropertyList/> nodes. If you place

your text directly within your model file, use <text></text> nodes. You can also put

your <text> configuration into a separate file using the well known include directive:

Your model.xml file:

<model>

<path>may-fancy-model.ac</path>

<text include="HelloWorld.xml"/>

</model>

Your HelloWorld.xml:

<PropertyList>

<name>Hello World</name>

<font>Helvetica.txf</font>

<type type="string">literal</type>

<text type="string">Hello, world!</text>

<!-- etc. - you get the idea -->

</PropertyList>

Animation can be applied to text nodes like any other object. To give your text some

color, use the material animation, or translate, rotate, scale or spin your text as

you like.

29 Properties

================================================================================

CONTROLS

================================================================================

Flight Controls

---------------

159



/controls/flight/aileron

/controls/flight/aileron-trim

/controls/flight/elevator

/controls/flight/elevator-trim

/controls/flight/rudder

/controls/flight/rudder-trim

/controls/flight/flaps

/controls/flight/slats

/controls/flight/BLC // Boundary Layer Control

/controls/flight/spoilers

/controls/flight/speedbrake

/controls/flight/wing-sweep

/controls/flight/wing-fold

/controls/flight/drag-chute

Engines

-------

/controls/engines/throttle_idle

/controls/engines/engine[%d]/throttle

/controls/engines/engine[%d]/starter

/controls/engines/engine[%d]/fuel-pump

/controls/engines/engine[%d]/fire-switch

/controls/engines/engine[%d]/fire-bottle-discharge

/controls/engines/engine[%d]/cutoff

/controls/engines/engine[%d]/mixture

/controls/engines/engine[%d]/propeller-pitch

/controls/engines/engine[%d]/magnetos

/controls/engines/engine[%d]/boost

/controls/engines/engine[%d]/WEP

/controls/engines/engine[%d]/cowl-flaps-norm

/controls/engines/engine[%d]/feather

/controls/engines/engine[%d]/ignition

/controls/engines/engine[%d]/augmentation

/controls/engines/engine[%d]/afterburner

/controls/engines/engine[%d]/reverser

/controls/engines/engine[%d]/water-injection

/controls/engines/engine[%d]/condition

Fuel

----

160



/controls/fuel/dump-valve

/controls/fuel/tank[%d]/fuel_selector

/controls/fuel/tank[%d]/to_engine

/controls/fuel/tank[%d]/to_tank

/controls/fuel/tank[%d]/boost-pump[%d]

/consumables/fuel/tank[%d]/level-lbs

/consumables/fuel/tank[%d]/level-gal_us

/consumables/fuel/tank[%d]/capacity-gal_us

/consumables/fuel/tank[%d]/density-ppg

/consumables/fuel/total-fuel-lbs

/consumables/fuel/total-gal_us

Gear

----

/controls/gear/brake-left

/controls/gear/brake-right

/controls/gear/brake-parking

/controls/gear/steering

/controls/gear/gear-down

/controls/gear/antiskid

/controls/gear/tailhook

/controls/gear/tailwheel-lock

/controls/gear/wheel[%d]/alternate-extension

Anti-Ice

--------

/controls/anti-ice/wing-heat

/controls/anti-ice/pitot-heat

/controls/anti-ice/wiper

/controls/anti-ice/window-heat

/controls/anti-ice/engine[%d]/carb-heat

/controls/anti-ice/engine[%d]/inlet-heat

Hydraulics

----------

/controls/hydraulic/system[%d]/engine-pump

/controls/hydraulic/system[%d]/electric-pump

161



Electric

--------

/controls/electric/battery-switch

/controls/electric/external-power

/controls/electric/APU-generator

/controls/electric/engine[%d]/generator

/controls/electric/engine[%d]/bus-tie

Pneumatic

---------

/controls/pneumatic/APU-bleed

/controls/pneumatic/engine[%d]/bleed

Pressurization

--------------

/controls/pressurization/mode

/controls/pressurization/dump

/controls/pressurization/outflow-valve

/controls/pressurization/pack[%d]/pack-on

Lights

------

/controls/lighting/landing-lights

/controls/lighting/turn-off-lights

/controls/lighting/formation-lights

/controls/lighting/taxi-light

/controls/lighting/logo-lights

/controls/lighting/nav-lights

/controls/lighting/beacon

/controls/lighting/strobe

/controls/lighting/panel-norm

/controls/lighting/instruments-norm

/controls/lighting/dome-norm

Armament

--------

/controls/armament/master-arm

/controls/armament/station-select

/controls/armament/release-all

/controls/armament/station[%d]/stick-size

162



/controls/armament/station[%d]/release-stick

/controls/armament/station[%d]/release-all

/controls/armament/station[%d]/jettison-all

Seat

----

/controls/seat/vertical-adjust

/controls/seat/fore-aft-adjust

/controls/seat/cmd_selector_valve

/controls/seat/eject[%d]/initiate

/controls/seat/eject[%d]/status

APU

---

/controls/APU/off-start-run

/controls/APU/fire-switch

Autoflight

----------

/controls/autoflight/autopilot[%d]/engage

/controls/autoflight/autothrottle-arm

/controls/autoflight/autothrottle-engage

/controls/autoflight/heading-select

/controls/autoflight/altitude-select

/controls/autoflight/bank-angle-select

/controls/autoflight/vertical-speed-select

/controls/autoflight/speed-select

/controls/autoflight/mach-select

/controls/autoflight/vertical-mode

/controls/autoflight/lateral-mode

================================================================================

FDM (Aircraft settings)

================================================================================

Position

---------------

/position/latitude-deg

/position/longitude-deg

/position/altitude-ft

163



Orientation

-----------

/orientation/roll-deg

/orientation/pitch-deg

/orientation/heading-deg

/orientation/roll-rate-degps

/orientation/pitch-rate-degps

/orientation/yaw-rate-degps

/orientation/side-slip-rad

/orientation/side-slip-deg

/orientation/alpha-deg

Velocities

----------

/velocities/airspeed-kt

/velocities/mach

/velocities/speed-north-fps

/velocities/speed-east-fps

/velocities/speed-down-fps

/velocities/uBody-fps

/velocities/vBody-fps

/velocities/wBody-fps

/velocities/vertical-speed-fps

/velocities/glideslope

Acceleration

------------

/accelerations/nlf

/accelerations/ned/north-accel-fps_sec

/accelerations/ned/east-accel-fps_sec

/accelerations/ned/down-accel-fps_sec

/accelerations/pilot/x-accel-fps_sec

/accelerations/pilot/y-accel-fps_sec

164



/accelerations/pilot/z-accel-fps_sec

Engines

-------

common:

/engines/engine[%d]/fuel-flow-gph

/engines/engine[%d]/fuel-flow_pph

/engines/engine[%d]/thrust_lb

/engines/engine[%d]/running

/engines/engine[%d]/starter

/engines/engine[%d]/cranking

piston:

/engines/engine[%d]/mp-osi

/engines/engine[%d]/egt-degf

/engines/engine[%d]/oil-temperature-degf

/engines/engine[%d]/oil-pressure-psi

/engines/engine[%d]/cht-degf

/engines/engine[%d]/rpm

turbine:

/engines/engine[%d]/n1

/engines/engine[%d]/n2

/engines/engine[%d]/epr

/engines/engine[%d]/augmentation

/engines/engine[%d]/water-injection

/engines/engine[%d]/ignition

/engines/engine[%d]/nozzle-pos-norm

/engines/engine[%d]/inlet-pos-norm

/engines/engine[%d]/reversed

/engines/engine[%d]/cutoff

propeller:

/engines/engine[%d]/rpm

/engines/engine[%d]/pitch

/engines/engine[%d]/torque

================================================================================

165



LIGHT

================================================================================

/sim/time/sun-angle-rad

/rendering/scene/ambient/red

/rendering/scene/ambient/ggreen

/rendering/scene/ambient/blue

/rendering/scene/diffuse/red

/rendering/scene/diffuse/green

/rendering/scene/diffuse/blue

/rendering/scene/specular/red

/rendering/scene/specular/green

/rendering/scene/specular/blue

30 Protocol

The generic communication protocol for FlightGear provides a powerful way

of adding a simple ASCII based or binary input/output protocol, just by

defining an XML encoded configuration file and placing it in the

$FG_ROOT/Protocol/ directory.

== file layout ================================================================

A protocol file can contain either or both of <input> and <output>

definition blocks. Which one is used depends on how the protocol

is called (e.g. --generic=file,out,1,/tmp/data.xml,myproto would

only use the <output> definitions block).

<?xml version="1.0"?>

<PropertyList>

<generic>

<output>

<binary_mode>false</binary_mode>

<line_separator></line_separator>

<var_separator></var_separator>

<preamble></preamble>

166



<postamble></postamble>

<chunk>

... first chunk spec ...

</chunk>

<chunk>

... another chunk etc. ...

</chunk>

</output>

<input>

<line_separator></line_separator>

<var_separator></var_separator>

<chunk>

... chunk spec ...

</chunk>

</input>

</generic>

</PropertyList>

== input/output parameters ====================================================

Both <output> and <input> blocks can contain information about

the data mode (ascii/binary) and about separators between fields

and data sets, as well as a list of <chunk>s. Each <chunk> defines

a property that should be written (and how), or a variable and which

property it should be written to.

--- ASCII protocol parameters ---

output only:

<preamble> STRING default: "" file header put on top of the file

<postamble> STRING default: "" file footer put at the end of the file

167



input & output:

<binary_mode> BOOL default: false (= ASCII mode)

<var_separator> STRING default: "" field separator

<line_separator> STRING default: "" separator between data sets

<var_separator> are put between every two output properties, while

<line_separator> is put at the end of each data set. Both can contain

arbitrary strings or one of the following keywords:

Name Character

newline ’\n’

tab ’\t’

formfeed ’\f’

carriagereturn ’\r’

verticaltab ’\v’

Typical use could be:

<var_separator>tab</var_separator>

<line_separator>newline</var_separator>

or

<var_separator>\t</var_separator>

<line_separator>\r\n</line_separator>

--- Binary protocol parameters ---

To enable binary mode, simply include a <binary_mode>true</binary_mode> tag in

your XML file. The format of the binary output is tightly packed, with 1 byte

for bool, 4 bytes for int, and 8 bytes for double. At this time, strings are not

supported. A configurable footer at the end of each "line" or packet of binary

output can be added using the <binary_footer> tag. Options include the length

of the packet, a magic number to simplify decoding. Examples:

<binary_footer>magic,0x12345678</binary_footer>

168



<binary_footer>length</binary_footer>

<binary_footer>none</binary_footer> <!-- default -->

== variable parameters (chunk spec) ===========================================

Both <input> and <output> block can contain a list of <chunk> specs,

each of which describes the properties of on variable to write/read.

<name> for ease of use (not tranferred)

<node> the property tree node which provides the data

<type> the value type (needed for formatting)

one of string, float, bool, int (default: int)

<format> (ASCII protocol only, not used or needed in binary mode)

defines the actual piece of text which should be sent.

it can include "printf" style formatting options like:

<type>

%s string

%d integer (default)

%f float

<factor> an optional multiplication factor which can be used for

unit conversion. (for example, radians to degrees).

<offset> an optional offset which can be used for unit conversion.

(for example, degrees Celcius to degrees Fahrenheit).

Chunks can also consist of a single constant <format>, like in:

<format>Data Section</format>

== examples ===================================================================

Writes log of this form:

V=16

H=3.590505

169



P=3.59

V=12

H=3.589020

P=3.59

<?xml version="1.0"?>

<PropertyList>

<generic>

<output>

<line_separator>newline</line_separator>

<var_separator>newline</var_separator>

<binary_mode>false</binary_mode>

<chunk>

<name>speed</name>

<format>V=%d</format>

<node>/velocities/airspeed-kt</node>

</chunk>

<chunk>

<name>heading (rad)</name>

<format>H=%.6f</format>

<type>float</type>

<node>/orientation/heading-deg</node>

<factor>0.0174532925199433</factor> <!-- degrees to radians -->

</chunk>

<chunk>

<name>pitch angle (deg)</name>

<format>P=%03.2f</format>

<node>/orientation/pitch-deg</node>

</chunk>

</output>

</generic>

</PropertyList>

170



-- writing data in XML syntax -------------------------------------------------

Assuming the file is called $FG_ROOT/Protocol/xmltest.xml, then it could be

used as $ fgfs --generic=file,out,1,/tmp/data.xml,xmltest

<?xml version="1.0"?>

<PropertyList>

<generic>

<output>

<binary_mode>false</binary_mode>

<var_separator>\n</var_separator>

<line_separator>\n</line_separator>

<preamble>&lt;?xml version="1.0"?&gt;\n\n&lt;data&gt;\n</preamble>

<postamble>&lt;/data&gt;\n</postamble>

<chunk>

<format>\t&lt;set&gt;</format>

</chunk>

<chunk>

<node>/position/altitude-ft</node>

<type>float</type>

<format>\t\t&lt;altitude-ft&gt;%.8f&lt;/altitude-ft&gt;</format>

</chunk>

<chunk>

<node>/velocities/airspeed-kt</node>

<type>float</type>

<format>\t\t&lt;airspeed-kt&gt;%.8f&lt;/airspeed-kt&gt;</format>

</chunk>

<chunk>

<format>\t&lt;/set&gt;</format>

</chunk>

171



</output>

</generic>

</PropertyList>

-- Analyzing the resulting binary packet format -------------------------------

A utility called generic-protocol-analyse can be found under

FlightGear/utils/xmlgrep which can be used to analyze the resulting

data packet for the binary protocol.

The output would be something like:

bintest.xml

Generic binary output protocol packet description:

pos | size | type | factor | description

-----|------|--------|------------|------------------------

0 | 4 | int | | indicated speed (kt)

4 | 4 | float | | pitch att (deg)

8 | 4 | float | | magnetic heading (deg)

12 | 4 | int | | outside air temperarure (degF)

16 | 1 | bool | | autocoord

total package size: 17 bytes

31 Scenery

This document describes how FlightGear searches and loads scenery, how to

add static objects to the scenery as well as the syntax of *.stg files.

Contents ----------------------------------------------------------------------

1 scenery path

2 terrasync

172



3 stg files

3.1 OBJECT_BASE

3.2 OBJECT

3.4 OBJECT_SHARED

3.3 OBJECT_STATIC

3.5 OBJECT_SIGN

4 model manager ("/models/model")

4.1 static objects

4.2 dynamic objects

4.3 loading/unloading at runtime

5 tools for object placing

5.1 calc-tile.pl

5.2 ufo scenery object editor

6 embedded Nasal

6.1 static models

6.2 AI models

1 scenery path ----------------------------------------------------------------

FlightGear loads scenery by default from the Scenery/ subdirectory of its

data directory. The path to this data directory can be set via environment

variable FG_ROOT or the --fg-root option. The scenery path can be set

independently via environment variable FG_SCENERY or option --fg-scenery.

The order of precedence is as follows:

--fg-scenery=/some/dir ... highest priority

$FG_SCENERY

$FG_ROOT/Scenery/ ... lowest priority

A scenery specification may be a list of paths, separated by the OS-specific

path separator (colon on Unix/OSX, semicolon on MS Windows). The paths are

searched in the order from left to right:

173



FG_SCENERY=/first/dir:/second/dir:/third/dir

(likewise with --fg-scenery option)

Each of the scenery paths can follow one of two possible layouts: with or

without Terrain/ and Objects/ subdirectories. As soon as either or both

of these subdirectories are found, scenery is only searched *in* these two,

but not in any other directory on the same hierarchy level!

This example shows which directories are used to search for scenery:

$ ls /first/dir

w130n30/ searched

$ ls /second/dir

Objects/ searched

Terrain/ searched

w130n30/ *not* searched

$ ls /third/dir

Terrain/ searched

w130n30/ *not* searched

If FlightGear searches for a particular "tile" file, let’s say for

"w130n30/w123n37/942050.stg", then (using the above examples) it looks

into

/first/dir/w130n30/w123n37/942050.stg (A)

/second/dir/Terrain/w130n30/w123n37/942050.stg (B)\__ same path element

/second/dir/Objects/w130n30/w123n37/942050.stg (C)/ /second/dir

/third/dir/Terrain/w130n30/w123n37/942050.stg (D)

but as soon as it finds an OBJECT_BASE entry it only finishes this

path element and then stops scanning. So, if (B) contains an entry

"OBJECT_BASE 942050.btg, then the twin Objects/ directory (C) will

be read, too. But (D) will *not*! Objects/ and Terrain/ directories

174



are laid out equally. Airport and elevation data, as well as airport

inventory objects are usually put into Terrain/, while other objects

are put into Objects/.

This searching behavior is usually used to collect user-added

custom objects first, then to read in standard scenery and objects

that came with the distribution (San Francisco Bay area), and to

use locally added scenery everywhere else. So a typical scenery

path specification could look like this:

FG_SCENERY=$HOME/.fgfs/Scenery:$FG_ROOT/Scenery:$FG_ROOT/WorldScenery

The third path would then be populated by the user with unpacked scenery

archives downloaded from http://www.flightgear.org/Downloads/scenery.html,

or by using terrasync (see next section).

Additional objects can be downloaded from the FlightGear Objects

Database (http://scenemodels.flightgear.org/download/). (Note that

those objects are occasionally merged into the flightgear.org/terrasync

packages, so you may end up with doubled entries!)

Using a private directory for downloaded add-on scenery and adding

that path to FG_SCENERY is the preferred way. This separates default

data from locally added data, and makes administration and later updates

easier.

HINT: if you want to see where FlightGear is searching and finding

terrain/objects, start it with the --log-level=info option.

2 terrasync -------------------------------------------------------------------

FlightGear comes with a utility "terrasync" that allows downloading

scenery (literally) "on-the-fly. Given the scenery path setup from

section 1 you could use terrasync with a script like this:

#!/bin/bash

PORT=5503

175



nice terrasync -p $PORT -d $FG_ROOT/WorldScenery&

fgfs --atlas=socket,out,1,localhost,$PORT,udp $*

killall terrasync

If you name it "fgfsterra", then you can use it just like you would use

"fgfs", but behind the scenes it would update your scenery everywhere in

sight and save the files to $FG_ROOT/WorldScenery. Example:

$ ./fgfsterra --aircraft=ufo --airport=LOXZ

Note, however, that if it downloads scenery for the area around your

starting location, then you’ll only see that after the next start, or

after you flew or teleported to a distant location and then back.

terrasync depends on the rsync application and an open port 873,

so it may not be available/usable on MS Windows.

3 stg files -------------------------------------------------------------------

stg files ("static terragear") define the static elements of a scenery

"tile", including the terrain elevation data, airport geometry, and all

static objects placed on this tile. (See section 5 for how to find out which

geo coordinates belong to which tile.) Four of the available key words

are followed by a string and four numbers. The meaning of these numbers

is always the same and described in section 3.3.

3.1 OBJECT_BASE

----------------

specifies the terrain elevation data file. These files are generated with

the TerraGear tools (http://www.terragear.org/) and have file extension

".btg" ("binary terragear"; there used to be an "*.atg" file, too, where

the ’a’ stood for ASCII).

176



Example:

OBJECT_BASE 942050.btg

The entry may be anywhere in the 942050.stg file, on a separate line.

3.2 OBJECT

-----------

specifies an airport geometry ’drop-in’ file. The scenery elevation file

has cut out holes for airports, that are filled with such objects. They

are usually called after the airport ICAO id:

Example:

OBJECT KSFO.btg

These files are, again, created by TerraGear tools and are usually gzipped,

so you’ll find that file stored as KSFO.btg.gz.

3.3 OBJECT_SHARED

------------------

add static object to the tile.

Example:

OBJECT_SHARED Models/Airport/tower.xml -122.501090 37.514830 15.5 0.00 0.00 0.00

Syntax:

OBJECT_SHARED <object-path> <lon> <lat> <elev-m> <hdg-deg> <pitch-deg> <roll-deg>

The <object-path> is relative to the data directory (FG_ROOT).

177



<elev-m> is in meter and relative to mean sea-level (in the fgfs world).

<hdg-deg> is in degree, counter-clockwise with North being 0.0. Note

that this differs from about every other place in FlightGear, most notably

the /orientation/heading-deg entry in the property system, which is clockwise.

<pitch-deg> and <roll-deg> are in degree and optional.

OBJECT_SHARED models are cached and reused. They are only once in memory

and never freed. (See also the next section.)

3.4 OBJECT_STATIC

------------------

add static objects to the tile, just like OBJECT_SHARED. There are three

differences to OBJECT_SHARED (apart from the name):

(A) the path is relative to the tile directory where the *.stg file with

this entry is located. For example, relative to 130n30/w123n37/. This

usually means that all 3D object files, textures, and XML animation

files are in this tile directory, too.

(B) these objects are *not* cached and kept loaded, but rather freed with

the tile (that is, when you leave that area).

(C) the animation XML files may contain Nasal blocks <nasal><load> and

<nasal><unload> which are executed on loading/unloading.

Example:

OBJECT_STATIC ggb-fb.xml -122.4760494 37.81876042 0 105 0.00 0.00

3.5 OBJECT_SIGN

---------------

defines taxiway or runway sign. The syntax is much like that of OBJECT_SHARED

entries, except that the path is replaced with a sign contents specification

178



and that there is an additional size value at the end of the line.

Example:

OBJECT_SIGN {@R}10L-28R{@L}C -122.35797457 37.61276290 -0.5398 74.0 2

The sign specification defines the sign contents. We try to resemble the

apt.dat 850 specifications in our implementation.

In the simplest form it contains just ’normal’ text, for example:

EXIT

This will create a black panel of 1m height with "EXIT" written on it

in white versal letters. Actually, each of those characters are

single-letter glyph names that are looked up in the <glyph> map of a

texture font <material> entry in $FG_ROOT/materials.xml. It just

happens that the <glyph> entry for <name> ’E’ maps to a drawn ’E’ in

the font texture. This isn’t true for all ASCII characters. Many aren’t

mapped at all (and thus not available), others are mapped to non-standard

drawings. The ’_’, for example, is mapped to an empty black area and can

therefore be used as a space. (The sign specification must not contain

real spaces.) The ’*’ is mapped to a raised period.

Some glyph names consist of more than one character, and can’t, thus, be

used directly. They have to be put in a pair of curly braces:

{^rd}

This creates an arrow that points to the right and down. Braces can really

contain a list of glyph names, separated by commas (no space!).

Single-letter glyph names can be used that way, too, or in any mixture

of both methods:

EXIT

{E,X,I,T}

{E}{X}{I}{T}

EX{I,T}

E{X,I}T{^lu,^rd}

{^u}EXIT{^u}

179



Multi-letter glyph names are usually used for symbols. Arrow symbol names

always start with a caret ("arrow head") and the left or right direction

always comes first (like the x in a Cartesian coordinate system). Here’s

a list of some of the available names (see $FG_ROOT/materials.xml for

more):

^l left arrow

^r right arrow

^u up arrow

^d down arrow

^lu left-up arrow

^ld left-down arrow

^ru right-up arrow

^rd right-down arrow

no-entry "no entry" symbol

critical runway critical area

safety ils safety area

hazard end of taxiway

There are commands for pre-defined sign types according to the FAA

specification (5345-44; see http://www.google.com/search?q=5345-44g).

@Y "Direction, Destination, Boundary" sign (black on yellow)

@R "Mandatory Instruction" sign (white on red with black outline)

@L "Location" sign (yellow text and frame on black)

@B "Runway Distance Remaining" sign (white on black)

Examples:

{@R}10L-28R{@L}C

{@Y,^l}P|{^lu}N{@L}F{@Y}F{^ru}

{@Y,^ld}C ... same as any of {@Y}{@ld}C {@Y,@ld,C}

{@B}17

180



Syntax errors are reported in --log-level=debug, in the SG_TERRAIN

group. You can use this command line to filter out such messages:

$ fgfs --log-level=debug 2>&1|grep OBJECT_SIGN

4 model manager ("/models/model") --------------------------------------------

4.1 static objects

-------------------

Another way to add objects to the scenery is via the "model manager".

It reads all /models/model entries at startup and places these objects

in the scenery. Just load a definition like the following into the

property tree, for example by putting it into $FG_ROOT/preferences.xml, or

better: an XML file that you load with e.g. --config=$HOME/.fgfs/stuff.xml:

<models>

<model n="0">

<name>pony</name>

<path>Local/pony.ac</path>

<longitude-deg>-115.8352869</longitude-deg>

<latitude-deg>37.24302849</latitude-deg>

<elevation-ft>4534.691321</elevation-ft>

<heading-deg>0</heading-deg>

<pitch-deg>0</pitch-deg>

<roll-deg>0</roll-deg>

</model>

</models>

The <path> is relative to $FG_ROOT, the <name> is optional. One can leave the

heading/pitch/roll entries away, in which case they are set to zero. The values

are fixed and unchangeable at runtime.

181



4.2 dynamic objects

--------------------

Any of the model properties can be made changeable at runtime by appending

"-prop" and using a property path name instead of the fixed value:

<local>

<pony>

<longitude-deg>-115.8352869/<longitude-deg>

<latitude-deg>37.24302849</latitude-deg>

<elevation-ft>4534.691321</elevation-ft>

<heading-deg>0</heading-deg>

</pony>

</local>

<models>

<model n="1">

<name>pony</name>

<path>Local/pony.ac</path>

<longitude-deg-prop>/local/pony/longitude-deg</longitude-deg-prop>

<latitude-deg-prop>/local/pony/latitude-deg</latitude-deg-prop>

<elevation-ft-prop>/local/pony/elevation-ft</elevation-ft-prop>

<heading-deg-prop>/local/pony/heading-deg</heading-deg-prop>

<pitch-deg>1.234</pitch-deg> <!-- static, just for fun -->

</model>

</models>

Then one can move the pony around by changing the values in /local/pony/ in

the property system. One can, of course, use other animals, too.

4.3 loading/unloading at runtime

--------------------------------

Both dynamic and static model-manager-models can be loaded and unloaded

at runtime. For loading you first create a new <model> entry under <models>,

initialize all properties there (<longitude-deg> or <longitude-deg-prop>,

182



etc.), and finally you create a child <load> of any type in this group.

This is the signal for the model manager to load the object. You can

remove the <load> property after that. It has no further meaning.

To remove a model-manager model at runtime, you simply delete the whole

<model> group.

5 tools for object placing ----------------------------------------------------

5.1 calc-tile.pl

----------------

For finding out the tile number for a given geo coordinate pair there’s

a script "scripts/perl/scenery/calc-tile.pl" in the FlightGear sources.

You feed longitude and latitude to it and it returns the path to the

*.stg file where you have to add the object entry.

$ perl calc-tile.pl 16.1234 48.5678

Longitude: 16.1234

Latitude: 48.5678

Tile: 3220128

Path: "e010n40/e016n48/3220128.stg"

5.2 ufo scenery object editor

-----------------------------

The ufo has a scenery object editor built-in. It uses the model manager

described in section 4. To place objects with it, start fgfs, optionally

with specifying an initial model type ("cursor") and a list of subdirectories

of $FG_ROOT where the ufo should search for available 3D models ("source"):

$ fgfs --aircraft=ufo --prop:cursor=Models/Airport/radar.xml \

183



--prop:source=Models,Scenery/Objects

Then click anywhere on the terrain to add a model (left mouse button).

You can open the adjustment dialog (Tab-key) to make adjustments to

position and orientation. Click as often as you like, choose further

models from the space-key dialog. You can select an already placed object

by Ctrl-clicking at its base (not at the object itself, but the surface

point where it’s located!). By also holding the Shift key down, you

can select several objects or add them to a selection. You can remove

the selected object(s) with the Backspace-key. (See the ?-key dialog

for futher available keys.) After clicking on the input field right

over the status line (invisible if there’s no text in it) you can enter

a comment/legend for the selected object.

And finally, you dump the object data to the terminal (d-key) or export

them to a file $HOME/.fgfs/ufo-model-export.xml (Unix) or

%APPDATA%\flightgear.org\ufo-model-export.xml (MS Windows).

You can now put the generated object entries into the specified *.stg

file to make them permanent. Or load the whole exported *.xml file

via --config option:

$ fgfs --config=$HOME/.fgfs/ufo-model-export.xml

If you choose the sign placeholder object from the m-key dialog (first

entry; "Aircraft/ufo/Models/sign.ac"), then an OBJEC_SIGN *.stg line

will be generated with the legend used as sign contents. If you didn’t

insert any legend, then the sign text will be: NO CONTENTS and a 4 digits

random number for later identification in the *.stg file.

Unfortunately, objects added with this method are kept in memory, no

matter where you are actually flying, so the *.stg method is preferable.

6 embedded Nasal in XML files (static objects and AI) -------------------------

184



6.1 static models

-----------------

Objects loaded via OBJECT_STATIC in *.stg files as well as AI models loaded

via scenarios may contain embedded Nasal code. This can be used to drive

more advanced animations. An example is a lighthouse with specific light

signals, or hangar doors that open when the "player"’s aircraft is nearby.

The Nasal code is added to the object’s XML wrapper/animation file, anywhere

on the top level, for example:

<PropertyList>

<path>lighthouse.ac</path>

<nasal>

<load>

var loop_id = 0;

var light = aircraft.light.new("

"/models/static/w120n30/w118n35/lighthouse/light",

[2, 1, 2, 1, 2, 1, 2, 5]);

var loop = func(id) {

id == loop_id or return;

light.switch(getprop("/sim/time/sun-angle-rad") > 1.37);

settimer(func { loop(id) }, 30);

}

loop(loop_id += 1);

</load>

<unload>loop_id += 1</unload>

</nasal>

<animation>

<type>select</type>

<object-name>light-halo</object-name>

<property>/models/static/w120n30/w118n35/lighthouse/light/state</property>

</animation>

...

</PropertyList>

185



The <load> part is executed when the scenery tile on which the model is placed

is loaded into memory. It can start timers or listeners that modify properties,

which are then queried by the <animation>. As a convention developers are requested

to use "/models/static/" + <tile-path> + <file-basename>. So, in the above example

file "$FG_ROOT/Scenery/Objects/w120n30/w118n35/lighthouse.xml" all properties

are stored under "/models/static/w120n30/w118n35/lighthouse/". That way collisions

with other models are quite unlikely.

An optional <unload> part is executed when the tile and model is removed from

memory. Note that this is only when the "player" is already far away! To

cause minimal impact on the framerate it is recommended to do as few

calculations as possible, to use as large timer intervals as possible, and to

stop all timers and listeners in the <unload> part, as shown in the example.

All Nasal variables/functions are in a separate namespace, which is named

after the file name. It’s recommended not to access this namespace from

outside for other than development purposes.

What the above code does: as soon as the model is loaded, an aircraft.light

is created with a specific light sequence. Then, in half-minute intervals,

the light is turned on or off depending on the sun angle. On <unload> the

loop identifier is increased, which makes the loop terminate itself. For

more info about this technique, see the Nasal wiki.

6.2 AI models

-------------

Here the syntax is the same like for static models. The only two differences

are:

- these models are currently only removed at program end, so it’s more

important to consider effects on performance.

- AI models don’t need to store their properties in /models/static/...,

but get a separate node under /ai/models/, for example /ai/models/carrier[1].

186



The embedded Nasal code can access this dynamically assigned property

via cmdarg() function, which returns a props.Node hash. Example:

<nasal>

<load>print("my data are under ", cmdarg().getPath())</load>

<unload>print("Currently I’m only called at fgfs exit!")</unload>

</nasal>

32 Sound

OpenAL setup for general use (Linux)

-------------------------------------

As of the July 2004 release of OpenAL it is best to add at least the

following line to your ~/.openalrc file on Linux because it wil find out

what audio backend to use, starting with the most appropriate:

(define devices ’(native alsa sdl esd arts null))

ALSA surround sound (5.1) setup

-------------------------------------

(taken from http://floam.ascorbic.com/how-to/alsa5.1)

Make a ~/.openalrc, we are telling OpenAL that we want surround sound and

we want to use ALSA instead of OSS.

(define speaker-num 4)

(define devices ’(alsa))

(define alsa-out-device "surround40:0,0")

IRIX surround sound (5.1) setup

-------------------------------------

187



To add 4 channel surround sound on IRIX hardware that supports in

directly you can just add the following line to your ~/.openalrc file:

(define speaker-num 4)

To add 4 channel surround sound to IRIX systems that have more than one

stereo output you can add the following section to your ~/.openalrc file

(for a typical O2 configuration):

(define speaker-num 4)

(define native-out-device "Analog Out")

(define native-rear-out-device "Analog Out 2")

or alternatively:

(define speaker-num 4)

(define native-out-device "A3.Speaker")

(define native-rear-out-device "A3.LineOut2")

(Note the following section is obsolete as of the July 2004 release of

OpenAL, since your could command OpenAL to use ALSA or Arts directly)

ALSA and Arts

-------------------------------------

I’m using kernel 2.6.5 with alsa, my sound module is snd-intel8x0. When I ran

fgfs, I’d get quite ’choppy’ sound (wasn’t smooth, there’d be a couple of

breaks in the sound every second or so). Running arts, and starting fgfs with

"artsdsp fgfs" (from the artsdsp website: "When an application is run under

artsdsp all accesses to the /dev/dsp audio device are intercepted and mapped

into aRts API calls. While the device emulation is not perfect, most

applications work this way, albeit with some degradation in performance and

latency.") would improve the situation, but it seemed to still be choppy.

This command:

echo "fgfs 0 0 direct" >/proc/asound/card0/pcm0p/oss

(from the alsa kernel OSS emulation website:

188



"The direct option is used, as mentioned above, to bypass the automatic

conversion and useful for MMAP-applications")

made my sound work beautifully when fgfs was run with artsdsp. Running without

artsdsp however (with artsd suspended or killed), would give me no sound at all

(which I find a bit strange)

The following websites might help people with similar troubles:

http://www.alsa-project.org/~iwai/OSS-Emulation.html

http://www.arts-project.org/doc/handbook/artsdsp.html

Computer info:

kernel 2.6.5

flightgear 0.9.4

simgear 0.3.5

plib 1.8.3

soundcard is onboard an asus p4p800-e deluxe mobo (using snd-intel8x0), alsa,

related modules from lsmod:

Module Size Used by

snd_pcm_oss 53252 1

snd_mixer_oss 19968 1 snd_pcm_oss

snd_intel8x0 33476 1

snd_ac97_codec 63492 1 snd_intel8x0

snd_pcm 97408 2 snd_pcm_oss,snd_intel8x0

snd_timer 26112 1 snd_pcm

snd_page_alloc 11396 2 snd_intel8x0,snd_pcm

snd_mpu401_uart 7936 1 snd_intel8x0

snd_rawmidi 24832 1 snd_mpu401_uart

snd_seq_device 8324 1 snd_rawmidi

snd 53892 9 snd_pcm_oss,snd_mixer_oss,snd_intel8x0,

snd_ac97_codec,snd_pcm,snd_timer,snd_mpu401_uart,

snd_rawmidi,snd_seq_device

soundcore 10208 2 snd

189



33 Submodels

<?xml version="1.0"?>

<!--

Submodels are objects which can be dropped or launched from the user

aircraft. The trigger is a boolean property, which you define, which when

"true" causes the submodel to be released/launched.

A submodel will create an AIBallistic object which will follow a ballistic

path. By default one submodel will be released when the corresponding

trigger is "true".

Notes:

1. This utility is intended for ballistic objects which align to the

trajectory. Drag is applied based on this assumption: no allowance is

for changes in drag for objects which do not conform to this asumption.

made

2. While Inertia is calculated properly, Moment of Inertia and rotational

aerodynamic damping are simulated. It is assumed that the object is a cylinder

of uniform density - if your object does not conform to this, there will be

inaccuracies.

3. The program does not calculate windage for ballistic objects well. While

adequate for smoke effects, etc., for bullets, bombs, droptanks this is probably

best left at "False". Since the effects of wind on various ballistic objects is

uncertain, there is no plan to change this situation.

4. Submodels can be ensted to any depth, thus a submodel on expiry or impact etc,

can launch a child submodel, which in turn can launch a submodel. and so on. This

is the basis for Persistent Contrails, but any use is possible.

The initial conditions (IC) define the object’s starting point (relative

to the user aircraft’s "reported position"), and its initial speed and

direction (relative to the user aircraft). If you want to release many

similar objects with similar IC, then you may use the <repeat>, <delay>

and <count> properties to define this. The allowed properties are:

190



<name> The name of the submodel.

<model> The path to the visual model.

<trigger> The property which will act as the trigger. If this tag is not

included, the submodels will be released continuously, provided

<count> is set to -1.

<speed> Initial speed, in feet/sec, relative to user aircraft.

<speed-prop> The property containing the Initial speed, in feet/sec, relative to

user aircraft. If this path is found, <speed> will be overwritten.

<repeat> Set "true" if you want multiple releases of this submodel.

<delay> Time, in seconds, between repeated releases.

<count> Number of submodels available for multiple release.

-1 defines an unlimited number.

<slaved> If true, the submodel is slaved to the parent model.

<x-offset> Submodel’s initial fore/aft position (in feet), relative to user

aircraft. Fore is positive.

<y-offset> Submodel’s initial left/right position (in feet), relative to user

aircraft. Right is positive.

<z-offset> Submodel’s initial up/down position (in feet), relative to user

aircraft. Up is positive.

<yaw-offset> Submodel’s initial azimuth, in degrees, relative to user

aircraft’snose. Right is positive.

<pitch-offset> Submodel’s initial elevation, in degrees, relative to user aircraft’s

pitch. Up is positive.

<life> Life span in seconds.

Default is 900.0.

<buoyancy> In ft/sec/sec. Works opposite acceleration of gravity.

For example, if set to 32 the submodel will feel no

gravity. If greater than 32 the object will rise.

Default is 0.

<wind> Set to true if you want the submodel to react to the wind. Default

is "false".

<cd> The Coeffient of Drag. Varies with submodel shape - 0.295 for a

bullet, 0.045 for an airfoil. Enter an appropriate value. Defaults to

0.295.

<random> When this is true the Cd is varied by +- 5%. Useful for smoke or

contrails.

<eda> Effective drag area (sq ft). Usually the cross-sectional area of the

submodel normal to the airflow.

<weight> The weight of the submodel (lbs). NOT set to 0 on submodel release.

You may wish to set this value to 0 by means of key bindings or Nasal

191



script. Defaults to 0.25.

<contents> The path to the contents of a submodel. The contents must be in lbs.

Intended for use with drop tanks. The property value will be set to

0 on release of the submodel: do not also set to 0 elsewhere e.g. in

key bindings. Defaults to 0.

<random> Varies CD by +- 10%, initial azimuth by +- 10 degs, and life by

<randomness>

<randomness> If <random> is true, <randomness> is applied to <life>. 0 > Value < 1

are valid. Defaults to 0.5.

<no-roll> If true the submodel does not roll.

<impact> If true, the impact location (lat/lon) on the terrain is calculated.

The Material (e.g Grass)of the terrain, load resistance, and impact

velocity. Altitude agl is calculated.

<collision> If true, collisions with other objects is tested. If a collision is

detected then the position data are written to the "Report Node".

<fuze-range> Used in detecting collisions. The distance in feet between an object

and a submodel at which a collision is deemed to have occurred.

<expiry> If true, the current position of the submodel is written to the

"Report Node" when the submodel life expires.

<impact-reports> Defines a "Report Node". When an impact happens, then the path of

the submodel will be written to this node. An attached listener

function can evaluate the impact properties. If unset, reports go to

/ai/models/model-impact.

***** experimental ****

<external-force> If true the submodel is subjected to an external force

<force-path> A string describing the property where the magnitude, azimuth and

elevation of the external force are to be found. The following child

properties are instantiated:

~/force-lb

~/force-azimuth-deg

~/force-elevation-deg

You will have to set these values by some means (Nasal script etc.) to make use of this

utility.

<PropertyList>

<submodel>

192



<name>left gun</name>

<model>Models/Geometry/tracer.ac</model>

<trigger>ai/submodels/submodel[0]/trigger</trigger>

<speed>2750.0</speed>

<repeat>true</repeat>

<delay>0.25</delay>

<count>100</count>

<x-offset>1.0</x-offset>

<y-offset>-7.0</y-offset>

<z-offset>-2.0</z-offset>

<yaw-offset>0.4</yaw-offset>

<pitch-offset>1.8</pitch-offset>

<life>2.0</life>

</submodel>

<submodel>

<name>right gun</name>

<model>Models/Geometry/tracer.ac</model>

<trigger>ai/submodels/submodel[0]/trigger</trigger>

<speed>2750.0</speed>

<repeat>true</repeat>

<delay>0.25</delay>

<count>100</count>

<x-offset>1.0</x-offset>

<y-offset>7.0</y-offset>

<z-offset>-2.0</z-offset>

<yaw-offset>-0.4</yaw-offset>

<pitch-offset>1.8</pitch-offset>

<life>2.0</life>

</submodel>

<submodel>

<name>droptank-l</name>

<model>Aircraft/Hunter/Models/droptank-100gal.ac</model>

<trigger>controls/armament/station[0]/jettison-all</trigger>

<speed>0</speed>

<repeat>false</repeat>

<count>1</count>

<x-offset>0.820</x-offset>

<y-offset>-9.61</y-offset>

193



<z-offset>-2.39</z-offset>

<yaw-offset>0</yaw-offset>

<pitch-offset>0</pitch-offset>

<wind>false</wind>

<eda>2.11348887</eda>

<weight>170</weight>

<cd>0.045</cd>

<contents>consumables/fuel/tank[2]/level-lbs</contents>

</submodel>

<submodel>

<name>droptank-r</name>

<model>Aircraft/Hunter/Models/droptank-100gal.ac</model>

<trigger>controls/armament/station[1]/jettison-all</trigger>

<speed>0</speed>

<repeat>false</repeat>

<count>1</count>

<x-offset>0.820</x-offset>

<y-offset>9.61</y-offset>

<z-offset>-2.39</z-offset>

<yaw-offset>0</yaw-offset>

<pitch-offset>0</pitch-offset>

<wind>false</wind>

<eda>2.11348887</eda>

<weight>170</weight>

<cd>0.045</cd>

<contents>consumables/fuel/tank[3]/level-lbs</contents>

</submodel>

<submodel>

<name>engine exhaust r</name>

<model>Aircraft/seahawk/Models/exhaust_s.xml</model>

<trigger>sim/ai/aircraft/exhaust</trigger>

<speed-node>engines/engine/n1</speed-node>

<speed>10</speed>

<repeat>true</repeat>

<delay>0.1</delay>

<count>-1</count>

<x-offset>-3.5</x-offset>

<y-offset>2.6768</y-offset>

194



<z-offset>-0.3937</z-offset>

<yaw-offset>170</yaw-offset>

<life>10</life>

<buoyancy>128</buoyancy>

<aero-stabilised>0</aero-stabilised>

<wind>true</wind>

<eda>1</eda>

<cd>0.95</cd>

<weight>1</weight>

<random>1</random>

</submodel>

</PropertyList>

-->

34 Systems

By Default systems are initialized by the Aircraft/generic/generic-system.xml

This initializes the following:

- The generic electrical system

- 1 pitot system, index [0]

- 1 static system index [0]

- 2 vacuum systems [0] and [1], depending on engine rpm of engine[0] and

engine[1] respectfully

If you want to define more systems, copy the generic-system file to your

aircraft-name/Systems folder and rename it systems.xml

In your aircraft -set file add the path to the system.xml file:

<sim>

....

<systems>

....

<path>Aircraft/aircraft-name/Systems/systems.xml</path>

....

</systems>

....

</sim>

195



** Adding a second pitot system.

In your systems.xml, you should already have

<pitot>

<name>pitot</name>

<number>0</number>

<stall-deg>60</stall-deg> # optionnal, default to 60 degrees

</pitot>

and you need to add for a pitot system with index 1:

<pitot>

<name>pitot</name>

<number>1</number>

<stall-deg>60</stall-deg> #optionnal

</pitot>

For the any pitot system except for the first (with index 0)

add in the aircraft -set file (below for index 1):

<systems>

<pitot n="1">

<serviceable>1</serviceable>

</pitot>

</systems>

Of course you can add a third or fourth etc.

** Adding a second static system

Absolutely analog with the pitot system. So add in systems.xml:

<static>

<name>static</name>

<number>1</number>

<tau>1</tau>

<type>0</type> #optionnal: 0,1 or 2 default is 0

<error-factor>0.5</error-factor> #optionnal see below default = 0

196



</static>

and in the aircraft -set file:

<systems>

<static n="1">

<serviceable>1</serviceable>

</static>

</systems>

Now you can source your instrumentation relying on static and pitot

pressure (airspeed, altimeter, vertical speed indicator) from different

and independent systems

** The PITOT System

The pitot system measures impact pressure and is basically a tube pointing forward.

Small aircraft have one, small IFR aircraft have one or two (of which at least

one is heated) and larger commercial aircraft have three or even more. In those large

aircraft the left pitot serves the pilot instruments, the right the co-pilot and

the third system the back-up instruments. This might be different for each type

of aircraft of course.

In Flightgear the pitot system outputs the total pressure to the following property:

/systems/pitot[n]/total-pressure-inhg and

/systems/pitot[n]/measured-total-pressure-inhg

which are the same except at supersonic speeds. For supersonic aircraft use the "measured"

property. See also the README.airspeed-indicator.

However it is advised for every aircraft to use the measured property. In future

this will be the property where all the measurement faults are reflected.

the following "measurement failures" are currently applied:

1) decrease of total and measured pressure due to side-slip and angle of attack

2) at 60 deg the pitot tube will stall and the value will fall back to static pressure

3) for the "measured" property only: at Mach>1, a shock wave is assumed in front of the

pitot tube, decreasing the total pressure.

The stall angle may be (optionally) set to any angle between 0 and 90 deg

(default = 60 deg) like so:

<pitot>

<name>pitot</name>

197



<number>0</number>

<stall-deg>45</stall-deg>

</pitot>

Both the decrease of the pitot pressure and the default stall angle are based on a measurement

on an AN5812 pitot tube.

** The STATIC system

The static system measures the static pressure. So all influences of airspeed are eliminated.

In real life this is however not always easy. Effects from angle of attack, side-slip, flap defection,

gear extension, engine power setting and airspeed are present and for the aircraft

designer it is not alway easy to find a good position for the static port.

Usually the number of static systems are equal to the number of pitot systems.

In Flightgear there are 3 types of static systems modelled.

Type 0 (default): the perfect sensor. No measurement failures.

Type 1: Dual static ports on the fuselage sides. Side-slip angle influence only. this model the whole pair.

Type 2: Static port on the pitot tube. Both angle of attack and side-slip influence.

If you want to use type 1 or 2:

<static>

<name>static</name>

<number>0</number>

<tau>0.1</tau>

<type>1</type>

<error-factor>0.5</error-factor>

</static>

The output property /systems/static[n]/pressure-inhg is filtered. Therefore, if you want to see

the effect of the measurement failure, "tau" should be 0.1 or smaller.

The "error-factor" should be between 0.2 and 0.7. Setting it to 0 equals a "perfect sensor".

A setting of 1 means the whole (projected on static port face) impact pressure is applied.

This is not realistic as usually there are more than one static pick-up points

and so the pressure increase gets "flattened".

35 Tutorials

== README.tutorials ===========================================================

FlightGear offers a flexible tutorial system, entirely written in the Nasal

198



language. Tutorials can be started and stopped from the "Help" menu. They are

defined in XML files. Each of them has to be loaded into /sim/tutorials/ under

a separate tutorial[n]/ branch:

<sim>

<tutorials>

<tutorial include="Tutorials/take-off.xml"/>

<tutorial include="Tutorials/landing.xml"/>

</tutorial>

</sim>

Alternatively, all tutorials can be defined in one file, with <tutorial> tags

around each tutorial. This is then included like so:

<sim>

<tutorials include="foo-tutorials.xml"/>

</sim>

Finally, tutorials are automatically generated from any valid checklists

on startup. See README.checklists for details.

== TUTORIAL STRUCTURE =========================================================

A tutorial has this structure, where some of the elements are described

in detail below:

<tutorial>

<name>...</name> mandatory; short identifier, also shown in the

tutorial selection dialog

<description>...</description> mandatory; longer description for the dialog

<audio-dir>...</audio-dir> optional; defines where to load sound samples

<timeofday>noon</timeofday> optional; defines daytime; any of "dawn",

"morning", "noon", "afternoon",

"evening", "dusk", "midnight", "real"

<step-time> optional; period between each step being executed.

Default 5

199



<exit-time> optional; period between exit/abort conditions being

checked. Default 1

<nasal>

... optional; initial Nasal code; see below

</nasal>

<models>

... optional; scenery objects; see below

</models>

<targets>

... optional; targets; see below

</targets>

<presets>

... optional; initial simulator state; see below

</presets>

<init> optional; initial settings; see below

<set>

... optional; property settings; allowed multiple

</set> times

<view>

... optional; view settings

</view>

<marker>

... optional; marker coordinates

</marker>

<nasal>

... optional; Nasal code

</nasal>

</init>

<step> mandatory; well, not really, but if there’s not

at least one <step>, then the whole tutorial

won’t do anything; see below for details

<message>...</message> optional; message to be displayed/spoken when

200



<step> is entered; allowed multiple times, in

which case one is chosen at random

<message-param> optional; allowed up to 4 times.

<property>...</property> property to substitute into the <message> string

</message-param> using sprintf() formatting. E.g. %d, %.2f

<audio>...</audio> optional; file name of *.wav sample to be played;

may be used multiple times (random)

<set>

... optional; allowed several times

</set>

<view>

... optional

</view>

<marker>

... optional

</marker>

<nasal>

... optional; Nasal code that is executed when the

</nasal> step is entered

<wait>10</wait> optional; wait period after initial messages etc.

<error> optional; allowed several times

<message>..</message> optional; text displayed/spoken

<audio>...</audio> optional; name of *.wav sample to be played

<condition>

... optional, but one should be there to make sense

</condition> see $FG_ROOT/Docs/README.conditions

<nasal>

... optional; Nasal code that is executed when the

</nasal> error condition was fulfilled

</error>

<exit> optional; defines when to leave this <step>

<condition> see $FG_ROOT/Docs/README.conditions

...

201



</condition>

<nasal>

... optional; Nasal code that is executed when the

</nasal> exit condition was met

</exit>

</step>

<end> optional; final settings & actions; see below

<message>...</message> optional; multiple times (random)

<audio>...</audio> optional; multiple times (random)

<set>

... optional

</set>

<view>

... optional

</view>

<nasal>

... optional

</nasal>

</end>

</tutorial>

After the tutorial has finished initialization, it goes through all <steps>.

For each it outputs the <message> or <audio>, optionally sets a <marker> and/or

a <view>, then it checks all <error>s and, if an <error><condition> is fulfilled,

outputs the respective <error><message>. If none of the <error>s occurred, then

it checks if the <exit><condition> is true, and if so, it jumps to the next

<step>. Otherwise the current <step> is endlessly repeated. Finally, after all

<step>s were processed, the <end> group is executed.

202



== ELEMENTS ===================================================================

-- <nasal> --------------------------------------------------------------------

Embedded Nasal is supported on the top level, in <init> in each <step>, in a

<step>’s <error> and <exit>, and in <end>. All Nasal runs in a separate

namespace __tutorial, so it’s possible to define a function in the <init>’s

Nasal block, and to use this function in other blocks without prefix. The

namespace is preloaded with some functions:

next([n=1]) ... to switch n <step>s forward

previous([n=1]) ... to switch n <step>s backwards

say(what [, who="copilot [, delay=0]])

... says ’what’ with voice ’copilot’ after ’delay’ seconds

A Nasal group looks like this:

<nasal>

<script>

say("Hi, I’m the pilot!", "pilot");

</script>

<module>__tutorial</module> optional; preset with __tutorial

</nasal>

-- <models> -------------------------------------------------------------------

This loads models into the scenery. It can be used to place, for example,

a helicopter landing pad at an airport where normally none is, so that the

tutorial can train landing. The layout is the following, with <path> being

relative to $FG_ROOT:

203



<models>

<model>

<path>Models/Airport/supacat_winch.ac</path> mandatory

<longitude-deg>-122.4950109</longitude-deg> mandatory

<latitude-deg>37.51403798</latitude-deg> mandatory

<elevation-ft>51</elevation-ft> mandatory

<heading-deg>2.488888979</heading-deg> optional (default: 0)

<pitch-deg>0</pitch-deg> optional (default: 0)

<roll-deg>0</roll-deg> optional (default: 0)

</model>

<model>

... another model

</model>

</models>

The models are only removed before a new tutorial is loaded. Otherwise they

remain in the scenery for the whole FlightGear session. They aren’t permanently

added.

-- <targets> ------------------------------------------------------------------

These are simple pairs of longitude/latitude under an arbitrary name (here

"hospital" and "helipad"):

<targets>

<hospital>

<longitude-deg>-122.4950109</longitude-deg> mandatory

<latitude-deg>37.51403798</latitude-deg> mandatory

</hospital>

<helipad>

...

</helipad>

</targets>

204



The tutorial system will for each calculate how the user’s aircraft is positioned

relative to the respective target, and offer the information in this structure:

<sim>

<tutorials>

<targets>

<hospital>

<direction-deg>12.345</direction-deg>

<heading-deg>33.333</heading-deg>

<distance-m>12404.932</distance-m>

<eta-min>39.2358</eta-min>

</hospital>

<helipad>

...

</helipad>

</targets>

</tutorials>

</sim>

Where:

<direction-deg> is an angle between the aircraft’s velocity vector and the

azimuth to the target. 0 means that the aircraft is moving

right towards the target. 10 means that the target is slightly

to the right, -90 means that it’s exactly left, and -180 or

179.9999 that it’s right behind.

<heading-deg> is the absolute heading that the aircraft would currently

have to fly with in a straight line to reach the target

<distance-m> is the distance in meters

<eta-min> is the "Estimated Time of Arrival" given the aircraft’s

current speed towards the target. Positive times mean that

the aircraft is getting nearer to the target and can arrive

there in this time given the current speed. It will, of course,

only arrive there, if <direction-deg> is zero. A negative

number means that the aircraft moves away, or in other words:

205



that in this number of minutes it will be away twice as far.

-- <presets> ------------------------------------------------------------------

These set the initial simulator state. All properties are optional.

The last three entries are to define the position relative to the

airport/runway or the longitude/latitude.

<presets>

<airport-id>KHAF</airport-id>

<on-ground>1</on-ground>

<runway>12</runway>

<!--

<altitude-ft>122.333</altitude-ft>

<latitude-deg>37.555</latitude-deg>

<longitude-deg>1000</longitude-deg>

-->

<heading-deg>0</heading-deg>

<airspeed-kt>0</airspeed-kt>

<glideslope-deg>0</glideslope-deg>

<offset-azimuth>0</offset-azimuth>

<offset-distance>0</offset-distance>

</presets>

-- <set> ----------------------------------------------------------------------

<set> groups can be used in <init>, <step>, and <end>. They set a <property>

to a given <value> or to the value that a second <property> points to. They

can also reset values that were only temporarily changed for the duration

of the tutorial. This is desirable for properties that are saved to the

aircraft config file or to ~/.fgfs/autosave.xml.

206



<set>

<property>/foo/bar</property> set /foo/bar to 123

<value>123</value>

</set>

<set>

<property>/foo/bar</property> set /foo/bar to value of /test

<property>/test</property>

</set>

-- <view> ---------------------------------------------------------------------

These groups can be used in <init>, <step>, and <end>. They smoothly move the

view to a new view position/direction. All parameters are optional. If, for

example, only <field-of-view> is set, then the view will only zoom in -- the

direction and position will remain the same. This feature is meant for cockpit

tutorials, where the pilot’s view is directed to some switch or instrument.

view-number can be used to switch between different views, i.e. to tower-view,

copilot view etc. Default view-number is 0 (captain’s view).

<view>

<view-number>0</view-number> 0=captain’s view, 1=copilot,...

<heading-offset-deg>20</heading-offset-deg> positive is left

<pitch-offset-deg>-4</pitch-offset-deg> positive is up

<roll-offset-deg>0</roll-offset-deg> positive is roll right

<x-offset-m>0.2</x-offset-m> positive is move right

<y-offset-m>0.2</y-offset-m> positive is move up

<z-offset-m>0.2</z-offset-m> positive is move back

<field-of-view>55</field-of-view> default: 55; smaller zooms in

</view> bigger zooms out

-- <marker> -------------------------------------------------------------------

207



These are supported in <init>, <step>, and <end>. They show a magenta colored

circle at given position (relative to aircraft origin) in given size. See the

last section for how to conveniently find the proper coordinates.

<marker>

<x-m>1.3</x-m> positive is back

<y-m>0.3</y-m> positive is to the right

<z-m>0.1</z-m> positive is up

<scale>1.3</scale> optional; default: 1

</marker>

For this to work, the aircraft model needs to include the tutorial marker

model in its animation xml file:

<PropertyList>

<path>lightning-f1a.ac</path>

<model>

<path>Aircraft/Generic/marker.xml</path>

</model>

...

</PropertyList>

-- <message>/<audio> ----------------------------------------------------------

Groups <step> and <end> can have one or more <message> entries, and one or

more <audio> entries. If more are used of a kind, then the tutorial chooses

one at random. If <audio> are available, then the contents are interpreted as

file name of a *.wav sample, which is appended to the <audio-dir> path defined

at the <tutorial> top level (default: "") and played by the tutorial system.

Otherwise the <message> is handed over to the voice system, and synthesized

to speech by the Festival speech synthesizer (if installed). In either

case the chosen <message> is displayed on top of the screen. Neither <message>

208



nor <audio> are mandatory.

Because one and the same <message> string can be displayed *and* be synthesized,

which can be problematic in some cases, there is a way to specify parts for

either display *or* voice synthesizer: "{<display part>|<voice part}".

Example:

<message>Press the {No1|number one} button!</message>

Here, "No1" would be displayed on the screen, but "number one" would be

sent to the speech synthesis system. This can also be used to add

invisible but audible exclamation marks: "Press the button{|!}"

-- <condition> ----------------------------------------------------------------

These are explained in detail in $FG_ROOT/Docs/README.conditions. Here’s just

one example:

<condition>

<less-than>

<property>/foo/bar</property>

<value>12</value>

</less-than>

</condition>

This condition is true when the value of /foo/bar is less than 12, and false

otherwise.

== FINDING MARKER COORDINATES =================================================

209



If an aircraft tutorial wants to use the marker, then the aircraft animation

file needs to include the marker model (see above). If this is done, then one

can use the "marker-adjust" dialog to find the respective <marker> coordinates.

Just type this into the "Help->Nasal Console" dialog:

tutorial.dialog()

Or temporarily add a key binding to the *-set.xml file:

<key n="96">

<name>Backtick</name>

<desc>Open marker adjust dialog</desc>

<binding>

<command>dialog-show</command>

<dialog-name>marker-adjust</dialog-name>

</binding>

</key>

The dialog allows to move a red cross around, which has the blinking marker

circle in the middle. Note that ctrl- and shift-modifiers modulate the slider

movements. Ctrl makes positioning coarser, and shift finer. The [Reset]

button moves the marker back to aircraft origin, the [Center] button centers

the sliders, and the [Dump] button dumps the marker coordinates to the

terminal, for example:

<marker>

<x-m>1.1425</x-m>

<y-m>0.1994</y-m>

<z-m>-0.0844</z-m>

<scale>2.0489</scale>

</marker>

This just needs to be copied to the tutorial XML file.

210



36 Wildfire

Cellular Automata based wildfire for FlightGear/CVS

---------------------------------------------------

Copyright (C) 2008 - 2009 Anders Gidenstam

* These programs are free software; you can redistribute them and/or modify

* them under the terms of the GNU General Public License as published by

* the Free Software Foundation; either version 2 of the License, or

* (at your option) any later version.

*

* This program is distributed in the hope that it will be useful,

* but WITHOUT ANY WARRANTY; without even the implied warranty of

* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

* GNU General Public License for more details.

*

* You should have received a copy of the GNU General Public License

* along with this program; if not, write to the Free Software

* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

Usage

-----

A fire is started by calling wild_fire.ignite(pos) where pos is a

valid geo.Coord instance.

Example: starting fires by ctrl+shift+click:

Put this Nasal fragment somewhere where it is run at startup.

(E.g. in a <nasal><MyStuff><script>...</script></MyStuff></nasal>

block in preferences.xml.)

setlistener("/sim/signals/click", func {

if (__kbd.shift.getBoolValue()) {

if (__kbd.ctrl.getBoolValue()) {

var click_pos = geo.click_position();

wildfire.ignite(click_pos);

}

}

211



});

Configuration properties

-----------------------

These properties can be set at runtime, in preferences.xml or in any

other way supported by FlightGear.

/environment/wildfire/enabled : bool

Enables/disables the whole WildFire module.

On disable the current state is lost. Can be used to reset WildFire.

/environment/wildfire/share-events : bool

Enables/disables sending and receiving of fire events over the

multiplayer network.

/environment/wildfire/fire-on-crash : bool

If true a fire will start if the aircraft crashes.

/environment/wildfire/report-score : bool

Report the result of fire fighting.

/environment/wildfire/models/enabled : bool

Enables/disables rendering of the 3d models.

(That is, fire, smoke, soot and foam.)

/environment/wildfire/save-on-exit : bool

If set the current log of Wildfire events is saved in

~/.fgfs/Wildfire/fire_log.xml .

/environment/wildfire/restore-on-startup : bool

If set Wildfire will load and execute the events in

~/.fgfs/Wildfire/fire_log.xml . This recreates the fire state

as it where when the log was saved.

NOTE: A long event log or one that covers a long period of time will take

a a lot of time to recreate.

Storing and reloading of the CA state, as opposed to the event log, is not

supported yet.

212



API

---

ignite : func (pos, source=1)

pos - fire location : geo.Coord

source - broadcast event? : {0, 1}

Start a fire.

resolve_water_drop : func (pos, radius, volume, source=1)

pos - drop location : geo.Coord

radius - drop radius m : double

volume - Not used : double

source - broadcast event? : {0, 1}

Extinguishes any fires in the cells within r of pos and

makes the cells nonflammable.

resolve_retardant_drop : func (pos, radius, volume, source=1) {

pos - drop location : geo.Coord

radius - drop radius m : double

volume - Not used : double

source - broadcast event? : {0, 1}

Identical to resolve_water_drop.

resolve_foam_drop : func (pos, radius, volume, source=1) {

pos - drop location : geo.Coord

radius - drop radius m : double

volume - Not used : double

source - broadcast? : {0, 1}

Extinguishes any fires in the cells within r of pos and

makes the cells nonflammable and foamy.

load_event_log : func (filename, skip_ahead_until=-1)

filename - getprop("/sim/fg-home") ~ "/Wildfire/" ~ filename

skip_ahead_until - skip from last event to this time : double (epoch)

213



fast forward from skip_ahead_until

to current time.

x < last event - fast forward all the way to current time (use 0).

NOTE: Can be VERY time consuming.

-1 - skip to current time.

Loads an event log.

The skip_ahead_until argument can be used for synchronizing a restored

fire state among multiple players.

save_event_log : func (filename)

filename - getprop("/sim/fg-home") ~ "/Wildfire/" ~ filename

Saves an event log.

print_score = func

Print a summary of the current wildfire state.

/Anders

37 Xmlhud

Users’ Guide to FlightGear Hud configuration

December 22 2000

Neetha Girish <neetha@ada.ernet.in>

This document describes the reconfigurable HUD of

FlightGear implemented through XML config files.

The present reconfigurable HUD code uses most of the code

of version 0.6.1 vintage and I have adapted the same to provide

a reconfigurable HUD for fgfs.

Corrections and additions are welcome.

Some History:

Older versions of FGFS had a hard coded display of HUD.

This was a less than ideal state of affairs when it came to

using different aircraft Huds. I remember, somewhere in the 0.6.1 HUD code

214



it was written that the HUD code is ’presently’ hard coded but ideally should

be moved into the aircraft configuration dataset, so that when you choose

an aircraft, its HUD loads.

This implementation make that possible, all you have to do is to

create appropriate ’my_aircraft.xml’ files in the HUD directory and

without re-compiling the code you could have ’your_aircraft’ HUD, by choosing that

in the .fgfsrc file or as a command line option as described later. Of course,

as of now, I have only implemented those HUD instruments in .xml readable form

as was available in version 0.7.6 + few more used by ADA, Bangalore for our

aircraft carrier take-off/landing simulation studies <www.flightgear.org/projects/ADA>.

To use the ADA specific reticles/HUD objects, please contact me/ you can figure it out

yourself by studying the code. All of them are relevant ’only’ if you use the conformal

climb/dive ladder, since they are all referenced to it.

The rewrite of Hud display code was done using pre and post release v0.7.6 code

allowing for configuration of the hud via XML.

The present Configurable Hud implements the entire functionality of

fgfs HUD (called default HUD) till this date.

Using Default/Custom Hud:

The default HUD location is $FG_ROOT/Huds/Default.

$FG_ROOT is the place on your filesystem where you installed FG

data files. Alternate huds can be specified on the command line

or set as the default in the $HOME/.fgfsrc or $FG_ROOT/preferences.xml

using a property specification. The command line format is as follows:

--prop:/sim/hud/path=Huds/Default/default.xml

The path description shown is relative to $FG_ROOT. An absolute

path may also be used for locations outside $FG_ROOT.

For the custom Hud the path will be Huds/Custom/default.xml

Hud - Implementation:

All of the hud configuration files are XML-encoded property lists.

The root element of each file is always named <PropertyList>. Tags are

always found in pairs, with the closing tag having a slash prefixing

the tag name, i.e </PropertyList>. The top level panel configuration

215



file is composed of a <name> and zero or more <instruments>.

Instruments are used by including a <"unique_name"> and a <path> to the

instruments configuration file.

Comments are bracketed with <!-- -->.

Example Top Level Hud Config

<PropertyList>

<name>Default Aircraft Hud</name>

<instruments>

<hudladder> <!--unique name -->

<path>Huds/Instruments/Default/hudladder.xml</path>

</hudladder>

<hudcard>

<path>Huds/Instruments/Default/hudcard.xml</path>

</hudcard>

<instrlabel>

<path>Huds/Instruments/Default/instrlabel.xml</path>

</instrlabel>

<fgTBI>

<path>Huds/Instruments/Default/fgtbi.xml</path>

</fgTBI>

</instruments>

</PropertyList>

The default location for instrument files is $FG_ROOT/Huds/Instruments/Default.

The location for custom instrument files is $FG_ROOT/Huds/Instruments/Custom.

The location for minimal instrument files is $FG_ROOT/Huds/Instruments/Minimal.

Alternate locations may be specified in the hud configuration, paths

must be absolute to use files outside $FG_ROOT.

About Instrument Placement:

For the sake of simplicity the FGFS HUD overlay is always 640 x 480 res.

216



so all x/y values for instrument placement should fall within these bounds.

Being an OpenGL program, 0,0 represents the lower left hand corner of the

screen.

Instrument Implementation:

Instruments are defined in separate configuration files.

The Instruments are basically classified into 4 types( Each of them an xml file) :

The Hud Ladder,

The Hud Card,

The Hud Label and

The Turn Bank Indicator

.... (Note that that the earlier HUD classes/objects have been retained)

Newer objects may be instantiated using the above classes, Unless a totally

new object is required).

The Default as well as the Custom directory have the same (in terms of properties)

set of configuration files (but with different values to suit the aircraft).

We have a Base class - Hud Instrument Item.

We derive two more base classes - Instrument Scale and Dual Instrument Item from this.

(This implementation owes its existence to all those who wrote the HUD code for 0.6.1)

The Hud Instrument Label is an instantiable class derived from Hud Instrument Item -

for displaying alphanumeric labels (altitude, velocity, Mach no and/or anything else

as long you have a call back function to pass the value using the property

’data_source’).

The Hud Card is an instantiable class derived from Instrument scale - for displaying

tapes and gauges (single variable display, for displaying aoa, g’s, vsi,

elevator_posn, etc.).

The Hud Ladder is an instantiable class derived from Dual Instrument Item - for

displaying pitch reference ladder or climb/dive ladder (two variable display, for

displaying two types of ladders, the pitch reference ladder or the climb/dive ladder

as defined by MIL-1787b).

The fgTBI Instrument is an instantiable class derived from Dual Instrument scale

again - for display of Bank angle and Sideslip (two variable display, for display

of TSI info, kept different from the two variable ladder object basically because

217



of its totally different draw member function).

Most Hud instruments may be instantiated using above. It is proposed to provide all

Hud objects as defined in MIL-STD-1797A, soon.

Here is how you position ’any’ object:

x ____________ x+width

| |

| |

y ------------ y+height

this defines the objects position centered about the centroid of above rectangle

in HUD overlay plane (640x480) coordinates with 0,0 at bottom-left corner.

One more, pixels per degree in the ladder class represents the compression factor of

the pitch ladder. In case of conformal HUD (climb/dive ladder) it is

<640/horizontal_fov> or <480/vertical_fov>. In case of pitch reference ladder it is

<your_no_of vertical_pixels/your_no_of_ladder_degrees>.

Example of Hud Ladder xml file.

<PropertyList>

<ladders>

<l1>

<name>Pitch Ladder</name> <!-- Name can be Pitch Ladder or Climb/Dive Ladder -->

<x>260</x> <!-- x start -->

<y>150</y> <!-- y start -->

<width>120</width> <!-- x start + width = x end -->

<height>180</height> <!-- y start + height = y end -->

<compression_factor>2.68</compression_factor> <!-- Pixels per degree -->

<loadfn>roll</loadfn> <!-- Name of the function to be called, here

get_roll() is called provision made in Hud.cxx -->

<loadfn1>pitch</loadfn1> <!-- Name of the function to be called, here get_pitch()

is called -->

<span_units>45.0</span_units> <!-- Range of the Ladder seen at any instant -->

<division_units>10.0</division_units> <!-- Divisions -->

<screen_hole>70</screen_hole> <!-- Hole b/w the Ladder Bars -->

218



<lbl_pos>0</lbl_pos> <!-- Label Position to indicate pitch angle on bar -->

<enable_frl>false</enable_frl> <!-- To Enable Pitch Reference Symbol (used by us) -->

<enable_target_spot>true</enable_target_spot> <!-- To Enable Target Spot Symbol (fgfs uses this) -->

<enable_velocity_vector>false</enable_velocity_vector> <!-- To Enable Velocity Vector Symbol (use only with climb/dive ladder) -->

<enable_drift_marker>false</enable_drift_marker> <!-- To Enable Drift Marker Symbol (used by us) -->

<enable_alpha_bracket>false</enable_alpha_bracket> <!-- To Enable Alpha Bracket Symbol (used by us, presently hard coded bracket values, alpha values will be moved to xml file) -->

<enable_energy_marker>false</enable_energy_marker> <!-- To Enable Energy Marker Symbol (used by us) -->

<enable_climb_dive_marker>false</enable_climb_dive_marker> <!-- To Enable Climb/Dive Marker (used by us) -->

<enable_glide_slope_marker>false</enable_glide_slope_marker> <!-- To Enable Glide/Slope Marker (tied to climb/dive ladder only) -->

<glide_slope>0.0</glide_slope> <!-- Glide slope angle (specify the angle for drawing the reference bar) -->

<enable_energy_worm>false</enable_energy_worm> <!-- To Enable Energy worm (used by us) -->

<enable_waypoint_marker>false</enable_waypoint_marker> <!-- To Enable Way point Marker (bearing marker) -->

<working>true</working> <!-- use this to enable or disable whole object -->

</l1>

</ladders>

</PropertyList>

Before you read this, _____ this is tick_top | |

| | |

| |__________________|

| this is cap_right,tick_left cap_bottom tick_right

|

_____| this is tick_bottom

Example of Hud Card xml file.

<PropertyList>

<cards>

<c1>

<name>Gyrocompass</name>

<x>220</x>

<y>430</y>

<width>200</width>

<height>28</height>

<loadfn>heading</loadfn> <!-- Name of the function to be called, here get_Heading() is called -->

<options>4</options> <!-- Read Tape Options Below or Hud.hxx file for details -->

219



<maxValue>360.0</maxValue> <!-- Maximum scale value -->

<minValue>0.0</minValue> <!-- Minimum Scale Value -->

<disp_scaling>1.0</disp_scaling> <!-- Multiply by this to get numbers shown on scale -->

<major_divs>5</major_divs> <!-- major division marker units -->

<minor_divs>1</minor_divs> <!-- minor division marker units -->

<modulator>360</modulator> <!-- Its a rose, Roll Over Point -->

<value_span>25.0</value_span> <!-- Range Shown -->

<type>tape</type> <!-- Card type can be "tape" or "gauge" -->

<tick_bottom>false</tick_bottom> <!-- Read Ticks and Caps below -->

<tick_top>false</tick_top>

<tick_right>true</tick_right>

<tick_left>true</tick_left>

<cap_bottom>true</cap_bottom>

<cap_top>false</cap_top>

<cap_right>false</cap_right>

<cap_left>false</cap_left>

<marker_offset>0.0</marker_offset> <!-- Read Marker offset below -->

<enable_pointer>true</enable_pointer> <!-- To draw a pointer -->

<pointer_type>fixed</pointer_type> <!-- Type of pointer, Fixed or Moving (yet to be implemented) -->

<working>true</working>

</c1>

</cards>

</PropertyList>

Tape Options:

HUDS_AUTOTICKS = 0x0001

HUDS_VERT = 0x0002

HUDS_HORZ = 0x0000

HUDS_TOP = 0x0004

HUDS_BOTTOM = 0x0008

HUDS_LEFT = HUDS_TOP

HUDS_RIGHT = HUDS_BOTTOM

HUDS_BOTH = (HUDS_LEFT | HUDS_RIGHT)

HUDS_NOTICKS = 0x0010

HUDS_ARITHTIC = 0x0020

HUDS_DECITICS = 0x0040

HUDS_NOTEXT = 0x0080

220



HUDS_LEFT | HUDS_VERT = 0x0006

HUDS_RIGHT | HUDS_VERT = 0x0010

HUDS_TOP | HUDS_NOTEXT = 0x0084

HUDS_BOTTOM | HUDS_NOTEXT = 0x0088

HUDS_VERT | HUDS_LEFT | HUDS_NOTEXT = 0x0086

HUDS_RIGHT | HUDS_VERT | HUDS_NOTEXT = 0x0090

For clarity, I repeat, Ticks and Caps :

1. Left Tick ->|_____|<- Right Tick

|

v

Bottom Cap

2. Top Cap

|

v

_____

| |

3. Top Tick

|

v

---

|

|<- Right Cap

|

---

|

v

Bottom Tick

4. ---

|

Left Cap -> |

|

---

221



Marker Offset :

To Draw pointer on the scale markings. In the case of a our hud with offset 10.0

The pointer is away from the scale and points at the markings.

-| -

-| -

<| -<

-| -

-| -

Marker offset = 0.0 Marker offset = 10.0

This should be useful when I implement the fixed tape/moving pointer.

Example of a Label xml file.

<PropertyList>

<labels>

<i1>

<name>machno</name>

<x>25</x>

<y>130</y>

<width>40</width>

<height>30</height>

<data_source>mach</data_source> <!-- Name of the function to be called, here get_Heading() is called -->

<label_format>%4.2f</label_format> <!-- The Label Format -->

<pre_label_string>blank</pre_label_string> <!-- String to be written Pre Label -->

<post_label_string>NULL</post_label_string> <!-- String to be written Post Label -->

<scale_data>1.0</scale_data>

<options>4</options> <!-- Read Tape options or Hud.hxx -->

<justification>2</justification> <!-- Justify the label, 0=LEFT_JUSTIFY, 1=CENTER_JUSTIFY, 2=RIGHT_JUSTIFY -->

<blinking>0</blinking> <!-- Yet to be implemented -->

<working>true</working>

<latitude>false</latitude> <!-- True if the label is to display Latitude (special label, displays deg.min.sec) -->

<longitude>false</longitude> <!-- True if the label is to display Longitude (special label, displays deg.min.sec) -->

</i1>

222



</labels>

</PropertyList>

Example of a Turn Bank Indicator xml file.

<PropertyList>

<tbis>

<f1>

<name>fgTBI_Instrument</name>

<x>290</x>

<y>45</y>

<width>60</width>

<height>10</height>

<loadfn>roll</loadfn> <!-- Name of the function to be called, get_roll() is called here. -->

<loadfn1>sideslip</loadfn1> <!-- Name of the function to be called, get_sideslip() is called here. -->

<maxBankAngle>45.0</maxBankAngle> <!-- Maximum Angle of Bank -->

<maxSlipAngle>5.0</maxSlipAngle> <!-- Maximum Angle of Slip -->

<gap_width>5</gap_width> <!-- Screen Hole -->

<working>true</working>

</f1>

</tbis>

</PropertyList>

I have still got to implement dials (as in MIL-STD-1787b).

REMEMBER IF YOU NEED TO INDICATE ANY OTHER PARAMETER ON THE HUD OTHER THAN WHAT IS PROVIDED AS

CALLBACK FUNCTIONS (PROPERTY NAMES LISTED BELOW) YOU HAVE TO FIDDLE WITH THE CODE, AS YET. LET ME

KNOW AND I SHALL INCLUDE THAT.

<loadfn>anzg</loadfn> <!-- Here get_anzg() is called -->

<loadfn>heading</loadfn> <!-- Here get_heading() is called -->

<loadfn>aoa</loadfn> <!-- Here get_aoa() is called -->

<loadfn>climb</loadfn> <!-- Here get_climb() is called -->

223



<loadfn>altitude</loadfn> <!-- Here get_altitude() is called -->

<loadfn>agl</loadfn> <!-- Here get_agl() is called -->

<loadfn>speed</loadfn> <!-- Here get_speed() is called -->

<loadfn>view_direction</loadfn> <!-- Here get_view_direction() is called -->

<loadfn>aileronval</loadfn> <!-- Here get_aileronval() is called -->

<loadfn>elevatorval</loadfn> <!-- Here get_elevatorval() is called -->

<loadfn>rudderval</loadfn> <!-- Here get_rudderval() is called -->

<loadfn>throttleval</loadfn> <!-- Here get_throttleval() is called -->

<loadfn>aux16</loadfn> <!-- Here get_aux16() is called -->

<loadfn>aux17</loadfn> <!-- Here get_aux17() is called -->

<loadfn>aux9</loadfn> <!-- Here get_aux9() is called -->

<loadfn>aux11</loadfn> <!-- Here get_aux11() is called -->

<loadfn>aux12</loadfn> <!-- Here get_aux12() is called -->

<loadfn>aux10</loadfn> <!-- Here get_aux10() is called -->

<loadfn>aux13</loadfn> <!-- Here get_aux13() is called -->

<loadfn>aux14</loadfn> <!-- Here get_aux14() is called -->

<loadfn>aux15</loadfn> <!-- Here get_aux15() is called -->

<loadfn>aux8</loadfn> <!-- Here get_aux8() is called -->

<loadfn>ax</loadfn> <!-- Here get_Ax() is called -->

<loadfn>mach</loadfn> <!-- Here get_mach() is called -->

<loadfn>framerate</loadfn> <!-- Here get_frame_rate() is called -->

<loadfn>fov</loadfn> <!-- Here get_fov() is called -->

<loadfn>vfc_tris_culled</loadfn> <!-- Here get_vfc_tris_culled() is called -->

<loadfn>vfc_tris_drawn</loadfn> <!-- Here get_vfc_tris_drawn() is called -->

<loadfn>latitude</loadfn> <!-- Here get_latitude() is called -->

<loadfn>longitude</loadfn> <!-- Here get_longitude() is called -->

224



38 Xmlpanel

Users Guide to FlightGear panel configuration

Version 0.7.7, May 16 2001

Author: John Check <j4strngs@rockfish.net>

This document is an attempt to describe the configuration of

FlightGear flight simulator’s aircraft panel display via XML. The

information was culled from the fgfs-devel@flightgear.org mailing list

and my experiences making alternate panels. Corrections and additions

are encouraged.

Some History:

------------

Older versions of FGFS had a hard coded display of instruments. This

was a less than ideal state of affairs due to FGFS ability to use

different aircraft models. Being primarily developed on UNIX type

systems, a modular approach is taken towards the simulation. To date,

most alternatives to the default Cessna 172 aircraft are the product

of research institutions interested in the flight characteristics and

not cosmetics. The result of this was that one could fly the X-15 or

a Boeing 747 but be limited to C172 instrumentation.

A rewrite of the panel display code was done around v0.7.5 by

developer David Megginson allowing for configuration of the panel via

XML to address this limitation. Some major changes and additions were

made during the course of version 0.7.7 necessitating a rewrite and

expansion of this document.

About The Property Manager:

--------------------------

While not absolutely necessary in order to create aircraft panels,

some familiarity with the property manager is beneficial....

FlightGear provides a hierarchical representation of all aspects of

the state of the running simulation that is known as the property

tree. Some properties, such as velocities are read only. Others such

as the frequencies to which the navcom radios are tuned or the

position of control surfaces can be set by various means. FlightGear

can optionally provide an interface to these properties for external

225



applications such as Atlas, the moving map program, or even lowly

telnet, via a network socket. Data can even be placed on a serial port

and connected to, say a GPS receiver. Aside from its usefulness in a

flight training context, being able to manipulate the property tree on

a running copy of FG allows for switching components on the fly, a

positive boon for panel authors. To see the property tree start FG

with the following command line:

fgfs --props=socket,bi,5,localhost,5500,tcp

Then use telnet to connect to localhost on port 5500. You can browse

the tree as you would a filesystem.

XML and the Property Manager:

----------------------------

Panel instruments interface with the property tree to get/set values

as appropriate. Properties for which FG doesn’t yet provide a value

can be created by simply making them up. Values can be adjusted using

the telnet interface allowing for creation and testing of instruments

while code to drive them is being developed.

If fact, the XML configuration system allows a user to combine

components such as flight data model, aircraft exterior model, heads

up display, and of course control panel. Furthermore, such a

preconfigured aircraft.xml can be included into a scenario with

specific flight conditions. These can be manually specified or a FG

session can be saved and/or edited and reloaded later. Options

specified in these files can be overridden on the command line. For

example:

--prop:/sim/panel/path=Aircraft/c172/Panels/c172-panel.xml

passed as an option, would override a panel specified elsewhere.

Property tree options all have the same format, specify the node and

supply it a value.

The order of precedence for options is thus:

Source Location Format

------ -------- ------

226



command line

.fgfsrc Users home directory. command line options

system.fgfsrc $FG_ROOT "" ""

preferences.xml $FG_ROOT XML property list

Loading Panels on the fly:

-------------------------

When editing a panel configuration, pressing Shift +F3 will reload the

panel. If your changes don’t seem to be taking effect, check the

console output. It will report the success or failure of the panel

reload*. Editing textures requires restarting FGFS so the new textures

can be loaded. Panels can be switched on the fly by setting the

/sim/panel/path property value and reloading.

Regarding Window Geometry:

-------------------------

For the sake of simplicity the FGFS window is always considered to be

1024x768 so all x/y values for instrument placement should relative to

these dimensions. Since FG uses OpenGL 0,0 represents the lower left

hand corner of the screen. Panels may have a virtual size larger than

1024x768. Vertical scrolling is accomplished with

Shift+F5/F6. Horizontal scrolling is via Shift+F7/F8. An offset should

be supplied to set the default visible area. It is possible to place

items to overlap the 3D viewport.

Panel Architecture:

-------------------

All of the panel configuration files are XML-encoded* property lists.

The root element of each file is always named <PropertyList>. Tags are

almost always found in pairs, with the closing tag having a slash

prefixing the tag name, i.e </PropertyList>. The exception is the tag

representing an aliased property. In this case a slash is prepended to

the closing angle bracket. (see section Aliasing)

The top level panel configuration file is composed of a <name>, a

<background> texture and zero or more <instruments>.Earlier versions

required instruments to have a unique name and a path specification

pointing to the instruments configuration file.

227



[ Paths are relative to $FG_ROOT (the installed location of FGFS data files.) ]

[ Absolute paths may be used.Comments are bracketed with <!-- -->. ]

Old style instrument call in top level panel.xml:

------------------------------------------------

<clock> <!-- required "unique_name" -->

<path>Aircraft/c172/Instruments/clock.xml</path>

<x>110</x> <!-- required horizontal placement -->

<y>320</y> <!-- required vertical placement -->

<w>72</w> <!-- optional width specification -->

<h>72</h> <!-- optional height specification -->

</clock>

The difference between the old and new styles, while subtle, is rather

drastic. The old and new methods are indeed incompatible. I cover the

old style only to acknowledge the incompatibility. This section will

be removed after the next official FGFS release.

New Style Example Top Level Panel Config:

----------------------------------------

<PropertyList>

<name>Example Panel</name>

<background>Aircraft/c172/Panels/Textures/panel-bg.rgb</background>

<w>1024</w> <!-- virtual width -->

<h>768</h> <!-- virtual height -->

<y-offset>-305</y-offset> <!-- hides the bottom part -->

<view-height>172</view-height> <!-- amount of overlap between 2D panel

and 3D viewport -->

<instruments> <!-- from here down is where old and new

styles break compatibility -->

<instrument include="../Instruments/clock.xml">

<name>Chronometer</name> <!-- currently optional but strongly recommended -->

<x>150</x> <!-- required horizontal placement -->

<y>645</y> <!-- required vertical placement -->

<w>72</w> <!-- optional width specification -->

<h>72</h> <!-- optional height specification -->

</instrument>

228



</instruments>

</PropertyList>

Indexed Properties

------------------

This is a lot to do with the compatibility break so lets get it out of

the way. The property manager now assigns incremental indices to

repeated properties with the same parent node, so that

<PropertyList>

<x>1</x>

<x>2</x>

<x>3</x>

</PropertyList>

shows up as

/x[0] = 1

/x[1] = 2

/x[2] = 3

This means that property files no longer need to make up a separate

name for each item in a list of instruments, layers, actions,

transformations, or text chunks. In fact, the new panel I/O code now

insists that every instrument have the XML element name "instrument",

every layer have the name "layer", every text chunk have the name

"chunk", every action have the name "action", and every transformation

have the name "transformation" -- this makes the XML more regular (so

that it can be created in a DTD-driven tool) and also allows us to

include other kinds of information (such as doc strings) in the lists

without causing confusion.

Inclusion:

----------

The property manager now supports file inclusion and aliasing.

Inclusion means that a node can include another property file as if it

were a part of the current file. To clarify how inclusion works,

consider the following examples:

229



If bar.xml contains

<PropertyList>

<a>1</a>

<b>

<c>2</c>

</b>

</PropertyList>

then the declaration

<foo include="../bar.xml">

</foo>

is exactly equivalent to

<foo>

<a>1</a>

<b>

<c>2</c>

</b>

</foo>

However, it is also possible to selectively override properties in the

included file. For example, if the declaration were

<foo include="../bar.xml">

<a>3</a>

</foo>

then the property manager would see

<foo>

<a>3</a>

<b>

<c>2</c>

</b>

</foo>

230



with the original ’a’ property’s value replaced with 3.

This new inclusion feature allows property files to be broken up and

reused arbitrarily -- for example, there might be separate cropping

property lists for commonly-used textures or layers, to avoid

repeating the information in each instrument file.

Aliasing

--------

Properties can now alias other properties, similar to a symbolic link

in Unix. When the target property changes value, the new value will

show up in the aliased property as well. For example,

<PropertyList>

<foo>3</foo>

<bar alias="/foo"/>

</PropertyList>

will look the same to the application as

<PropertyList>

<foo>3</foo>

<bar>3</bar>

</PropertyList>

except that when foo changes value, bar will change too.

The combination of inclusions and aliases is very powerful, because it

allows for parameterized property files. For example, the XML file for

the NAVCOM radio can include a parameter subtree at the start, like

this:

<PropertyList>

<params>

<comm-freq-prop>/radios/comm1/frequencies/selected</comm-freq-prop>

<nav-freq-prop>/radios/nav1/frequencies/selected</comm-freq-prop>

</params>

231



...

<chunk>

<type>number-value</type>

<property alias="/params/nav-freq-prop"/>

</chunk>

...

</PropertyList>

Now, the same instrument file can be used for navcomm1 and navcomm2,

for example, simply by overriding the parameters at inclusion:

<instrument include="../Instruments/navcomm.xml">

<params>

<comm-freq-prop>/radios/comm1/frequencies/selected</comm-freq-prop>

<nav-freq-prop>/radios/nav1/frequencies/selected</comm-freq-prop>

</params>

</instrument>

<instrument include="../Instruments/navcomm.xml">

<params>

<comm-freq-prop>/radios/comm2/frequencies/selected</comm-freq-prop>

<nav-freq-prop>/radios/nav2/frequencies/selected</comm-freq-prop>

</params>

</instrument>

Instrument Architecture:

-----------------------

Instruments are defined in separate configuration files. An instrument

consists of a base width and height, one or more stacked layers, and

zero or more actions. Base dimensions are specified as follows:

<PropertyList> <!-- remember, all xml files start like this -->

<name>Airspeed Indicator</name> <!-- names are good -->

<w-base>128</w-base> <!-- required width spec-->

<h-base>128</h-base> <!-- required height spec-->

<layers> <!-- begins layers section -->

Height and width can be overriden in the top level panel.xml by

232



specifying <w> and <h>. Transformations are caculated against the base

size regardless of the display size. This ensures that instruments

remain calibrated

Textures:

--------

FG uses red/green/blue/alpha .rgba files for textures. Dimensions for

texture files should be power of 2 with a maximum 8:1 aspect ratio.

The lowest common denominator for maximum texture size is 256 pixels.

This is due to the limitations of certain video accelerators, most

notably those with 3Dfx chipset such as the Voodoo2.

Instrument Layers**:

-------------------

The simplest layer is a <texture>. These can be combined in <switch> layers

<texture>

A texture layer looks like this:

<layer> <!-- creates a layer -->

<name>face</name>

<texture> <!-- defines it as a texture layer -->

<path>Aircraft/c172/Instruments/Textures/faces-2.rgb</path>

<x1>0</x1> <!-- lower boundary for texture cropping-->

<y1>0.51</y1> <!-- left boundary for texture cropping-->

<x2>0.49</x2> <!-- upper boundary for texture cropping-->

<y2>1.0</y2> <!-- right boundary for texture cropping-->

</texture> <!-- closing texure tag -->

</layer> <!-- closing layer tag -->

The texture cropping specification is represented as a decimal. There

is a table at the end of this document for converting from pixel

coordinates to percentages.

This particular layer, being a gauge face has no transformations

applied to it. Layers with that aren’t static *must* include <w> and

<h> parameters to be visible.

<type> May be either text or switch..

233



<type>switch</type>

A switch layer is composed of two or more nested layers and will

display one of the nested layers based on a boolean property. For a

simple example of a switch see

$FG_ROOT/Aircraft/c172/Instruments/brake.xml.

<layer>

<name>Brake light</name>

<type>switch</type> <!-- define layer as a switch -->

<property>/controls/brakes</property> <!-- tie it to a property -->

<layer1> <!-- layer for true state -->

<name>on</name> <!-- label to make life easy -->

<texture> <!-- layer1 of switch is a texture layer -->

<path>Aircraft/c172/Instruments/Textures/brake.rgb</path>

<x1>0.25</x1>

<y1>0.0</y1>

<x2>0.5</x2>

<y2>0.095</y2>

</texture>

<w>64</w> <!-- required width - layer isn’t static -->

<h>24</h> <!-- required height - layer isn’t static -->

</layer1> <!-- close layer1 of switch -->

<layer2> <!-- layer for false state -->

<name>off</name>

<texture>

<path>Aircraft/c172/Instruments/Textures/brake.rgb</path>

<x1>0.0</x1>

<y1>0.0</y1>

<x2>0.25</x2>

<y2>0.095</y2>

</texture>

<w>64</w>

<h>24</h>

</layer2>

</layer>

Switches can have more than 2 states. This requires nesting one switch

inside another. One could make, for example, a 3 color LED by nesting

switch layers.

234



<type>text</type>

A text layer may be static, as in a label, generated from a property

or a combination of both. This example is a switch that contains both

static and dynamic text:

<layer1> <!-- switch layer -->

<name>display</name>

<type>text</type> <!-- type == text -->

<point-size>12</point-size> <!-- font size -->

<color> <!-- specify rgb values to color text -->

<red>1.0</red>

<green>0.5</green>

<blue>0.0</blue>

</color> <!-- close color section -->

<chunks> <!-- sections of text are referred to as chunks -->

<chunk> <!-- first chunk of text -->

<type>number-value</type> <!-- value defines it as dynamic -->

<property>/radios/nav1/dme/distance</property> <!-- ties it to a property -->

<scale>0.00053995680</scale> <!-- convert between statute and nautical miles? -->

<format>%5.1f</format> <!-- define format -->

</chunk>

</chunks>

</layer1>

<layer2> <!-- switch layer -->

<name>display</name>

<type>text</type> <!-- type == text -->

<point-size>10</point-size> <!-- font size -->

<color> <!-- specify rgb values to color text -->

<red>1.0</red>

<green>0.5</green>

<blue>0.0</blue>

</color> <!-- close color section -->

<chunks> <!-- sections of text are referred to as chunks -->

<chunk> <!-- first chunk of text -->

<type>literal</type> <!-- static text -->

<text>---.--</text> <!-- fixed value -->

</chunk>

</chunks>

</layer2>

235



Transformations:

---------------

A transformation is a rotation, an x-shift, or a

y-shift. Transformations can be static or they can be based on

properties. Static rotations are useful for flipping textures

horizontally or vertically. Transformations based on properties are

useful for driving instrument needles. I.E. rotate the number of

degrees equal to the airspeed. X and y shifts are relative to the

center of the instrument. Each specified transformation type takes an

<offset>. Offsets are relative to the center of the instrument. A

shift without an offset has no effect. For example, let’s say we have

a texure that is a circle. If we use this texture in two layers, one

defined as having a size of 128x128 and the second layer is defined as

64x64 and neither is supplied a shift and offset the net result

appears as 2 concentric circles.

About Transformations and Needle Placement:

------------------------------------------

When describing placement of instrument needles, a transformation

offset must be applied to shift the needles fulcrum or else the needle

will rotate around it’s middle. The offset will be of <type> x-shift

or y-shift depending on the orientation of the needle section in the

cropped texture.

This example comes from the altimeter.xml

<layer>

<name>long needle (hundreds)</name> <!-- the altimeter has more than one needle -->

<texture>

<path>Aircraft/c172/Instruments/Textures/misc-1.rgb</path>

<x1>0.8</x1>

<y1>0.78125</y1>

<x2>0.8375</x2>

<y2>1.0</y2>

</texture>

<w>8</w>

<h>56</h>

236



<transformations> <!-- begin defining transformations -->

<transformation> <!-- start definition of

transformation that drives the needle -->

<type>rotation</type>

<property>/steam/altitude</property> <!-- bind it to a property -->

<max>100000.0</max> <!-- upper limit of instrument -->

<scale>0.36</scale> <!-- once around == 1000 ft -->

</transformation> <!-- close this transformation -->

<transformation> <!-- shift the fulcrum of the needle -->

<type>y-shift</type> <!-- y-shift relative to needle -->

<offset>24.0</offset> <!-- amount of shift -->

</transformation>

</transformations>

</layer>

This needles has its origin in the center of the instrument. If the

needles fulcrum was towards the edge of the instrument, the

transformations to place the pivot point must precede those which

drive the needle,

Interpolation

-------------

Non linear transformations are now possible via the use of

interpolation tables.

<transformation>

...

<interpolation>

<entry>

<ind>0.0</ind> <!-- raw value -->

<dep>0.0</dep> <!-- displayed value -->

</entry>

<entry>

<ind>10.0</ind>

<dep>100.0</dep>

</entry>

<entry>

<ind>20.0</ind>

<dep>-5.0</dep>

</entry>

237



<entry>

<ind>30.0</ind>

<dep>1000.0</dep>

</entry>

</interpolation>

</transformation>

Of course, interpolation tables are useful for non-linear stuff, as in

the above example, but I kind-of like the idea of using them for

pretty much everything, including non-trivial linear movement -- many

instrument markings aren’t evenly spaced, and the interpolation tables

are much nicer than the older min/max/scale/offset stuff and should

allow for a more realistic panel without adding a full equation parser

to the property manager.

If you want to try this out, look at the airspeed.xml file in the base

package, and uncomment the interpolation table in it for a very funky,

non-linear and totally unreliable airspeed indicator.

Actions:

-------

An action is a hotspot on an instrument where something will happen

when the user clicks the left or center mouse button. Actions are

always tied to properties: they can toggle a boolean property, adjust

the value of a numeric property, or swap the values of two properties.

The x/y placement for actions specifies the origin of the lower left

corner. In the following example the first action sets up a hotspot

32 pixels wide and 16 pixels high. It lower left corner is placed 96

pixels (relative to the defined base size of the instrument) to the

right of the center of the instrument. It is also 32 pixels below the

centerline of the instrument. The actual knob texture over which the

action is superimposed is 32x32. Omitted here is a second action,

bound to the same property, with a positive increment value. This

second action is placed to cover the other half of the knob. The

result is that clicking on the left half of the knob texture decreases

the value and clicking the right half increases the value. Also

omitted here is a second pair of actions with the same coordinates but

a larger increment value. This second pair is bound to a different

mouse button. The net result is that we have both fine and coarse

238



adjustments in the same hotspot, each bound to a different mouse

button.

These examples come from the radio stack:

<actions> <!-- open the actions section -->

<action> <!- first action -->

<name>small nav frequency decrease</name>

<type>adjust</type>

<button>0</button> <!-- bind it to a mouse button -->

<x>96</x> <!-- placement relative to instrument center -->

<y>-32</y>

<w>16</w> <!-- size of hotspot -->

<h>32</h>

<property>/radios/nav1/frequencies/standby</property> <!-- bind to a property -->

<increment>-0.05</increment> <!-- amount of adjustment per mouse click -->

<min>108.0</min> <!-- lower range -->

<max>117.95</max> <!-- upper range -->

<wrap>1</wrap> <!-- value wraps around when it hits bounds -->

</action>

<action>

<name>swap nav frequencies</name>

<type>swap</type> <!-- define type of action -->

<button>0</button>

<x>48</x>

<y>-32</y>

<w>32</w>

<h>32</h>

<property1>/radios/nav1/frequencies/selected</property1> <!-- properties to

<property2>/radios/nav1/frequencies/standby</property2> toggle between -->

</action>

<action>

<name>ident volume on/off</name>

<type>adjust</type>

<button>1</button>

<x>40</x>

<y>-24</y>

<w>16</w>

<h>16</h>

<property>/radios/nav1/ident</property> <!-- Morse code ID of nav beacons -->

<increment>1.0</increment> <!-- the increment equals the max value

239



so this toggles on/off -->

<min>0</min>

<max>1</max>

<wrap>1</wrap> <!-- a shortcut to avoid having separate

actions for on/off -->

</action>

</actions>

More About Textures:

-------------------

As previously stated, the usual size instrument texture files in FGFS

are 256x256 pixels, red/green/blue/alpha format. However the mechanism

for specifying texture cropping coordinates is decimal in nature. When

calling a section of a texture file the 0,0 lower left convention is

used. There is a pair of x/y coordinates defining which section of

the texture to use.

The following table can be used to calculate texture cropping

specifications.

# of divisions | width in pixels | decimal specification

per axis

1 = 256 pixels 1

2 = 128 pixels, 0.5

4 = 64 pixels, 0.25

8 = 32 pixels, 0.125

16 = 16 pixels, 0.0625

32 = 8 pixels, 0.03125

64 = 4 pixels, 0.015625

128 = 2 pixels, 0.0078125

A common procedure for generating gauge faces is to use a vector

graphics package such as xfig, exporting the result as a postscript

file. 3D modeling tools may also be used and I prefer them for pretty

items such as levers, switches, bezels and so forth. Ideally, the

size of the item in the final render should be of proportions that fit

into the recommended pixel widths. The resulting files can be

imported into a graphics manipulation package such as GIMP, et al for

final processing.

240



How do I get my panels/instruments into the base package?

-------------------------------------------------------

Cash bribes always help ;) Seriously though, there are two main

considerations. Firstly, original artwork is a major plus since you

as the creator can dictate the terms of distribution. All Artwork must

have a license compatible with the GPL. Artwork of unverifiable

origin is not acceptable. Secondly, texture sizes must meet the

lowest common denominator of 256e2 pixels. Artwork from third parties

may be acceptable if it meets these criteria.

* If there are *any* XML parsing errors, the panel will fail to load,

so it’s worth downloading a parser like Expat (http://www.jclark.com/xml/)

for checking your XML. FlightGear will print the location of errors, but

the messages are a little cryptic right now.

** NOTE: There is one built-in layer -- for the mag compass ribbon --

and all other layers are defined in the XML files. In the future,

there may also be built-in layers for special things like a

weather-radar display or a GPS (though the GPS could be handled with

text properties).

39 Xmlparticles

Document started 27/01/2008 by Tiago Gusm~A£o

Updated 02/02/2008 to reflect syntax changes

Updated 03/02/2008 to add trails (connected particles)

This is a short specification/tutorial to define particle systems in

FlightGear using XML

Meaningless example (what i had accumulated due to tests):

<particlesystem>

<name>fuel</name>

<!-- <texture>particle.rgb</texture> -->

<emissive>false</emissive>

<lighting>true</lighting>

241



<offsets>

<x-m>35</x-m>

<y-m>-0.3</y-m>

<z-m>0</z-m>

<!--<pitch-deg>90</pitch-deg>-->

</offsets>

<!--<condition>

<and>

<equals>

<property>engines/engine/smoking</property>

<value>true</value>

</equals>

<less-than>

<property>position/altitude-agl-ft</property>

<value>12000</value>

</less-than>

</and>

</condition>-->

<attach>world</attach>

<placer>

<type>point</type>

</placer>

<shooter>

<theta-min-deg>84</theta-min-deg>

<theta-max-deg>86</theta-max-deg>

<phi-min-deg>-1.5</phi-min-deg>

<phi-max-deg>1.5</phi-max-deg>

<speed>

<value>10</value>

<spread>2.5</spread>

</speed>

<rotation-speed>

<x-min-deg-sec>0</x-min-deg-sec>

<y-min-deg-sec>0</y-min-deg-sec>

<z-min-deg-sec>0</z-min-deg-sec>

<x-max-deg-sec>0</x-max-deg-sec>

242



<y-max-deg-sec>0</y-max-deg-sec>

<z-max-deg-sec>0</z-max-deg-sec>

</rotation-speed>

</shooter>

<counter>

<particles-per-sec>

<value>1</value>

<spread>0</spread>

</particles-per-sec>

</counter>

<align>billboard</align>

<particle>

<start>

<color>

<red>

<value>0.9</value>

</red>

<green>

<value>0.09</value>

</green>

<blue>

<value>0.09</value>

</blue>

<alpha>

<value>1.0</value>

</alpha>

</color>

<size>

<value>0.25</value>

</size>

</start>

<end>

<color>

<red>

<value>1</value>

</red>

243



<green>

<value>0.1</value>

</green>

<blue>

<value>0.1</value>

</blue>

<alpha>

<value>0.0</value>

</alpha>

</color>

<size>

<value>4</value>

</size>

</end>

<life-sec>

<value>10</value>

</life-sec>

<mass-kg>0.25</mass-kg>

<radius-m>0.1</radius-m>

</particle>

<program>

<fluid>air</fluid>

<gravity type="bool">true</gravity>

<wind type="bool">true</wind>

</program>

</particlesystem>

Stick this inside any model XML like it was an animation and it should

work (notice the condition requires wheel on the ground)

Specification:

Note:

<VALUEORPROP/> means you can either specify a property with factor and

offset (result = (prop*factor)+offset ) in the usual way

244



<particlesystem> = the base tag

<type>string</type> = can be "normal" or "trail", normal is the usual quad

particles, trail is a string of connected line shapes

by default.

<offsets> = this places the source of the particles (the emitter) in relation

to the perhaps already offset model (see model-howto.html for details)

<x-m>float</x-m>

<y-m>float</y-m>

<z-m>float</z-m>

<pitch-deg>float</pitch-deg>

<roll-deg>float</roll-deg>

<heading-deg>float</heading-deg>

</offsets>

<condition> = a typical condition that if not true stops particles from being

.... emitted (PPS=0)

</condition>

<name>string</name> = the name of the particle system (so it can be referenced

by normal animations)

<attach>string</attach> = can be "world" or "local". "world means the particles

aren’t "physically linked" to the model (necessary for

use outside moving models), "local" means the opposite

(can be used for static objects or inside moving objects)

<texture>string</texture> = the texture path relative to the XML file location

<emissive>bool</emissive> = self-explanatory

<lighting>bool</lighting> = yet to be tested, but seems obvious

<align>string</align> = can be "billboard" or "fixed"

<placer> = where particles are born

<type>string</type> = can be "sector" (inside a circle), "segments"(user-defined

segments) and "point" (default)

*<radius-min-m>float</radius-min-m> = only for sector, inner radius at which

particles appear

*<radius-max-m>float</radius-max-m> = only for sector, outer radius at which

particles appear

*<phi-min-deg>float</phi-min-deg> = only for sector, starting angle of the

slide at which particles appear

*<phi-max-deg>float</phi-max-deg> = only for sector, ending angle of the slide

at which particles appear

<segments> = only for segments, encloses sequential points that form segments

<vertex> = specifies one point, put as many as you want

<x-m>float</x-m>

245



<y-m>float</y-m>

<z-m>float</z-m>

</vertex>

....

<vertex>

...

</vertex>

</segments>

</placer>

<shooter> = the shooter defines the initial velocity vector for your particles

*<theta-min-deg>float</theta-min-deg> = horizontal angle limits of the particle cone

*<theta-max-deg>float</theta-max-deg>

*<phi-min-deg>float</phi-min-deg> = vertical angle limits of the particle cone

*<phi-max-deg>float</phi-max-deg> for an illustration of theta/phi see

http://www.cs.clemson.edu/~malloy/courses/3dgames-2007/tutor/web/particles/particles.html

<speed-mps> = the scalar velocity (meter per second)

<VALUEORPROP/> = see note

*<spread> = the "tolerance" in each direction so values are in the range

[value-spread, value+spread]

</speed-mps>

<rotation-speed> = the range of initial rotational speed of the particles

*<x-min-deg-sec>float</x-min-deg-sec>

*<y-min-deg-sec>float</y-min-deg-sec>

*<z-min-deg-sec>float</z-min-deg-sec>

*<x-max-deg-sec>float</x-max-deg-sec>

*<y-max-deg-sec>float</y-max-deg-sec>

*<z-max-deg-sec>float</z-max-deg-sec>

</rotation-speed>

</shooter>

<counter>

<particles-per-sec>

<VALUEORPROP/> = see note

*<spread> = the "tolerance" in each direction so values are in the range

[value-spread, value+spread]

</particles-per-sec>

</counter>

<particle> = defines the particle properties

<start>

<color> = initial color (at time of emission)

<red><VALUEORPROP/></red> = color component in normalized value [0,1]

246



<green><VALUEORPROP/></green>

<blue><VALUEORPROP/></blue>

<alpha><VALUEORPROP/></alpha>

</color>

<size> = as above, but for size

<VALUEORPROP/>

</size>

</start>

<end>

<color> = final color (at the end of the particle life)

<red><VALUEORPROP/></red>

<green><VALUEORPROP/></green>

<blue><VALUEORPROP/></blue>

<alpha><VALUEORPROP/></alpha>

</color>

<size>

<VALUEORPROP/>

</size>

</end>

*<life-sec> = the time the particles will be alive, in seconds

<VALUEORPROP/>

*</life-sec>

*<radius-m>float</radius-m> = each particles is physically treated as a sphere

with this radius

*<mass-kg>float</mass-kg> = mass in KG

</particle>

<program> = defines external forces acting upon a particle

<fluid>string<fluid> = can be "air" or "water"

<gravity>bool</gravity> = can be "true" or "false". uses standard gravity

<wind>bool</wind> = can be "true" or "false". uses user position wind (not the

model position, but shouldn’t be noticeable, you want to

disabled it when using local attach)

</program>

</particles>

Remarks:

* Don’t forget you can use existing animations with particles, so if you want to

direct or translate the emitter, just use translate, rotate, spin and so on

(other animations might have interesting effects too I guess)

247



* Particle XML should be compatible with plib, as the tags will be ignored (you

might get some warning if you attach them to animations though)

* Try not to use a lot of particles in a way that fills the screen, that will demand

lots of fill rate and hurt FPS

* If you don’t use any properties nor conditions, your particle system doesn’t need

to use a callback a so it’s slightly better on the CPU (mostly useful for static models)

* If your particle lifetime is too big you might run out of particles temporarily

(still being investigated)

* Use mass and size(radius) to adjust the reaction to gravity and wind

(mass/size = density)

* Although at the moment severe graphical bugs can be seen in the trails,

they are usable.

* Consider your options correctly! You should consider giving them no initial

velocity and most important, no spread, otherwise particles will race and the

trail will fold. Start simple (no velocities and forces) and work your way up.

40 Xmlsound

Users Guide to FlightGear sound configuration

Version 0.9.8, October 30, 2005

Author: Erik Hofman <erik at ehofman dot com>

This document is an attempt to describe the configuration of

FlightGear flight simulator’s aircraft sound in XML.

Sound Architecture:

------------------

All of the sound configuration files are XML-encoded* property lists.

The root element of each file is always named <PropertyList>. Tags are

almost always found in pairs, with the closing tag having a slash

prefixing the tag name, i.e </PropertyList>. The exception is the tag

representing an aliased property. In this case a slash is prepended to

the closing angle bracket. (see section Aliasing)

248



The top level sound configuration file is composed of a <fx>, a

<name>, a <path> sound file and zero or more <volume> and/or <pitch>

definitions.

[ Paths are relative to $FG_ROOT (the root of the installed base package .) ]

[ Absolute paths may be used. Comments are bracketed with <!-- -->. ]

A limited sound configuration file would look something like this:

<PropertyList>

<fx>

<engine>

<name>engine</name>

<path>Sounds/wasp.wav</path>

<mode>looped</mode>

<condition>

<property>/engines/engine/running</property>

</condition>

<volume>

<property>/engines/engine/mp-osi</property>

<factor>0.005</factor>

<min>0.15</min>

<max>0.5</max>

<offset>0.15</offset>

</volume>

<pitch>

<property>/engines/engine/rpm</property>

<factor>0.0012</factor>

<min>0.3</min>

<max>5.0</max>

<offset>0.3</offset>

</pitch>

</engine>

</fx>

</PropertyList>

This would define an engine sound event handler for a piston engine driven

aeroplane. The sound representing the engine is located in $FG_ROOT/Sounds

and is named wasp.wav. The event is started when the property

249



/engines/engine/running becomes non zero.

When that happens, the sound will be played looped (see <mode>) until the

property returns zero again. As you can see the volume is mp-osi dependent,

and the pitch of the sound depends on the engine rpm.

Configuration description:

-------------------------

<fx>

Named FX subtree living under /sim/sound

< ... >

This is the event separator. The text inside the brackets

can be anything. Bit it is advised to give it a meaningful name

like: crank, engine, rumble, gear, squeal, flap, wind or stall

The value can be defined multiple times, thus anything which is

related may have the same name (grouping them together).

<name>

This defines the name of the event. This name is used internally

and, although it can me defined multiple times in the same file,

should normally have an unique value.

Multiple definitions of the same name will allow multiple sections

to interfere in the starting and stopping of the sample.

This method can’t be used to control the pitch or volume of the

sample, but instead multiple volume or pitch section should be

included inside the same event.

The types "raise" and "fall" will stop the playback of the sample

regardless of any other event. This means that when the type "raise"

is supplied, sample playback will stop when the event turns false.

Using the type "fall" will stop playback when the event turns true.

IMPORTANT:

If the trigger is used for anything else but stopping the sound

at a certain event, all sections with the same name *should* have

250



exactly the same sections for everything but property and type.

In the case of just stopping the sample at a certain event, the

sections for path, volume and pitch may be omitted.

<path>

This defined th path to the sound file. The path is relative to the

FlightGear root directory but could be specified absolute.

<condition>

Define a condition that triggers the event.

For a complete description of the FlightGear conditions,

please read docs-mini/README.conditions

An event should define either a condition or a property.

<property>

Define which property triggers the event, and refers to a node

in the FlightGear property tree. Action is taken when the property

is non zero.

A more sophisticated mechanism to trigger the event is described

in <condition>

<mode>

This defines how the sample should be played:

once: the sample is played once.

this is the default.

looped: the sample plays continuously,

until the event turns false.

in-transit: the sample plays continuously,

while the property is changing its value.

<type>

This defines the type os this sample:

fx: this is the default type and doesn’t need to be defined.

251



avionics: sounds set to this time don’t have a position and

orientation but are treated as if it’s mounted to

the aircraft panel. it’s up to the user to define

if it can always be heard or only when in cockpit

view.

<volume> / <pitch>

Volume or Pitch definition. Currently there may be up to 5

volume and up to 5 pitch definitions defined within one sound

event. Normally all offset values are added together and the

results after property calculations will be multiplied.

A special condition occurs when the value of factor is negative,

in which case the offset doesn’t get added to the other offset values

but instead will be used in the multiplication section.

<property>

Defines which property supplies the value for the calculation.

Either a <property> or an <internal> should be defined.

The value is treated as a floating point number.

<internal>

Defines which internal variable should be used for the calculation.

The value is treated as a floating point number.

The following internals are available at this time:

dt_play: the number of seconds since the sound started playing.

dt_stop: the number of seconds after the sound has stopped.

<delay-sec>

Delay after which the sound starts playing. This is useful to let

a property start two sounds at the same time, where the second is

delayed until the first stopped playing.

<type>

Defines the function that should be used upon the property

before it is used for calculating the net result:

lin: linear handling of the property value.

252



this is the default.

ln: convert the property value to a natural logarithmic

value before scaling it. Anything below 1 will return

zero.

log: convert the property value to a true logarithmic

value before scaling it. Anything below 1 will return

zero.

inv: inverse linear handling (1/x).

abs: absolute handling of the value (always positive).

sqrt: calculate the square root of the absolute value

before scaling it.

<factor>

Defines the multiplication factor for the property value.

A special condition is when scale is defined as a negative

value. In this case the result of |<scale>| * <property) will be

subtracted from <default>

<offset>

The initial value for this sound. This value is also used as an

offset value for calculating the end result.

<min>

Minimum allowed value.

This is useful if sounds start to sound funny. Anything lower

will be truncated to this value.

<max>

Maximum allowed value.

This is useful if sounds gets to loud. Anything higher will be

truncated to this value.

<position>

Specify the position of the sounds source relative to the

aircraft center. The coordinate system used is a left hand

253



coordinate system where +Y = left, -Y = right, -Z = down, +Z =

up, -X = forward, +X = aft. Distances are in meters.

The volume calculation due to distance and orientation of the

sounds source ONLY work on mono samples!

<x>

X dimension offset

<y>

Y dimension offset

<z>

Z dimension offset

<orientation>

Specify the orientation of the sounds source.

The zero vector is default, indicating that a Source is not directional.

Specifying a non-zero vector will make the Source directional in

the X,Y,Z direction

<x>

X dimension

<y>

Y dimension

<z>

Z dimension

<inner-angle>

The inner edge of the audio cone in degrees (0.0 - 180.0).

Any sound withing that angle will be played at the current gain.

<outer-angle>

The outer edge of the audio cone in degrees (0.0 - 180.0).

Any sound beyond the outer cone will be played at "outer-gain" volume.

<outer-gain>

254



The gain at the outer edge of the cone.

<reference-dist>

Set a reference distance of sound in meters. This is the

distance where the volume is at its maximum.

Volume is clamped to this maximum for any distance below.

Volume is attenuated for any distance above.

Attenuation depends on reference and maximum distance. See

OpenAL specification on "AL_INVERSE_DISTANCE_CLAMPED" mode

for details on exact computation.

<max-dist>

Set the maximum audible distance for the sound in meters.

Sound is cut-off above this distance.

Creating a configuration file:

------------------------------

To make things easy, there is a default value for most entries to allow a

sane configuration when a certain entry is omitted.

Default values are:

type: lin

factor: 1.0

offset: 0.0 for volume, 1.0 for pitch

min: 0.0

max: 0.0 (don’t check)

Calculations are made the following way (for both pitch and volume):

value = 0;

offs = 0;

for (n = 0; n < max; n++) {

if (factor < 0)

255



{

value += offset[n] - abs(factor[n]) * function(property[n]);

}

else

{

value += factor[n] * function(property[n]);

offs += offset[n];

}

}

volume = offs + value;

where function can be one of: lin, ln, log, inv, abs or sqrt

41 Xmlsyntax

XML IN FIFTEEN MINUTES OR LESS

Written by David Megginson, david@megginson.com

Last modified: $Date$

This document is in the Public Domain and comes with NO WARRANTY!

1. Introduction

---------------

FlightGear uses XML for much of its configuration. This document

provides a minimal introduction to XML syntax, concentrating only on

the parts necessary for writing and understanding FlightGear

configuration files. For a full description, read the XML

Recommendation at

http://www.w3.org/TR/

This document describes general XML syntax. Most of the XML

configuration files in FlightGear use a special format called

"Property Lists" -- a separate document will describe the specific

features of the property-list format.

256



2. Elements and Attributes

--------------------------

An XML document is a tree structure with a single root, much like a

file system or a recursive, nested list structure (for LISP fans).

Every node in the tree is called an _element_: the start and end of

every element is marked by a _tag_: the _start tag_ appears at the

beginning of the element, and the _end tag_ appears at the end.

Here is an example of a start tag:

<foo>

Here is an example of an end tag:

</foo>

Here is an example of an element:

<foo>Hello, world!</foo>

The element in this example contains only data element, so it is a

leaf node in the tree. Elements may also contain other elements, as

in this example:

<bar>

<foo>Hello, world!</foo>

<foo>Goodbye, world!</foo>

</bar>

This time, the ’bar’ element is a branch that contains other, nested

elements, while the ’foo’ elements are leaf elements that contain only

data. Here’s the tree in ASCII art (make sure you’re not using a

proportional font):

bar +-- foo -- "Hello, world!"

|

+-- foo -- "Goodbye, world!"

257



There is always one single element at the top level: it is called the

_root element_. Elements may never overlap, so something like this is

always wrong (try to draw it as a tree diagram, and you’ll understand

why):

<a><b></a></b>

Every element may have variables, called _attributes_, attached to

it. The attribute consists of a simple name=value pair in the start

tag:

<foo type="greeting">Hello, world!</foo>

Attribute values must be quoted with ’"’ or "’" (unlike in HTML), and

no two attributes may have the same name.

There are rules governing what can be used as an element or attribute

name. The first character of a name must be an alphabetic character

or ’_’; subsequent characters may be ’_’, ’-’, ’.’, an alphabetic

character, or a numeric character. Note especially that names may not

begin with a number.

3. Data

-------

Some characters in XML documents have special meanings, and must

always be escaped when used literally:

< &lt;

& &amp;

Other characters have special meanings only in certain contexts, but

it still doesn’t hurt to escape them:

> &gt;

’ &apos;

" &quot;

258



Here is how you would escape "x < 3 && y > 6" in XML data:

x &lt; 3 &amp;&amp; y &gt; 6

Most control characters are forbidden in XML documents: only tab,

newline, and carriage return are allowed (that means no ^L, for

example). Any other character can be included in an XML document as a

character reference, by using its Unicode value; for example, the

following represents the French word "cafe" with an accent on the

final ’e’:

caf&#233;

By default, 8-bit XML documents use UTF-8, **NOT** ISO 8859-1 (Latin

1), so it’s safest always to use character references for characters

above position 127 (i.e. for non-ASCII).

Whitespace always counts in XML documents, though some specific

applications (like property lists) have rules for ignoring it in some

contexts.

4. Comments

-----------

You can add a comment anywhere in an XML document except inside a tag

or declaration using the following syntax:

<!-- comment -->

The comment text must not contain "--", so be careful about using

dashes.

5. XML Declaration

------------------

Every XML document may begin with an XML declaration, starting with

"<?xml" and ending with "?>". Here is an example:

259



<?xml version="1.0" encoding="UTF-8"?>

The XML declaration must always give the XML version, and it may also

specify the encoding (and other information, not discussed here).

UTF-8 is the default encoding for 8-bit documents; you could also try

<?xml version="1.0" encoding="ISO-8859-1"?>

to get ISO Latin 1, but some XML parsers might not support that

(FlightGear’s does, for what it’s worth).

6. Other Stuff

--------------

There are other kinds of things allowed in XML documents. You don’t

need to use them for FlightGear, but in case anyone leaves one lying

around, it would be useful to be able to recognize it.

XML documents may contain different kinds of declarations starting

with "<!" and ending with ">":

<!DOCTYPE html SYSTEM "html.dtd">

<!ELEMENT foo (#PCDATA)>

<!ENTITY myname "John Smith">

and so on. They may also contain processing instructions, which look

a bit like the XML declaration:

<?foo processing instruction?>

Finally, they may contain references to _entities_, like the ones used

for escaping special characters, but with different names (we’re

trying to avoid these in FlightGear):

&chapter1;

&myname;

260



Enjoy.

42 Yasim

Coordinate system notes: All positions specified are in meters (which

is weird, since all other units in the file are English). The X axis

points forward, Y is left, and Z is up. Take your right hand, and

hold it like a gun. Your first and second fingers are the X and Y

axes, and your upwards-pointing thumb is the Z. This is slightly

different from the coordinate system used by JSBSim. Sorry. The

origin can be placed anywhere, so long as you are consistent. I use

the nose of the aircraft.

XML Elements

------------

airplane: The top-level element for the file. It contains only one

attribute:

mass: The empty (no fuel) weight, in pounds.

approach: The approach parameters for the aircraft. The solver will

generate an aircraft that matches these settings. The element

can (and should) contain <control> elements indicating pilot

input settings, such as flaps and throttle, for the

approach.

speed: The approach airspeed, in knots TAS.

aoa: The approach angle of attack, in degrees

fuel: Fraction (0-1) of fuel in the tanks. Default is 0.2.

cruise: The cruise speed and altitude for the solver to match. As

above, this should contain <control> elements indicating

aircraft configuration. Especially, make sure the engines

are generating enough thrust at cruise!

speed: The cruise speed, in knots TAS.

alt: The cruise altitude, in feet MSL.

fuel: Fraction (0-1) of fuel in the tanks. Default is 0.2.

261



cockpit: The location of the cockpit (pilot eyepoint).

x,y,z: eyepoint location (see coordinates note)

fuselage: This defines a tubelike structure. It will be given an even

mass and aerodynamic force distribution by the solver. You

can have as many as you like, in any orientation you please.

ax,ay,az: One end of the tube (typically the front)

bx,by,bz: The other ("back") end.

width: The width of the tube, in meters.

taper: The approximate radius at the "tips" of the fuselage

expressed as a fraction (0-1) of the width value.

midpoint: The location of the widest part of the fuselage,

expressed as a fraction of the distance between A and B.

idrag: Multiplier for the "induced drag" generated by this

object. Default is one. With idrag=0 the fuselage

generates only drag.

cx,cy,cz: Factors for the generated drag in the fuselages "local

coordinate system" with x pointing from end to front,

z perpendicular to x with y=0 in the aircraft coordinate

system. E.g. for a fuselage of a height of 2 times the

width you can define cy=2 and (due to the doubled front

surface) cx=2.

wing: This defines the main wing of the aircraft. You can have

only one (but see below about using vstab objects for extra

lifting surfaces). The wing should have a <stall> subelement to

indicate stall behavior, control surface subelements (flap0,

flap1, spoiler, slat) to indicate what and where the control

surfaces are, and <control> subelements to map user input

properties to the control surfaces.

x,y,z: The "base" of the wing, specified as the location of

the mid-chord (not leading edge, trailing edge, or

aerodynamic center) point at the root of the LEFT

(!) wing.

length: The length from the base of the wing to the midchord

point at the tip. Note that this is not the same

thing as span.

chord: The chord of the wing at its base, along the X axis

(not normal to the leading edge, as it is

sometimes defined).

262



incidence: The incidence angle at the wing root, in degrees.

Zero is level with the fuselage (as in an

aerobatic plane), positive means that the leading

edge is higher than the trailing edge (as in a

trainer).

twist: The difference between the incidence angle at the

wing root and the incidence angle at the wing

tip. Typically, this is a negative number so

that the wing tips have a lower angle of attack

and stall after the wing root (washout).

taper: The taper fraction, expressed as the tip chord

divided by the root chord. A taper of one is a

hershey bar wing, and zero would be a wing ending

at a point. Defaults to one.

sweep: The sweep angle of the wing, in degrees. Zero is

no sweep, positive angles are swept back.

Defaults to zero.

dihedral: The dihedral angle of the wing. Positive angles

are upward dihedral. Defaults to zero.

idrag: Multiplier for the "induced drag" generated by this

surface. In general, low aspect wings will

generate less induced drag per-AoA than high

aspect (glider) wings. This value isn’t

constrained well by the solution process, and may

require tuning to get throttle settings correct in

high AoA (approach) situations.

camber: The lift produced by the wing at zero angle of

attack, expressed as a fraction of the maximum

lift produced at the stall AoA.

hstab: These defines the horizontal stabilizer of the aircraft.

Internally, it is just a wing object and therefore works the

same in XML. You are allowed only one hstab object; the

solver needs to know which wing’s incidence to play with to

get the aircraft trimmed correctly.

vstab: A "vertical" stabilizer. Like hstab, this is just another

wing, with a few special properties. The surface is not

"mirrored" as are wing and hstab objects. If you define a

left wing only, you’ll only get a left wing. The default

263



dihedral, if unspecified, is 90 degrees instead of zero.

But all parameters are equally settable, so there’s no

requirement that this object be "vertical" at all. You can

use it for anything you like, such as extra wings for

biplanes. Most importantly, these surfaces are not involved

with the solver computation, so you can have none, or as

many as you like.

mstab: A mirrored horizontal stabilizer. Exactly the same as wing, but

not involved with the solver computation, so you can have none,

or as many as you like.

stall: A subelement of a wing (or hstab/vstab/mstab) that specifies the

stall behavior.

aoa: The stall angle (maximum lift) in degrees. Note that

this is relative to the wing, not the fuselage (since

the wing may have a non-zero incidence angle).

width: The "width" of the stall, in degrees. A high value

indicates a gentle stall. Low values are viscious

for a non-twisted wing, but are acceptable for a

twisted one (since the whole wing will not stall at

the same time).

peak: The height of the lift peak, relative to the

post-stall secondary lift peak at 45 degrees.

Defaults to 1.5. This one is deep voodoo, and

probably doesn’t need to change much. Bug me for an

explanation if you’re curious.

flap0, flap1, slat, spoiler:

These are subelements of wing/hstab/vstab objects, and specify

the location and effectiveness of the control surfaces.

start: The position along the wing where the control

surface begins. Zero is the root, one is the tip.

end: The position where the surface ends, as above.

lift: The lift multiplier for a flap or slat at full

extension. One is a no-op, a typical aileron might

be 1.2 or so, a giant jetliner flap 2.0, and a

spoiler 0.0. For spoilers, the interpretation is a

little different -- they spoil only "prestall" lift.

Lift due purely to "flat plate" effects isn’t

264



affected. For typical wings that stall at low AoA’s

essentially all lift is pre-stall and you don’t have

to care. Jet fighters tend not to have wing

spoilers, for exactly this reason. This value is

not applicable to slats, which affect stall AoA

only.

drag: The drag multiplier, as above. Typically should be

higher than the lift multiplier for flaps.

aoa: Applicable only to slats. This indicates the

angle by which the stall AoA is translated by the

slat extension.

thruster: A very simple "thrust only" engine object. Useful for

things like thrust vectoring nozzles. All it does is map

its THROTTLE input axis to its output thrust rating. Does

not consume fuel, etc...

thrust: Maximum thrust in pounds

x,y,z: The point on the airframe where thrust will be

applied.

vx,vy,vy: The direction of the thrust in airframe

coordinates. The vector will be normalized

automatically, so any non-zero vector will work

fine.

jet: A turbojet/fan engine. It accepts a <control> subelement to map a

property to its throttle setting, and an <actionpt> subelement

to place the action point of the thrust at a different

position than the mass of the engine.

x,y,z: The location of the engine, as a point mass.

If no actionpt is specified, this will also

be the point of application of thrust.

mass: The mass of the engine, in pounds.

thrust: The maximum sea-level thrust, in pounds.

afterburner: Maximum total thrust with afterburner/reheat,

in pounds [defaults to "no additional

thrust"].

rotate: Vector angle of the thrust in degrees about the

Y axis [0].

n1-idle: Idling rotor speed [55].

n1-max: Maximum rotor speed [102].

265



n2-idle: Idling compressor speed [73].

n2-max: Maximum compressor speed [103].

tsfc: Thrust-specific fuel consumption [0.8].

This should be considerably lower for modern

turbofans.

egt: Exhaust gas temperature at takeoff [1050].

epr: Engine pressure ratio at takeoff [3.0].

exhaust-speed: The maximum exhaust speed in knots [~1555].

spool-time: Time, in seconds, for the engine to respond to

90% of a commanded power setting.

propeller: A propeller. This element requires an engine subtag.

Currently <piston-engine> and <turbine-engine> are

supported.

x,y,z: The position of the mass (!) of the

engine/propeller combination. If the point

of force application is different (and it

will be) it should be set with an <actionpt>

subelement.

mass: The mass of the engine/propeller, in pounds.

moment: The moment, in kg-meters^2. This has to be

hand calculated and guessed at for now. A

more automated system will be forthcoming.

Use a negative moment value for

counter-rotating ("European" -- CCW as seen

from behind the prop) propellers.

A good guess for this value is the radius of

the prop (in meters) squared times the mass

(kg) divided by three; that is the moment of

a plain "stick" bolted to the prop shaft.

radius: The radius, in meters, or the propeller.

cruise-speed: The max efficiency cruise speed of the

propeller. Generally not the same as the

aircraft’s cruise speed.

cruise-rpm: The RPM of the propeller at max-eff. cruise.

cruise-power: The power sunk by the prop at cruise, in horsepower.

cruise-alt: The reference cruise altitude in feet.

takeoff-power: The takeoff power required by the propeller...

takeoff-rpm: ...at the given takeoff RPM.

min-rpm: The minimum operational RPM for a constant speed

266



propeller. This is the speed to which the

prop governor will seek when the blue lever

is at minimum. The coarse-stop attribute

limits how far the governor can go into trying

to reach this RPM.

max-rpm: The maximum operational RPM for a constant speed

propeller. See above. The fine-stop attribute

limits how far the governor can go in trying

to reach this RPM.

fine-stop: The minimum pitch of the propeller (high RPM) as a

ratio of ideal cruise pitch. This is set to 0.25

by default -- a higher value will result in a

lower RPM at low power settings (e.g. idle, taxi,

and approach).

coarse-stop: The maximum pitch of the propeller (low RPM) as

a ratio of ideal cruise pitch. This is set to

4.0 by default -- a lower value may result in a

higher RPM at high power settings.

gear-ratio: The factor by which the engine RPM is multiplied

to produce the propeller RPM. Optional (defaults

to 1.0).

contra: When set (contra="1"), this indicates that the

propeller is a contra-rotating pair. It

will not contribute to the aircraft’s net

gyroscopic moment, nor will it produce

asymmetric torque on the aircraft body.

Asymmetric slipstream effects, when

implemented, will also be zero when this is

set.

piston-engine: A piston engine definition. This must be a subelement

of an enclosing <propeller> tag.

eng-power: Maximum BHP of the engine at sea level.

eng-rpm: The engine RPM at which eng-power is developed

displacement: The engine displacement in cubic inches.

compression: The engine compression ratio.

turbo-mul: The turbo/super-charger pressure multiplier.

Static pressure will be multiplied by this

value to get the manifold pressure.

wastegate-mp: The maximum manifold pressure. Beyond

267



this, the gate will release to keep the

MP below this number. (inHG). This value

can be changed at runtime using the

WASTEGATE control axis, which is a

multiplier in the range [0:1].

turbo-lag: Time lag, in seconds, for 90% of a power change

to be reflected in the turbocharger boost

pressure.

turbine-engine: A turbine engine definition. This must be a subelement

of an enclosing <propeller> tag.

eng-power: Maximum BHP of the engine at a suitable

cruise altitude.

eng-rpm: The engine RPM at which eng-power is

developed. Note that this is "shaft" RPM

as seen by the propeller. Don’t use a

gear-ratio on the enclosing propeller, or

else you’ll get confused. :)

alt: The altitude at which eng-power is developed.

This should be high enough to be lower (!)

than the flat-rating power.

flat-rating: The maximum allowed power developed by

the engine. Most turboprops are flat

rated below a certain altitude and

temperature range to prevent engine

damage.

min-n2: N2 (percent) turbine speed at zero throttle.

max-n2: N2 (percent) turbine speed at max throttle.

bsfc: Specific fuel consumption, in lbs/hr per

horsepower.

actionpt: Defines an "action point" for an enclosing jet or propeller

element. This is the location where the force from the thruster

will be applied.

x,y,z: The location of force application.

gear: Defines a landing gear. Accepts <control> subelements to map

properties to steering and braking. Can also be used to simulate

floats. Although the coefficients are still called ..fric, it

268



is calculated in fluids as a drag (proportional to the square

of the speed). In fluids gears are not considered to detect

crashes (as on ground).

x,y,z: The location of the fully-extended gear tip.

compression: The distance in meters along the "up" axis that

the gear will compress.

initial-load: The initial load of the spring in multiples of

compression. Defaults to 0. (With this parameter

a lower spring-constants will be used for the

gear-> can reduce numerical problems (jitter))

Note: the spring-constant is varied from 0%

compression to 20% compression to get continuous

behavior around 0 compression. (could be physically

explained by wheel deformation)

upx/upy/upz: The direction of compression, defaults to

vertical (0,0,1) if unspecified. These are

used only for a direction -- the vector need

not be normalized, as the length is specified

by "compression".

sfric: Static (non-skidding) coefficient of

friction. Defaults to 0.8.

dfric: Dynamic friction. Defaults to 0.7.

spring: A dimensionless multiplier for the automatically

generated spring constant. Increase to make

the gear stiffer, decrease to make it

squishier.

damp: A dimensionless multiplier for the automatically

generated damping coefficient. Decrease to

make the gear "bouncier", increase to make it

"slower". Beware of increasing this too far:

very high damping forces can make the numerics

unstable. If you can’t make the gear stop

bouncing with this number, try increasing the

compression length instead.

on-water: if this is set to "0" the gear will be ignored if

on water. Defaults to "0"

on-solid: if this set to "0" the gear will be ignored if

not on water. Defaults to "1"

speed-planing:

spring-factor-not-planing:

269



At zero speed the spring factor is multiplied by

spring-factor-not-planing. Above speed-planing this

factor is equal to 1. The idea is, to use this for

floats simulating the transition from swimming to

planing. speed-planing defaults to 0,

spring-factor-not-planing defaults to 1.

reduce-friction-by-extension: at full extension the friction is

reduced by this relative value. 0.7 means 30% friction

at full extension. If you specify a value greater

than one, the friction will be zero before reaching

full extension. Defaults to "0"

ignored-by-solver: with the on-water/on-solid tags you can have more

than one set of gears in one aircraft, If the solver

(who automatically generates the spring constants)

would take all gears into account, the result would be

wrong. E. G. set this tag to "1" for all gears, which

are not active on runways. Defaults to "0". You can

not exclude all gears in the solving process.

launchbar: Defines a catapult launchbar or strop. The default acceleration

provided by the catapult is 25m/s^2. This can be

modified by the use of the control axis LACCEL.

x,y,z: The location of the mount point of the launch bar or

strop on the aircraft.

length: The length of the launch bar from mount point to tip

down-angle: The max angle below the horizontal the

launchbar can achieve.

up-angle: The max angle above the horizontal the launchbar

can achieve.

holdback-{x,y,z}: The location of the holdback mount point

on the aircraft.

holdback-length: The length of the holdback from mount

point to tip. Note: holdback up-angle and

down-angle are the same as those defined

for the launchbar and are not specified in

the configuration.

tank: A fuel tank. Tanks in the aircraft are identified

numerically (starting from zero), in the order they are

defined in the file. If the left tank is first, "tank[0]"

270



will be the left tank.

x,y,z: The location of the tank.

capacity: The maximum contents of the tank, in pounds. Not

gallons -- YASim supports fuels of varying

densities.

jet: A boolean. If present, this causes the fuel

density to be treated as Jet-A. Otherwise,

gasoline density is used. A more elaborate

density setting (in pounds per gallon, for

example) would be easy to implement. Bug me.

ballast: This is a mechanism for modifying the mass distribution of

the aircraft. A ballast setting specifies that a particular

amount of the empty weight of the aircraft must be placed at

a given location. The remaining non-ballast weight will be

distributed "intelligently" across the fuselage and wing

objects. Note again: this does NOT change the empty weight

of the aircraft.

x,y,z: The location of the ballast.

mass: How much mass, in pounds, to put there. Note that

this value can be negative. I find that I often need

to "lighten" the tail of the aircraft.

weight: This is an added weight, something not part of the empty

weight of the aircraft, like passengers, cargo, or external

stores. The actual value of the mass is not specified here,

instead, a mapping to a property is used. This allows

external code, such as the panel, to control the weight

(loading a given cargo configuration from preference files,

dropping bombs at runtime, etc...)

x,y,z: The location of the weight.

mass-prop: The name of the fgfs property containing the

mass, in pounds, of this weight.

size: The aerodynamic "size", in meters, of the

object. This is important for external stores,

which will cause drag. For reasonably

aerodynamic stuff like bombs, the size should be

roughly the width of the object. For other

stuff, you’re on your own. The default is zero,

which results in no aerodynamic force (internal

271



cargo).

solve-weight:

Subtag of approach and cruise parameters. Used to specify a

non-zero setting for a <weight> tag during solution. The

default is to assume all weights are zero at the given

performance numbers.

idx: Index of the weight in the file (starting with zero).

weight: Weight setting in pounds.

control-input:

This element manages a mapping from fgfs properties (user

input) to settable values on the aircraft’s objects. Note

that the value to be set MUST (!) be valid on the given

object type. This is not checked for by the parser, and

will cause a runtime crash if you try it. Wing’s don’t have

throttle controls, etc... Note that multiple axes may be

set on the same value. They are summed before setting.

axis: The name of the double-valued fgfs property "axis" to

use as input, such as "/controls/flight/aileron".

control: Which control axis to set on the objects. It can have

the following values:

THROTTLE - The throttle on a jet or propeller.

MIXTURE - The mixture on a propeller.

REHEAT - The afterburner on a jet

PROP - The propeller advance

BRAKE - The brake on a gear.

STEER - The steering angle on a gear.

INCIDENCE - The incidence angle of a wing.

FLAP0 - The flap0 deflection of a wing.

FLAP1 - The flap1 deflection of a wing.

FLAP[0/1]EFFECTIVENESS - a multiplier for flap lift, but not drag

(useful for blown flaps)

SLAT - The slat extension of a wing.

SPOILER - The spoiler extension for a wing.

CYCLICAIL - The "aileron" cyclic input of a rotor

CYCLICELE - The "elevator" cyclic input of a rotor

COLLECTIVE - The collective input of a rotor

272



ROTORENGINEON - If not equal zero the rotor is rotating

WINCHRELSPEED - The relative winch speed

LACCEL - The acceleration provided by the catapult.

{... and many more, see FGFDM.cpp ...}

invert: Negate the value of the property before setting on

the object.

split: Applicable to wing control surfaces. Sets the

normal value on the left wing, and a negated value

on the right wing.

square: Squares the value before setting. Useful for

controls like steering that need a wide range, yet

lots of sensitivity in the center. Obviously only

applicable to values that have a range of [-1:1] or

[0:1].

src0/src1/dst0/dst1:

If present, these defined a linear mapping from the

source to the output value. Input values in the

range src0-src1 are mapped linearly to dst0-dst1,

with clamping for input values that lie outside the

range.

control-output:

This can be used to pass the value of a YASim control axis

(after all mapping and summing is applied) back to the

property tree.

control: Name of the control axis. See above.

prop: Property node to receive the value.

side: Optional, for split controls. Either "right" or "left"

min/max: Clamping applied to output value.

control-speed:

Some controls (most notably flaps and hydraulics) have

maximum slew rates and cannot respond instantly to pilot

input. This can be implemented with a control-speed tag,

which defines a "transition time" required to slew through

the full input range. Note that this tag is

semi-deprecated, complicated control input filtering can be

done much more robustly from a Nasal script.

273



control: Name of the control axis. See above.

transition-time: Time in seconds to slew through input range.

control-setting:

This tag is used to define a particular setting for a

control axis inside the <cruise> or <approach> tags, where

obviously property input is not available. It can be used,

for example, to inform the solver that the approach

performance values assume full flaps, etc...

axis: Name of the control input (i.e. a property name)

value: Value of the control axis.

hitch: A hitch, can be used for winch-start (in gliders) or aerotow (in

gliders and motor aircrafts) or for external cargo with helicopter.

You can do aerotow over the net via multiplayer (see j3 and bocian

as an example).

name: the name of the hitch. must be aerotow if you want to do

aerotow via multiplayer. You will find many properties

at /sim/hitches/name. Most of them are directly tied to

the internal variables, you can modify them as you like.

You can add a listener to the property "broken", e. g. for

playing a sound.

x,y,z: The position of the hitch

force-is-calculated-by-other: if you want to simulate aerotowing

over the internet, set this value to "1" in the motor

aircraft. Don’t specify or set this to zero in gliders.

In a LAN the time lag might be small enough to set it on

both aircrafts to "0". It’s intended, that this is done

automatically in the future.

tow: The tow used for aerotow or winch. This must be a subelement

of an enclosing <hitch> tag.

length: upstretched length in m

weight-per-meter: in kg/m

elastic-constant: lower values give higher elasticity

break-force: in N

mp-auto-connect-period: the every x seconds a towed multiplayer

aircraft is searched. If found, this tow is connected

274



automatically, parameters are copied from the other

aircraft. Should be set only in the motor aircraft, not

in the glider

winch: The tow used for aerotow or winch. This must be a subelement

of an enclosing <hitch> tag.

max-tow-length:

min-tow-length:

initial-tow-length: all are in m. The initial tow length also

defines the length/search radius used for the mp-autoconnect

feature

max-winch-speed: in m/s

power: in kW

max-force: in N

rotor: A rotor. Used for simulating helicopters. You can have one, two

or even more.

There is a drawing of a rotor in the Doc-directory

(README.yasim.rotor.png) Please find the measures from this drawing

for several parameters in square brackets [].

If you specify a rotor, you do not need to specify a wing or hstab,

the settings for approach and cruise will be ignored then. You have

to specify the solver results manually. See below.

The rotor generates downwash acting on all stabs, surfaces and

fuselages. For all fuselages in the rotor downwash you should

specify idrag="0" to get realistic results.

name: The name of the rotor.

(some data is stored at /rotors/name/)

The rpm, cone angle, yaw angle and roll angle are stored

for the complete rotor. For every blade the position

angle, the flap angle and the incidence angle are stored.

All angles are in degree, positive values always mean "up".

This is not completely tested, but seem to work at least

for rotors rotating counterclockwise.

A value stall gives the fraction of the rotor in stall

(weighted by the fraction the have on lift and drag

without stall). Use this for modifying the rotor-sound.

x,y,z: The position of the rotor center

275



nx,ny,nz: The normal of the rotor (pointing upwards, will be

normalized by the computer)

fx,fy,fz: A Vector pointing forward, if not perpendicular to the

normal it will be corrected by the computer

diameter: The diameter in meter [D]

numblades: The number of blades

weightperblade: The weight per blade in pounds

relbladecenter: The relative center of gravity of the blade. Maybe

not 100% correct interpreted; use 0.5 for the start and

change in small steps [b/R]

chord: The chord of the blade its base, along the X axis

(not normal to the leading edge, as it is

sometimes defined). [c]

twist: The difference between the incidence angle at the

blade root and the incidence angle at the wing

tip. Typically, this is a negative number so

that the rotor tips have a lower angle of attack.

taper: The taper fraction, expressed as the tip chord

divided by the root chord. A taper of one is a

bar blade, and zero would be a blade ending

at a point. Defaults to one. [d/c]

rel-len-where-incidence-is-measured: If the blade is twisted,

you need a point where to measure the incidence angle.

Zero means at the base, 1 means at the tip. Typically

it should be something near 0.7

rel-len-blade-start: Typically the blade is not mounted in the

center of the rotor [a/R]

rpm: rounds per minute.

phi0: initial position of this rotor

ccw: determines if the rotor rotates clockwise (="0") or

counterclockwise (="1"), (if you look on the top of the

normal, so the bo105 has counterclockwise rotor).

"true" and "false" are not any longer supported to

increase my lifespan. ;-)

maxcollective: The maximum of the collective incidence in degree

mincollective: The minimum of the collective incidence in degree

maxcyclicele: The maximum of the cyclic incidence in degree for

the elevator like function

mincyclicele: The minimum of the cyclic incidence in degree for

the elevator like function

276



maxcyclicail: The maximum of the cyclic incidence in degree for

the aileron like function

mincyclicail: The minimum of the cyclic incidence in degree for

the aileron like function

airfoil-incidence-no-lift: non symmetric airfoils produces lift

with no incidence. This is is the incidence, where the

airfoil is producing no lift. Zero for symmetrical airfoils

(default)

incidence-stall-zero-speed:

incidence-stall-half-sonic-speed: the stall incidence is a function

of the speed. I found some measured data, where this is

linear over a wide range of speed. Of course the linear

region ends at higher speeds than zero, but just

extrapolate the linear behavior to zero.

lift-factor-stall: In stall airfoils produce less lift. Without

stall the c-lift of the profile is assumed to be

sin(incidence-"airfoil-incidence-no-lift")*liftcoef;

And in stall:

sin(2*(incidence-"airfoil-incidence-no-lift"))*liftcoef*...

..."lift-factor-stall";

Therefore this factor is not the quotient between lift

with and without stall. Use 0.28 if you have no idea.

drag-factor-stall: The drag of an airfoil in stall is larger than

without stall.

Without stall c-drag is assumed to be

abs(sin(incidence-"airfoil-incidence-no-lift"))...

..*dragcoef1+dragcoef0);

With stall this is multiplied by drag-factor

stall-change-over: For incidence<"incidence-stall" there is no stall.

For incidence>("incidence-stall"+"stall-change-over") there

is stall. In the range between this incidences it is

interpolated linear.

pitch-a:

pitch-b: collective incidence angles, If you start flightgear

with --log-level=info, flightgear reports lift and needed

power for theses incidence angles

forceatpitch-a:

poweratpitch-b:

poweratpitch-0: old tokens, not supported any longer, the result are

277



not exactly the expected lift and power values. Will be

removed in one of the next updates.directly.Use "real"

coefficients instead (see below) and adjust the lift with

rotor-correction-factor.

The airfoil of the rotor is described as follows:

The way is to define the lift and drag coefficients directly.

Without stall the c-lift of the profile is assumed to be

sin(incidence-"airfoil-incidence-no-lift")*liftcoef;

And in stall:

sin(2*(incidence-"airfoil-incidence-no-lift"))*liftcoef*...

..."lift-factor-stall";

Without stall c-drag is assumed to be

abs(sin(incidence-"airfoil-incidence-no-lift"))...

..*dragcoef1+dragcoef0);

See above, how the coefficients are defined with stall.

The parameters:

airfoil-lift-coefficient: liftcoef

airfoil-drag-coefficient0: dragcoef0

airfoil-drag-coefficient1: dragcoef1

To find the right values: see README.yasim.rotor.ods

(Open Office file) or README.yasim.rotor.xls (Excel

file). With theses files you can generate graphs of the

airfoil coefficients and adjust the parameters to match

real airfoils. For many airfoils you find data published

in the internet. Parameters for the airfoils NACA 23012

(main rotor of bo105) and NACA 0012 (tail rotor of bo105?)

are included.

rotor-correction-factor:

If you calculate the lift of a heli rotor or even of a

propeller, you get a value larger than the real measured

one. (Due to vortex effects.) This is considered in the

simulation, but with a old theory by Prantl, which is known

to give still too large. This is corrected by this token,

default: 1

flapmin: Minimum flapping angle. (Should normally never reached)

flapmax: Maximum flapping angle. (Should normally never reached)

flap0: Flapping angle at no rotation, i.e. -5

dynamic: this changes the reactions speed of the rotor to an input.

278



normally 1 (Maybe there are rotors with a little faster

reaction, than use a value a little greater than one.

A value greater than one will result in a more inert,

system. Maybe it’s useful for simulating the rotor of the

Bell UH1

rellenflaphinge: The relative length from the center of the rotor

to the flapping hinge. Can be taken from pictures of the

helicopter (i.e. 0 for Bell206, about 0.05 for most

rotors) For rotors without flapping hinge (where the blade

are twisted instead, i.e. Bo 105, Lynx) use a mean value,

maybe 0.2. This value has a extreme result in the behavior

of the rotor [F/r]

sharedflaphinge: determines, if the rotor has one central flapping

hinge (="1") for the blades (like the Bell206 or the tail

rotor of the Bo 105), default is "0".

delta3: Some rotors have a delta3 effect, which results in a

decreasing of the incidence when the rotor is flapping.

A value of 0 (as most helicopters have) means no change in

incidence, a value of 1 result in a decreases of one degree

per one degree flapping.

So delta3 is the proportional factor between flapping and

decrease of incidence. I.e. the tail rotor of a Bo105 has

a delta3 of 1.

In some publications delta3 is described by an angle. The

value in YASim is the atan of this angle

delta: A factor for the damping constant for the flapping. 1 means

a analytical result, which is only a approximation. Has a

very strong result in the reaction of the rotor system on

control inputs.

If you know the flapping angle for a given cyclic input you

can adjust this by changing this value. Or if you now the

maximum roll rate or ...

translift-maxfactor: Helicopters have "translational lift", which

is due to turbulence. In forward flying the rotor gets less

turbulence air and produces more lift. The factor is the

quotient between lift at high airspeeds to the lift at

hover (with same pitch).

translift-ve: the speed, where the translational lift reaches 1/e of

the maximum value. In m/s.

ground-effect-constant: Near to the ground the rotor produces more

279



torque than in higher altitudes. The ground effect is

calculated as

factor = 1+diameter/altitude*"ground-effect-constant"

number-of-parts:

number-of-segments: The rotor is simulated in "number-of-parts"

different directions.

In every direction the rotor is simulated at

number-of-segments points. If the value is to small, the

rotor will react unrealistic. If it is to high, cpu-power

will be wasted. I now use a value of 8 for

"number-of-parts" and 8 for number-of-segments for the main

rotor and 4 for "number-of-parts" and 5 for

"number-of-segments" for the tail rotor.

"number-of-parts" must be a multiple of 4 (if not, it

is corrected)

cyclic-factor: The response of a rotor to cyclic input is hard to

calculate (its a damped oscillator in resonance, some

parameters have very large impact to the cyclic response)

With this parameter (default 1) you can adjust the

simulator to the real helo.

downwashfactor: A factor for the downwash of the rotor, default 1.

balance: The balance of the rotor. 1.0: the rotor is 100% balanced,

0.0: half of the blades are missing. Use a value near one

(0.98 ... 0.999) to add some vibration.

tiltcenterx:

tiltcentery:

tiltcenterz: The center for the tilting of the complete rotorhead/

mast. Can be used for simulating of the Osprey or small

autogyros.

mintiltyaw:

mintiltpitch:

mintiltroll:

maxtiltyaw:

maxtiltpitch:

maxtiltroll: The limits (in degree) for tilting the rotor head

All rotor can have <control> subelements for the cyclic

(CYCLICELE, CYCLICAIL) and collective (COLLECTIVE) input.

and can have <control> subelements for the tilting the whole rotor

head around the y-axis (TILTPITCH), the x-axis (TILTROLL) and the

280



z-axis (TILTYAW). ROTORBALANCE is a factor for the balance.

rotorgear: If you are using one or more rotors you have to define a

rotorgear. It connects all the rotors and adds a simple engine.

In future it will be possible, to add a YASim-engine.

max-power-engine: the maximum power of the engine, in kW.

engine-prop-factor: the engine is working as a pd-regulator. This

is the width of the regulation-band, or, in other words,

the inverse of the proportional-factor of the regulator.

If you set it to 0.02, than up to 98% of the rotor-rpm

the engine will produce maximum torque. At 100% of

the engine will produce no torque. It is planned to use

YASim-engines instead of this simple engine.

engine-accel-limit: The d-factor of the engine is defined as the

maximum acceleration rate of the engine in %/s,

default is 5%/s.

max-power-rotor-brake: the maximum power of the rotor brake, in kW

at normal rpm (most? real rotor brakes would be overheated

if used at normal rpm, but this is not simulated now)

rotorgear-friction: the power loss due to friction in kW at normal

RPM

yasimdragfactor:

yasimliftfactor: the solver is not working with rotor-aircraft.

Therefore you have to specify the results yourself.

10 for drag and 140 for lift seem to be good starting

values. Although the solve is not invoked for aircraft

with at least one rotor, you need to specify the cruise

and the approach settings. The approach speed is needed to

calculate the gear springs. Use a speed of approx. 50knots.

They do not need to match any real value.

The rotorgear needs a <control> subelement for the engine

(ROTORGEARENGINEON) and can have further <control> subelements:

ROTORBRAKE: rotor brake

ROTORRELTARGET: the target rpm of the engine relative to

the "normal" value for the governor. Default is

1.

ROTORENGINEMAXRELTORQUE: the maximum torque of the engine

relative to the torque defined by the engine-

power. Default is 1. By setting the rel-target

281



to a large number you get control over the

engine by this control.

Alternatively you can use these two values for

individual start-up sequences (see the s58)

282


	1 Introduction
	2 3DClouds
	3 Add-ons
	4 Airspeed-indicator
	5 Checklists
	6 Commands
	7 Conditions
	8 Digitalfilters
	9 Effects
	10 Electrical
	11 Embedded-resources
	12 Fgjs
	13 Flightrecorder
	14 Gui
	15 Hud
	16 Introduction
	17 IO
	18 Joystick
	19 JSBsim
	20 Jsclient
	21 Layout
	22 Logging
	23 Materials
	24 Mingw
	25 Minipanel
	26 Multiplayer
	27 Multiscreen
	28 Osgtext
	29 Properties
	30 Protocol
	31 Scenery
	32 Sound
	33 Submodels
	34 Systems
	35 Tutorials
	36 Wildfire
	37 Xmlhud
	38 Xmlpanel
	39 Xmlparticles
	40 Xmlsound
	41 Xmlsyntax
	42 Yasim

