<?xml version="1.0"?>

<PropertyList>

 <path>tc.ac</path>

 <animation>
  <type>material</type>
  <object-name>Ball</object-name>
  <object-name>Face</object-name>
  <object-name>Airplane</object-name>
  <emission>
   <red>1.0</red>
   <green>0.2</green>
   <blue>0.0</blue>
   <factor-prop>/sim/model//material/instruments/factor</factor-prop>
  </emission>
 </animation>

 <animation>
  <type>rotate</type>
  <object-name>Airplane</object-name>
  <property>/instrumentation/turn-indicator/indicated-turn-rate</property>
  <factor>20.0</factor>
  <axis>
   <x>-1</x>
   <y>0</y>
   <z>0</z>
  </axis>
 </animation>

 <animation>
  <type>rotate</type>
  <object-name>Ball</object-name>
  <property>/instrumentation/slip-skid-ball/indicated-slip-skid</property>
  <factor>5.729</factor>
<!--
   From the source for slip_skid_ball.cxx, the number returned is (-z_accel/y_accel)*10.
   For small theta, theta~=tan(theta) when theta is in radians.  So the angle of a "ball" 
   undergoing z_accel and y_accel hung on the end of a string makes with the verticle
   will be approximately -z_accel/y_accel radians. Converting to degrees, multiply by
   180/pi=57.29, or 5.729 times the returned value. Edited by Dave Perry, 2/26/06.
-->
  <min-deg>-5</min-deg>
  <max-deg>5</max-deg>
  <center>
   <x-m>0</x-m>
   <y-m>0</y-m>
   <z-m>0.25</z-m>  <!--  Makes the radius of curvature for the glass tube ~10 inches -->
  </center>
  <axis>
   <x>-1</x>
   <y>0</y>
   <z>0</z>
  </axis>
 </animation>

</PropertyList>