// WS30 FRAGMENT SHADER // -*-C++-*- #version 130 #extension GL_EXT_texture_array : enable // written by Thorsten Renk, Oct 2011, based on default.frag ////////////////////////////////////////////////////////////////// // TEST PHASE TOGGLES AND CONTROLS // // Development tools: // Reduce haze to almost zero, while preserving lighting. Useful for observing distant tiles. // Keeps the calculation overhead. This can be used for profiling. // Possible values: 0:Normal, 1:Reduced haze. const int reduce_haze_without_removing_calculation_overhead = 0; // Remove haze and lighting and shows just the texture. // Useful for checking texture rendering and scenery. // The compiler will likely optimise out the haze and lighting calculations. // Possible values: 0:Normal, 1:Just the texture. const int remove_haze_and_lighting = 0; // // End of test phase controls ////////////////////////////////////////////////////////////////// // written by Thorsten Renk, Oct 2011, based on default.frag // Ambient term comes in gl_Color.rgb. varying vec4 light_diffuse_comp; varying vec3 normal; varying vec3 relPos; varying vec2 rawPos; //varying vec3 worldPos; // Testing code: vec3 worldPos = vec3(5000.0, 6000.0, 7000.0) + vec3(vec2(rawPos), 600.0); // vec3(100.0, 10.0, 3.0); //varying vec2 orthoTexCoord; varying vec4 eyePos; uniform sampler2D landclass; uniform sampler2DArray textureArray; uniform sampler2D perlin; //varying float yprime_alt; //varying float mie_angle; varying float steepness; uniform float visibility; uniform float avisibility; uniform float scattering; uniform float terminator; uniform float terrain_alt; uniform float hazeLayerAltitude; uniform float overcast; uniform float eye_alt; uniform float snowlevel; uniform float dust_cover_factor; uniform float lichen_cover_factor; uniform float wetness; uniform float fogstructure; uniform float snow_thickness_factor; uniform float cloud_self_shading; uniform float season; // Used by regional definitions uniform float transition_model; uniform float hires_overlay_bias; uniform int quality_level; uniform int tquality_level; // Passed from VPBTechnique, not the Effect uniform bool photoScenery; uniform vec4 dimensionsArray[128]; uniform vec4 ambientArray[128]; uniform vec4 diffuseArray[128]; uniform vec4 specularArray[128]; const float EarthRadius = 5800000.0; const float terminator_width = 200000.0; //Testing phase: Why are these in global scope in WS2 shaders? float alt; float eShade; float yprime_alt; float mie_angle; float shadow_func (in float x, in float y, in float noise, in float dist); float DotNoise2D(in vec2 coord, in float wavelength, in float fractionalMaxDotSize, in float dot_density); float Noise2D(in vec2 coord, in float wavelength); float Noise3D(in vec3 coord, in float wavelength); float SlopeLines2D(in vec2 coord, in vec2 gradDir, in float wavelength, in float steepness); float Strata3D(in vec3 coord, in float wavelength, in float variation); float fog_func (in float targ, in float alt); float rayleigh_in_func(in float dist, in float air_pollution, in float avisibility, in float eye_alt, in float vertex_alt); float alt_factor(in float eye_alt, in float vertex_alt); float light_distance_fading(in float dist); float fog_backscatter(in float avisibility); vec3 rayleigh_out_shift(in vec3 color, in float outscatter); vec3 get_hazeColor(in float light_arg); vec3 searchlight(); vec3 landing_light(in float offset, in float offsetv); vec3 filter_combined (in vec3 color) ; float getShadowing(); vec3 getClusteredLightsContribution(vec3 p, vec3 n, vec3 texel); ////////////////////////// // Test-phase code: // These should be sent as uniforms // Tile dimensions in meters // vec2 tile_size = vec2(tile_width , tile_height); // Testing: texture coords are sent flipped right now: // Note tile_size is defined in the shader include: ws30-landclass-search-functions.frag. // vec2 tile_size = vec2(tile_height , tile_width); // From noise.frag float rand2D(in vec2 co); // These functions, and other function they depend on, are defined // in ws30-ALS-landclass-search.frag. // Create random landclasses without a texture lookup to stress test. // Each square of square_size in m is assigned a random landclass value. int get_random_landclass(in vec2 co, in vec2 tile_size); // Lookup a ground texture at a point based on the landclass at that point, without visible // seams at coordinate discontinuities or at landclass boundaries where texture are switched. // The partial derivatives of the tile_coord at the fragment is needed to adjust for // the stretching of different textures, so that the correct mip-map level is looked // up and there are no seams. vec4 lookup_ground_texture_array(in vec2 tile_coord, in int landclass_id, in vec2 dx, in vec2 dy); // Look up the landclass id [0 .. 255] for this particular fragment. // Lookup id of any neighbouring landclass that is within the search distance. // Searches are performed in upto 4 directions right now, but only one landclass is looked up // Create a mix factor werighting the influences of nearby landclasses void get_landclass_id(in vec2 tile_coord, const in float landclass_texel_size_m, in vec2 dx, in vec2 dy, out int landclass_id, out ivec4 neighbor_landclass_ids, out int num_unique_neighbors,out vec4 mix_factor ); // End Test-phase code //////////////////////// void main() { yprime_alt = light_diffuse_comp.a; //diffuse_term.a = 1.0; mie_angle = gl_Color.a; float effective_scattering = min(scattering, cloud_self_shading); // distance to fragment float dist = length(relPos); // angle of view vector with horizon float ct = dot(vec3(0.0, 0.0, 1.0), relPos)/dist; vec3 shadedFogColor = vec3(0.55, 0.67, 0.88); // this is taken from default.frag vec3 n; float NdotL, NdotHV, fogFactor; vec3 lightDir = gl_LightSource[0].position.xyz; vec3 halfVector = gl_LightSource[0].halfVector.xyz; //vec3 halfVector = normalize(normalize(lightDir) + normalize(ecViewdir)); vec4 texel; vec4 snow_texel; vec4 detail_texel; vec4 mix_texel; vec4 fragColor; vec4 specular = vec4(0.0); float intensity; // get noise at different wavelengths // used: 5m, 5m gradient, 10m, 10m gradient: heightmap of the closeup terrain, 10m also snow // 50m: detail texel // 250m: detail texel // 500m: distortion and overlay // 1500m: overlay, detail, dust, fog // 2000m: overlay, detail, snow, fog float noise_10m; float noise_5m; noise_10m = Noise2D(rawPos.xy, 10.0); noise_5m = Noise2D(rawPos.xy ,5.0); float noisegrad_10m; float noisegrad_5m; float noise_50m = Noise2D(rawPos.xy, 50.0);; float noise_250m = Noise3D(worldPos.xyz,250.0); float noise_500m = Noise3D(worldPos.xyz, 500.0); float noise_1500m = Noise3D(worldPos.xyz, 1500.0); float noise_2000m = Noise3D(worldPos.xyz, 2000.0); // // get the texels // Oct 27 2021: // Geometry is in the form of roughly rectangular 'tiles' // with a mesh forming a grid with regular spacing. // Each vertex in the mesh is given an elevation // Tile dimensions in m // Testing: created from two float uniforms in global scope. Should be sent as a vec2 // vec2 tile_size // Tile texture coordinates range [0..1] over the tile 'rectangle' vec2 tile_coord = gl_TexCoord[0].st; // Test phase: Constants and toggles for transitions between landlcasses are defined at // the top of this file. // Look up the landclass id [0 .. 255] for this particular fragment // and any neighbouring landclass that is close. // Each tile has 1 texture containing landclass ids stetched over it. // Landclass for current fragment, and up-to 4 neighboring landclasses - 2 used currently int lc; ivec4 lc_n; int num_unique_neighbors = 0; // Mix factor of base textures for 2 neighbour landclass(es) vec4 mfact; const float landclass_texel_size_m = 25.0; // Partial derivatives of s and t for this fragment, // with respect to window (screen space) x and y axes. // Used to pick mipmap LoD levels, and turn off unneeded procedural detail vec2 dx = dFdx(tile_coord); vec2 dy = dFdy(tile_coord); get_landclass_id(tile_coord, landclass_texel_size_m, dx, dy, lc, lc_n, num_unique_neighbors, mfact); // The landclass id is used to index into arrays containing // material parameters and textures for the landclass as // defined in the regional definitions float index = float(lc)/512.0; vec4 index_n = vec4(lc_n)/512.0; float mat_shininess = dimensionsArray[lc].z; vec4 mat_ambient = ambientArray[lc]; vec4 mat_diffuse = diffuseArray[lc]; vec4 mat_specular = specularArray[lc]; // Testing code: // Use rlc even when looking up textures to recreate the extra performance hit // so any performance difference between the two is due to the texture lookup // color.rgb = color.rgb+0.00001*float(get_random_landclass(tile_coord.st, tile_size)); if (photoScenery) { // In the photoscenery case we don't have landclass or materials available, so we // just use constants for the material properties. mat_ambient = vec4(0.2,0.2,0.2,1.0); mat_diffuse = vec4(0.8,0.8,0.8,1.0); mat_specular = vec4(0.0,0.0,0.0,1.0); texel = texture(landclass, vec2(gl_TexCoord[0].s, 1.0 - gl_TexCoord[0].t)); } else { // Color Mode is always AMBIENT_AND_DIFFUSE, which means // using a base colour of white for ambient/diffuse, // rather than the material color from ambientArray/diffuseArray. mat_ambient = vec4(1.0,1.0,1.0,1.0); mat_diffuse = vec4(1.0,1.0,1.0,1.0); mat_specular = specularArray[lc]; mat_shininess = dimensionsArray[lc].z; // Look up ground textures by indexing into the texture array. // Different textures are stretched along the ground to different // lengths along each axes as set by and // regional definitions parameters // Look up texture coordinates and scale of ground textures // Landclass for this fragment texel = lookup_ground_texture_array(tile_coord, lc, dx, dy); // Mix texels - to work consistently it needs a more preceptual interpolation than mix() if (num_unique_neighbors != 0) { // Closest neighbor landclass vec4 texel_closest = lookup_ground_texture_array(tile_coord, lc_n[0], dx, dy); // Neighbor contributions vec4 texel_nc=texel_closest; if (num_unique_neighbors > 1) { // 2nd Closest neighbor landclass vec4 texel_2nd_closest = lookup_ground_texture_array(tile_coord, lc_n[1], dx, dy); texel_nc = mix(texel_closest, texel_2nd_closest, mfact[1]); } texel = mix(texel, texel_nc, mfact[0]); } } vec4 color = gl_Color * mat_ambient; color.a = 1.0; // Testing code: mix with green to show values of variables at each point //vec4 green = vec4(0.0, 0.5, 0.0, 0.0); //texel = mix(texel, green, (mfact[2])); // Testing code: temp mix_texel = texel; detail_texel = texel; int flag = 1; int mix_flag = 1; float local_autumn_factor = texel.a; if (photoScenery) { flag = 0; mix_flag = 0; } float distortion_factor = 1.0; vec2 stprime; float noise_term; float snow_alpha; //float view_angle = abs(dot(normal, normalize(ecViewdir))); if ((quality_level > 3)&&(relPos.z + eye_alt +500.0 > snowlevel)) { float sfactor; snow_texel = vec4 (0.95, 0.95, 0.95, 1.0) * (0.9 + 0.1* noise_500m + 0.1* (1.0 - noise_10m) ); snow_texel.r = snow_texel.r * (0.9 + 0.05 * (noise_10m + noise_5m)); snow_texel.g = snow_texel.g * (0.9 + 0.05 * (noise_10m + noise_5m)); snow_texel.a = 1.0; noise_term = 0.1 * (noise_500m-0.5); sfactor = sqrt(2.0 * (1.0-steepness)/0.03) + abs(ct)/0.15; noise_term = noise_term + 0.2 * (noise_50m -0.5) * (1.0 - smoothstep(18000.0*sfactor, 40000.0*sfactor, dist) ) ; noise_term = noise_term + 0.3 * (noise_10m -0.5) * (1.0 - smoothstep(4000.0 * sfactor, 8000.0 * sfactor, dist) ) ; if (dist < 3000.0*sfactor){ noise_term = noise_term + 0.3 * (noise_5m -0.5) * (1.0 - smoothstep(1000.0 * sfactor, 3000.0 *sfactor, dist) );} snow_texel.a = snow_texel.a * 0.2+0.8* smoothstep(0.2,0.8, 0.3 +noise_term + snow_thickness_factor +0.0001*(relPos.z +eye_alt -snowlevel) ); } if ((tquality_level > 2) && (mix_flag == 1)) { //mix_texel = texture2D(mix_texture, gl_TexCoord[0].st * 1.3); // temp if (mix_texel.a <0.1) {mix_flag = 0;} } if (tquality_level > 3 && (flag == 1)) { stprime = vec2 (0.86*gl_TexCoord[0].s + 0.5*gl_TexCoord[0].t, 0.5*gl_TexCoord[0].s - 0.86*gl_TexCoord[0].t); //distortion_factor = 0.9375 + (1.0 * nvL[2]); distortion_factor = 0.97 + 0.06 * noise_500m; stprime = stprime * distortion_factor * 15.0; if (quality_level > 4) { stprime = stprime + normalize(relPos).xy * 0.02 * (noise_10m + 0.5 * noise_5m - 0.75); } //detail_texel = texture2D(detail_texture, stprime); // temp if (detail_texel.a <0.1) {flag = 0;} } // texture preparation according to detail level // mix in hires texture patches float dist_fact; float nSum; float mix_factor; if (tquality_level > 2) { // first the second texture overlay // transition model 0: random patch overlay without any gradient information // transition model 1: only gradient-driven transitions, no randomness if (mix_flag == 1) { nSum = 0.18 * (2.0 * noise_2000m + 2.0 * noise_1500m + noise_500m); nSum = mix(nSum, 0.5, max(0.0, 2.0 * (transition_model - 0.5))); nSum = nSum + 0.4 * (1.0 -smoothstep(0.9,0.95, abs(steepness)+ 0.05 * (noise_50m - 0.5))) * min(1.0, 2.0 * transition_model); mix_factor = smoothstep(0.5, 0.54, nSum); texel = mix(texel, mix_texel, mix_factor); local_autumn_factor = texel.a; } // then the detail texture overlay } if (tquality_level > 3) { if (dist < 40000.0) { if (flag == 1) { //noise_50m = Noise2D(rawPos.xy, 50.0); //noise_250m = Noise2D(rawPos.xy, 250.0); dist_fact = 0.1 * smoothstep(15000.0,40000.0, dist) - 0.03 * (1.0 - smoothstep(500.0,5000.0, dist)); nSum = ((1.0 -noise_2000m) + noise_1500m + 2.0 * noise_250m +noise_50m)/5.0; nSum = nSum - 0.08 * (1.0 -smoothstep(0.9,0.95, abs(steepness))); mix_factor = smoothstep(0.47, 0.54, nSum +hires_overlay_bias - dist_fact); if (mix_factor > 0.8) {mix_factor = 0.8;} texel = mix(texel, detail_texel,mix_factor); local_autumn_factor = texel.a; } } } // autumn colors float autumn_factor = season * 2.0 * (1.0 - local_autumn_factor) ; texel.r = min(1.0, (1.0 + 2.5 * autumn_factor) * texel.r); texel.g = texel.g; texel.b = max(0.0, (1.0 - 4.0 * autumn_factor) * texel.b); if (local_autumn_factor < 1.0) { intensity = length(texel.rgb) * (1.0 - 0.5 * smoothstep(1.1,2.0,season)); texel.rgb = intensity * normalize(mix(texel.rgb, vec3(0.23,0.17,0.08), smoothstep(1.1,2.0, season))); } const vec4 dust_color = vec4 (0.76, 0.71, 0.56, 1.0); const vec4 lichen_color = vec4 (0.17, 0.20, 0.06, 1.0);; //float snow_alpha; if (quality_level > 3) { // mix vegetation texel = mix(texel, lichen_color, 0.4 * lichen_cover_factor + 0.8 * lichen_cover_factor * 0.5 * (noise_10m + (1.0 - noise_5m)) ); // mix dust texel = mix(texel, dust_color, clamp(0.5 * dust_cover_factor + 3.0 * dust_cover_factor * (((noise_1500m - 0.5) * 0.125)+0.125 ),0.0, 1.0) ); // mix snow if (relPos.z + eye_alt +500.0 > snowlevel) { snow_alpha = smoothstep(0.75, 0.85, abs(steepness)); //texel = mix(texel, snow_texel, texel_snow_fraction); texel = mix(texel, snow_texel, snow_texel.a* smoothstep(snowlevel, snowlevel+200.0, snow_alpha * (relPos.z + eye_alt)+ (noise_2000m + 0.1 * noise_10m -0.55) *400.0)); } } else if (relPos.z + eye_alt +500.0 > snowlevel) { float snow_alpha = 0.5+0.5* smoothstep(0.2,0.8, 0.3 + snow_thickness_factor +0.0001*(relPos.z +eye_alt -snowlevel) ); // texel = vec4(dot(vec3(0.2989, 0.5870, 0.1140), texel.rgb)); texel = mix(texel, vec4(1.0), snow_alpha* smoothstep(snowlevel, snowlevel+200.0, (relPos.z + eye_alt))); } // get distribution of water when terrain is wet float water_threshold1; float water_threshold2; float water_factor =0.0; if ((dist < 5000.0)&& (quality_level > 3) && (wetness>0.0)) { water_threshold1 = 1.0-0.5* wetness; water_threshold2 = 1.0 - 0.3 * wetness; water_factor = smoothstep(water_threshold1, water_threshold2 , (0.3 * (2.0 * (1.0-noise_10m) + (1.0 -noise_5m)) * (1.0 - smoothstep(2000.0, 5000.0, dist))) - 5.0 * (1.0 -steepness)); } // darken wet terrain texel.rgb = texel.rgb * (1.0 - 0.6 * wetness); // light computations vec4 light_specular = gl_LightSource[0].specular; // If gl_Color.a == 0, this is a back-facing polygon and the // normal should be reversed. //n = (2.0 * gl_Color.a - 1.0) * normal; n = normal;//vec3 (nvec.x, nvec.y, sqrt(1.0 -pow(nvec.x,2.0) - pow(nvec.y,2.0) )); n = normalize(n); NdotL = dot(n, lightDir); if ((tquality_level > 3) && (mix_flag ==1)&& (dist < 2000.0) && (quality_level > 4)) { noisegrad_10m = (noise_10m - Noise2D(rawPos.xy+ 0.05 * normalize(lightDir.xy),10.0))/0.05; noisegrad_5m = (noise_5m - Noise2D(rawPos.xy+ 0.05 * normalize(lightDir.xy),5.0))/0.05; NdotL = NdotL + 1.0 * (noisegrad_10m + 0.5* noisegrad_5m) * mix_factor/0.8 * (1.0 - smoothstep(1000.0, 2000.0, dist)); } if (NdotL > 0.0) { float shadowmap = getShadowing(); vec4 diffuse_term = light_diffuse_comp * mat_diffuse; color += diffuse_term * NdotL * shadowmap; NdotHV = max(dot(n, halfVector), 0.0); if (mat_shininess > 0.0) specular.rgb = (mat_specular.rgb * light_specular.rgb * pow(NdotHV, mat_shininess) * shadowmap); } color.a = 1.0;//diffuse_term.a; // This shouldn't be necessary, but our lighting becomes very // saturated. Clamping the color before modulating by the texture // is closer to what the OpenGL fixed function pipeline does. color = clamp(color, 0.0, 1.0); fragColor = color * texel + specular; fragColor.rgb += getClusteredLightsContribution(eyePos.xyz, n, texel.rgb); // here comes the terrain haze model float delta_z = hazeLayerAltitude - eye_alt; if (dist > 0.04 * min(visibility,avisibility)) //if ((gl_FragCoord.y > ylimit) || (gl_FragCoord.x < zlimit1) || (gl_FragCoord.x > zlimit2)) //if (dist > 40.0) { alt = eye_alt; float transmission; float vAltitude; float delta_zv; float H; float distance_in_layer; float transmission_arg; // we solve the geometry what part of the light path is attenuated normally and what is through the haze layer if (delta_z > 0.0) // we're inside the layer { if (ct < 0.0) // we look down { distance_in_layer = dist; vAltitude = min(distance_in_layer,min(visibility, avisibility)) * ct; delta_zv = delta_z - vAltitude; } else // we may look through upper layer edge { H = dist * ct; if (H > delta_z) {distance_in_layer = dist/H * delta_z;} else {distance_in_layer = dist;} vAltitude = min(distance_in_layer,visibility) * ct; delta_zv = delta_z - vAltitude; } } else // we see the layer from above, delta_z < 0.0 { H = dist * -ct; if (H < (-delta_z)) // we don't see into the layer at all, aloft visibility is the only fading { distance_in_layer = 0.0; delta_zv = 0.0; } else { vAltitude = H + delta_z; distance_in_layer = vAltitude/H * dist; vAltitude = min(distance_in_layer,visibility) * (-ct); delta_zv = vAltitude; } } // ground haze cannot be thinner than aloft visibility in the model, // so we need to use aloft visibility otherwise transmission_arg = (dist-distance_in_layer)/avisibility; float eqColorFactor; if (visibility < avisibility) { if (quality_level > 3) { transmission_arg = transmission_arg + (distance_in_layer/(1.0 * visibility + 1.0 * visibility * fogstructure * 0.06 * (noise_1500m + noise_2000m -1.0) )); } else { transmission_arg = transmission_arg + (distance_in_layer/visibility); } // this combines the Weber-Fechner intensity eqColorFactor = 1.0 - 0.1 * delta_zv/visibility - (1.0 - effective_scattering); } else { if (quality_level > 3) { transmission_arg = transmission_arg + (distance_in_layer/(1.0 * avisibility + 1.0 * avisibility * fogstructure * 0.06 * (noise_1500m + noise_2000m - 1.0) )); } else { transmission_arg = transmission_arg + (distance_in_layer/avisibility); } // this combines the Weber-Fechner intensity eqColorFactor = 1.0 - 0.1 * delta_zv/avisibility - (1.0 - effective_scattering); } transmission = fog_func(transmission_arg, alt); // there's always residual intensity, we should never be driven to zero if (eqColorFactor < 0.2) eqColorFactor = 0.2; float lightArg = (terminator-yprime_alt)/100000.0; vec3 hazeColor = get_hazeColor(lightArg); // now dim the light for haze eShade = 1.0 - 0.9 * smoothstep(-terminator_width+ terminator, terminator_width + terminator, yprime_alt); // Mie-like factor if (lightArg < 10.0) { intensity = length(hazeColor); float mie_magnitude = 0.5 * smoothstep(350000.0, 150000.0, terminator-sqrt(2.0 * EarthRadius * terrain_alt)); hazeColor = intensity * ((1.0 - mie_magnitude) + mie_magnitude * mie_angle) * normalize(mix(hazeColor, vec3 (0.5, 0.58, 0.65), mie_magnitude * (0.5 - 0.5 * mie_angle)) ); } intensity = length(hazeColor); if (intensity > 0.0) // this needs to be a condition, because otherwise hazeColor doesn't come out correctly { // high altitude desaturation of the haze color hazeColor = intensity * normalize (mix(hazeColor, intensity * vec3 (1.0,1.0,1.0), 0.7* smoothstep(5000.0, 50000.0, alt))); // blue hue of haze hazeColor.x = hazeColor.x * 0.83; hazeColor.y = hazeColor.y * 0.9; // additional blue in indirect light float fade_out = max(0.65 - 0.3 *overcast, 0.45); intensity = length(hazeColor); hazeColor = intensity * normalize(mix(hazeColor, 1.5* shadedFogColor, 1.0 -smoothstep(0.25, fade_out,eShade) )); // change haze color to blue hue for strong fogging hazeColor = intensity * normalize(mix(hazeColor, shadedFogColor, (1.0-smoothstep(0.5,0.9,eqColorFactor)))); // reduce haze intensity when looking at shaded surfaces, only in terminator region float shadow = mix( min(1.0 + dot(n,lightDir),1.0), 1.0, 1.0-smoothstep(0.1, 0.4, transmission)); hazeColor = mix(shadow * hazeColor, hazeColor, 0.3 + 0.7* smoothstep(250000.0, 400000.0, terminator)); // don't let the light fade out too rapidly lightArg = (terminator + 200000.0)/100000.0; float minLightIntensity = min(0.2,0.16 * lightArg + 0.5); vec3 minLight = minLightIntensity * vec3 (0.2, 0.3, 0.4); hazeColor *= eqColorFactor * eShade; hazeColor.rgb = max(hazeColor.rgb, minLight.rgb); } // Testing phase controls if (reduce_haze_without_removing_calculation_overhead == 1) { transmission = 1.0 - (transmission/1000000.0); } fragColor.rgb = mix(clamp(hazeColor,0.0,1.0) , clamp(fragColor.rgb,0.0,1.0),transmission); } fragColor.rgb = filter_combined(fragColor.rgb); gl_FragColor = fragColor; // Testing phase controls: if (remove_haze_and_lighting == 1) { gl_FragColor = texel; } }