<?xml version="1.0"?> <PropertyList> <path>tc.ac</path> <animation> <type>material</type> <object-name>Ball</object-name> <object-name>Face</object-name> <object-name>Airplane</object-name> <emission> <red>1.0</red> <green>0.2</green> <blue>0.0</blue> <factor-prop>/sim/model//material/instruments/factor</factor-prop> </emission> </animation> <animation> <type>rotate</type> <object-name>Airplane</object-name> <property>/instrumentation/turn-indicator/indicated-turn-rate</property> <factor>20.0</factor> <axis> <x>-1</x> <y>0</y> <z>0</z> </axis> </animation> <animation> <type>rotate</type> <object-name>Ball</object-name> <property>/instrumentation/slip-skid-ball/indicated-slip-skid</property> <factor>5.729</factor> <!-- From the source for slip_skid_ball.cxx, the number returned is (-z_accel/y_accel)*10. For small theta, theta~=tan(theta) when theta is in radians. So the angle of a "ball" undergoing z_accel and y_accel hung on the end of a string makes with the verticle will be approximately -z_accel/y_accel radians. Converting to degrees, multiply by 180/pi=57.29, or 5.729 times the returned value. Edited by Dave Perry, 2/26/06. --> <min-deg>-5</min-deg> <max-deg>5</max-deg> <center> <x-m>0</x-m> <y-m>0</y-m> <z-m>0.25</z-m> <!-- Makes the radius of curvature for the glass tube ~10 inches --> </center> <axis> <x>-1</x> <y>0</y> <z>0</z> </axis> </animation> </PropertyList>