// This shader is mostly an adaptation of the shader found at // http://www.bonzaisoftware.com/water_tut.html and its glsl conversion // available at http://forum.bonzaisoftware.com/viewthread.php?tid=10 // © Michael Horsch - 2005 // Major update and revisions - 2011-10-07 // © Emilian Huminiuc and Vivian Meazza // ported to lightfield shading Thorsten Renk 2012 #version 120 uniform sampler2D water_normalmap; uniform sampler2D water_dudvmap; uniform sampler2D sea_foam; uniform sampler2D perlin_normalmap; uniform float saturation, Overcast, WindE, WindN; uniform float osg_SimulationTime; varying vec4 waterTex1; //moving texcoords varying vec4 waterTex2; //moving texcoords varying vec4 waterTex4; //viewts varying vec3 viewerdir; varying vec3 lightdir; //varying vec3 specular_light; varying vec3 relPos; varying float earthShade; varying float yprime_alt; varying float mie_angle; uniform float WaveFreq ; uniform float WaveAmp ; uniform float WaveSharp ; uniform float WaveAngle ; uniform float WaveFactor ; uniform float WaveDAngle ; uniform float normalmap_dds; uniform float hazeLayerAltitude; uniform float terminator; uniform float terrain_alt; uniform float avisibility; uniform float visibility; uniform float overcast; uniform float scattering; uniform float ground_scattering; uniform float cloud_self_shading; uniform float eye_alt; uniform float sea_r; uniform float sea_g; uniform float sea_b; vec3 specular_light; //uniform int wquality_level; const float terminator_width = 200000.0; const float EarthRadius = 5800000.0; ////fog "include" ///// //uniform int fogType; vec3 fog_Func(vec3 color, int type); ////////////////////// /////// functions ///////// void rotationmatrix(in float angle, out mat4 rotmat) { rotmat = mat4( cos( angle ), -sin( angle ), 0.0, 0.0, sin( angle ), cos( angle ), 0.0, 0.0, 0.0 , 0.0 , 1.0, 0.0, 0.0 , 0.0 , 0.0, 1.0 ); } // wave functions /////////////////////// struct Wave { float freq; // 2*PI / wavelength float amp; // amplitude float phase; // speed * 2*PI / wavelength vec2 dir; }; Wave wave0 = Wave(1.0, 1.0, 0.5, vec2(0.97, 0.25)); Wave wave1 = Wave(2.0, 0.5, 1.3, vec2(0.97, -0.25)); Wave wave2 = Wave(1.0, 1.0, 0.6, vec2(0.95, -0.3)); Wave wave3 = Wave(2.0, 0.5, 1.4, vec2(0.99, 0.1)); float evaluateWave(in Wave w, vec2 pos, float t) { return w.amp * sin( dot(w.dir, pos) * w.freq + t * w.phase); } // derivative of wave function float evaluateWaveDeriv(Wave w, vec2 pos, float t) { return w.freq * w.amp * cos( dot(w.dir, pos)*w.freq + t*w.phase); } // sharp wave functions float evaluateWaveSharp(Wave w, vec2 pos, float t, float k) { return w.amp * pow(sin( dot(w.dir, pos)*w.freq + t*w.phase)* 0.5 + 0.5 , k); } float evaluateWaveDerivSharp(Wave w, vec2 pos, float t, float k) { return k*w.freq*w.amp * pow(sin( dot(w.dir, pos)*w.freq + t*w.phase)* 0.5 + 0.5 , k - 1) * cos( dot(w.dir, pos)*w.freq + t*w.phase); } void sumWaves(float angle, float dangle, float windScale, float factor, out float ddx, float ddy) { mat4 RotationMatrix; float deriv; vec4 P = waterTex1 * 1024; rotationmatrix(radians(angle + dangle * windScale + 0.6 * sin(P.x * factor)), RotationMatrix); P *= RotationMatrix; P.y += evaluateWave(wave0, P.xz, osg_SimulationTime); deriv = evaluateWaveDeriv(wave0, P.xz, osg_SimulationTime ); ddx = deriv * wave0.dir.x; ddy = deriv * wave0.dir.y; //P.y += evaluateWave(wave1, P.xz, osg_SimulationTime); //deriv = evaluateWaveDeriv(wave1, P.xz, osg_SimulationTime); //ddx += deriv * wave1.dir.x; //ddy += deriv * wave1.dir.y; P.y += evaluateWaveSharp(wave2, P.xz, osg_SimulationTime, WaveSharp); deriv = evaluateWaveDerivSharp(wave2, P.xz, osg_SimulationTime, WaveSharp); ddx += deriv * wave2.dir.x; ddy += deriv * wave2.dir.y; //P.y += evaluateWaveSharp(wave3, P.xz, osg_SimulationTime, WaveSharp); //deriv = evaluateWaveDerivSharp(wave3, P.xz, osg_SimulationTime, WaveSharp); //ddx += deriv * wave3.dir.x; //ddy += deriv * wave3.dir.y; } float light_func (in float x, in float a, in float b, in float c, in float d, in float e) { x = x - 0.5; // use the asymptotics to shorten computations if (x > 30.0) {return e;} if (x < -15.0) {return 0.0;} return e / pow((1.0 + a * exp(-b * (x-c)) ),(1.0/d)); } // this determines how light is attenuated in the distance // physically this should be exp(-arg) but for technical reasons we use a sharper cutoff // for distance > visibility float fog_func (in float targ) { float fade_mix; // for large altitude > 30 km, we switch to some component of quadratic distance fading to // create the illusion of improved visibility range targ = 1.25 * targ; // need to sync with the distance to which terrain is drawn if (eye_alt < 30000.0) {return exp(-targ - targ * targ * targ * targ);} else if (eye_alt < 50000.0) { fade_mix = (eye_alt - 30000.0)/20000.0; return fade_mix * exp(-targ*targ - pow(targ,4.0)) + (1.0 - fade_mix) * exp(-targ - pow(targ,4.0)); } else { return exp(- targ * targ - pow(targ,4.0)); } } void main(void) { vec3 shadedFogColor = vec3(0.65, 0.67, 0.78); float effective_scattering = min(scattering, cloud_self_shading); float dist = length(relPos); const vec4 sca = vec4(0.005, 0.005, 0.005, 0.005); const vec4 sca2 = vec4(0.02, 0.02, 0.02, 0.02); const vec4 tscale = vec4(0.25, 0.25, 0.25, 0.25); mat4 RotationMatrix; // compute direction to viewer vec3 E = normalize(viewerdir); // compute direction to light source vec3 L = lightdir; // normalize(lightdir); // half vector vec3 Hv = normalize(L + E); //vec3 Normal = normalize(normal); vec3 Normal = vec3 (0.0, 0.0, 1.0); const float water_shininess = 240.0; // approximate cloud cover //float cover = 0.0; //bool Status = true; float windEffect = sqrt( WindE*WindE + WindN*WindN ) * 0.6; //wind speed in kt float windScale = 15.0/(3.0 + windEffect); //wave scale float windEffect_low = 0.3 + 0.7 * smoothstep(0.0, 5.0, windEffect); //low windspeed wave filter float waveRoughness = 0.01 + smoothstep(0.0, 40.0, windEffect); //wave roughness filter float mixFactor = 0.2 + 0.02 * smoothstep(0.0, 50.0, windEffect); //mixFactor = 0.2; mixFactor = clamp(mixFactor, 0.3, 0.8); // there's no need to do wave patterns or foam for pixels which are so far away that we can't actually see them // we only need detail in the near zone or where the sun reflection is int detail_flag; if ((dist > 15000.0) && (dot(normalize(vec3 (lightdir.x, lightdir.y, 0.0) ), normalize(relPos)) < 0.7 )) {detail_flag = 0;} else {detail_flag = 1;} //detail_flag = 1; // sine waves float ddx, ddx1, ddx2, ddx3, ddy, ddy1, ddy2, ddy3; float angle; ddx = 0.0, ddy = 0.0; ddx1 = 0.0, ddy1 = 0.0; ddx2 = 0.0, ddy2 = 0.0; ddx3 = 0.0, ddy3 = 0.0; if (detail_flag == 1) { angle = 0.0; wave0.freq = WaveFreq ; wave0.amp = WaveAmp; wave0.dir = vec2 (0.0, 1.0); //vec2(cos(radians(angle)), sin(radians(angle))); angle -= 45; wave1.freq = WaveFreq * 2.0 ; wave1.amp = WaveAmp * 1.25; wave1.dir = vec2(0.70710, -0.7071); //vec2(cos(radians(angle)), sin(radians(angle))); angle += 30; wave2.freq = WaveFreq * 3.5; wave2.amp = WaveAmp * 0.75; wave2.dir = vec2(0.96592, -0.2588);// vec2(cos(radians(angle)), sin(radians(angle))); angle -= 50; wave3.freq = WaveFreq * 3.0 ; wave3.amp = WaveAmp * 0.75; wave3.dir = vec2(0.42261, -0.9063); //vec2(cos(radians(angle)), sin(radians(angle))); // sum waves sumWaves(WaveAngle, -1.5, windScale, WaveFactor, ddx, ddy); sumWaves(WaveAngle, 1.5, windScale, WaveFactor, ddx1, ddy1); //reset the waves angle = 0.0; float waveamp = WaveAmp * 0.75; wave0.freq = WaveFreq ; wave0.amp = waveamp; wave0.dir = vec2 (0.0, 1.0); //vec2(cos(radians(angle)), sin(radians(angle))); angle -= 20; wave1.freq = WaveFreq * 2.0 ; wave1.amp = waveamp * 1.25; wave1.dir = vec2(0.93969, -0.34202);// vec2(cos(radians(angle)), sin(radians(angle))); angle += 35; wave2.freq = WaveFreq * 3.5; wave2.amp = waveamp * 0.75; wave2.dir = vec2(0.965925, 0.25881); //vec2(cos(radians(angle)), sin(radians(angle))); angle -= 45; wave3.freq = WaveFreq * 3.0 ; wave3.amp = waveamp * 0.75; wave3.dir = vec2(0.866025, -0.5); //vec2(cos(radians(angle)), sin(radians(angle))); //sumWaves(WaveAngle + WaveDAngle, -1.5, windScale, WaveFactor, ddx2, ddy2); //sumWaves(WaveAngle + WaveDAngle, 1.5, windScale, WaveFactor, ddx3, ddy3); } // end sine stuff //cover = 5.0 * smoothstep(0.6, 1.0, scattering); //cover = 5.0 * ground_scattering; vec4 viewt = normalize(waterTex4); vec4 disdis = texture2D(water_dudvmap, vec2(waterTex2 * tscale)* windScale) * 2.0 - 1.0; vec4 vNorm; //normalmaps vec4 nmap = texture2D(water_normalmap, vec2(waterTex1 + disdis * sca2) * windScale) * 2.0 - 1.0; vec4 nmap1 = texture2D(perlin_normalmap, vec2(waterTex1 + disdis * sca2) * windScale) * 2.0 - 1.0; rotationmatrix(radians(3.0 * sin(osg_SimulationTime * 0.0075)), RotationMatrix); nmap += texture2D(water_normalmap, vec2(waterTex2 * RotationMatrix * tscale) * windScale) * 2.0 - 1.0; //nmap1 += texture2D(perlin_normalmap, vec2(waterTex2 * RotationMatrix * tscale) * windScale) * 2.0 - 1.0; nmap *= windEffect_low; nmap1 *= windEffect_low; // mix water and noise, modulated by factor vNorm = normalize(mix(nmap, nmap1, mixFactor) * waveRoughness); vNorm.r += ddx + ddx1 + ddx2 + ddx3; if (normalmap_dds > 0) {vNorm = -vNorm;} //dds fix //load reflection vec4 refl ; refl.r = sea_r; refl.g = sea_g; refl.b = sea_b; refl.a = 1.0; float intensity; // de-saturate for reduced light refl.rgb = mix(refl.rgb, vec3 (0.248, 0.248, 0.248), 1.0 - smoothstep(0.1, 0.8, ground_scattering)); // de-saturate light for overcast haze intensity = length(refl.rgb); refl.rgb = mix(refl.rgb, intensity * vec3 (1.0, 1.0, 1.0), 0.5 * smoothstep(0.1, 0.9, overcast)); vec3 N; vec3 N0 = vec3(texture2D(water_normalmap, vec2(waterTex1 + disdis * sca2) * windScale) * 2.0 - 1.0); vec3 N1 = vec3(texture2D(perlin_normalmap, vec2(waterTex1 + disdis * sca) * windScale) * 2.0 - 1.0); N0 += vec3(texture2D(water_normalmap, vec2(waterTex1 * tscale) * windScale) * 2.0 - 1.0); N1 += vec3(texture2D(perlin_normalmap, vec2(waterTex2 * tscale) * windScale) * 2.0 - 1.0); rotationmatrix(radians(2.0 * sin(osg_SimulationTime * 0.005)), RotationMatrix); N0 += vec3(texture2D(water_normalmap, vec2(waterTex2 * RotationMatrix * (tscale + sca2)) * windScale) * 2.0 - 1.0); N1 += vec3(texture2D(perlin_normalmap, vec2(waterTex2 * RotationMatrix * (tscale + sca2)) * windScale) * 2.0 - 1.0); rotationmatrix(radians(-4.0 * sin(osg_SimulationTime * 0.003)), RotationMatrix); N0 += vec3(texture2D(water_normalmap, vec2(waterTex1 * RotationMatrix + disdis * sca2) * windScale) * 2.0 - 1.0); N1 += vec3(texture2D(perlin_normalmap, vec2(waterTex1 * RotationMatrix + disdis * sca) * windScale) * 2.0 - 1.0); N0 *= windEffect_low; N1 *= windEffect_low; N0.r += (ddx + ddx1 + ddx2 + ddx3); N0.g += (ddy + ddy1 + ddy2 + ddy3); N = normalize(mix(Normal + N0, Normal + N1, mixFactor) * waveRoughness); if (normalmap_dds > 0) {N = -N;} //dds fix specular_light = gl_Color.rgb; vec3 specular_color = vec3(specular_light) * pow(max(0.0, dot(N, Hv)), water_shininess) * 6.0; // secondary reflection of sky irradiance vec3 ER = E - 2.0 * N * dot(E,N); float ctrefl = dot(vec3(0.0,0.0,1.0), -normalize(ER)); //float fresnel = -0.5 + 8.0 * (1.0-smoothstep(0.0,0.4, dot(E,N))); float fresnel = 8.0 * (1.0-smoothstep(0.0,0.4, dot(E,N))); //specular_color += (ctrefl*ctrefl) * fresnel* specular_light.rgb; specular_color += ((0.15*(1.0-ctrefl* ctrefl) * fresnel) - 0.3) * specular_light.rgb; vec4 specular = vec4(specular_color, 0.5); specular = specular * saturation * 0.3 * earthShade ; //calculate fresnel vec4 invfres = vec4( dot(vNorm, viewt) ); vec4 fres = vec4(1.0) + invfres; refl *= fres; vec4 ambient_light; //intensity = length(specular_light.rgb); ambient_light.rgb = max(specular_light.rgb, vec3(0.05, 0.05, 0.05)); //ambient_light.rgb = max(intensity * normalize(vec3 (0.33, 0.4, 0.5)), vec3 (0.1,0.1,0.1)); ambient_light.a = 1.0; vec4 finalColor; finalColor = refl + specular * smoothstep(0.3, 0.6, ground_scattering); //add foam vec4 foam_texel = texture2D(sea_foam, vec2(waterTex2 * tscale) * 25.0); if (dist < 10000.0) { float foamSlope = 0.10 + 0.1 * windScale; float waveSlope = N.g; if (windEffect >= 8.0) if (waveSlope >= foamSlope){ finalColor = mix(finalColor, max(finalColor, finalColor + foam_texel), smoothstep(0.01, 0.50, N.g)); } } finalColor *= ambient_light; // here comes the terrain haze model float delta_z = hazeLayerAltitude - eye_alt; if (dist > 40.0) { float transmission; float vAltitude; float delta_zv; float H; float distance_in_layer; float transmission_arg; // angle with horizon float ct = dot(vec3(0.0, 0.0, 1.0), relPos)/dist; // we solve the geometry what part of the light path is attenuated normally and what is through the haze layer if (delta_z > 0.0) // we're inside the layer { if (ct < 0.0) // we look down { distance_in_layer = dist; vAltitude = min(distance_in_layer,min(visibility,avisibility)) * ct; delta_zv = delta_z - vAltitude; } else // we may look through upper layer edge { H = dist * ct; if (H > delta_z) {distance_in_layer = dist/H * delta_z;} else {distance_in_layer = dist;} vAltitude = min(distance_in_layer,visibility) * ct; delta_zv = delta_z - vAltitude; } } else // we see the layer from above, delta_z < 0.0 { H = dist * -ct; if (H < (-delta_z)) // we don't see into the layer at all, aloft visibility is the only fading { distance_in_layer = 0.0; delta_zv = 0.0; } else { vAltitude = H + delta_z; distance_in_layer = vAltitude/H * dist; vAltitude = min(distance_in_layer,visibility) * (-ct); delta_zv = vAltitude; } } // ground haze cannot be thinner than aloft visibility in the model, // so we need to use aloft visibility otherwise transmission_arg = (dist-distance_in_layer)/avisibility; float eqColorFactor; if (visibility < avisibility) { transmission_arg = transmission_arg + (distance_in_layer/visibility); // this combines the Weber-Fechner intensity eqColorFactor = 1.0 - 0.1 * delta_zv/visibility - (1.0 -effective_scattering); } else { transmission_arg = transmission_arg + (distance_in_layer/avisibility); // this combines the Weber-Fechner intensity eqColorFactor = 1.0 - 0.1 * delta_zv/avisibility - (1.0 -effective_scattering); } transmission = fog_func(transmission_arg); // there's always residual intensity, we should never be driven to zero if (eqColorFactor < 0.2) eqColorFactor = 0.2; float lightArg = (terminator-yprime_alt)/100000.0; vec3 hazeColor; hazeColor.b = light_func(lightArg, 1.330e-05, 0.264, 2.527, 1.08e-05, 1.0); hazeColor.g = light_func(lightArg, 3.931e-06, 0.264, 3.827, 7.93e-06, 1.0); hazeColor.r = light_func(lightArg, 8.305e-06, 0.161, 3.827, 3.04e-05, 1.0); // now dim the light for haze float eShade = 1.0 - 0.9 * smoothstep(-terminator_width+ terminator, terminator_width + terminator, yprime_alt); // Mie-like factor if (lightArg < 10.0) {intensity = length(hazeColor); float mie_magnitude = 0.5 * smoothstep(350000.0, 150000.0, terminator-sqrt(2.0 * EarthRadius * terrain_alt)); hazeColor = intensity * ((1.0 - mie_magnitude) + mie_magnitude * mie_angle) * normalize(mix(hazeColor, vec3 (0.5, 0.58, 0.65), mie_magnitude * (0.5 - 0.5 * mie_angle)) ); } // high altitude desaturation of the haze color intensity = length(hazeColor); if (intensity > 0.0) // this needs to be a condition, because otherwise hazeColor doesn't come out correctly { hazeColor = intensity * normalize (mix(hazeColor, intensity * vec3 (1.0,1.0,1.0), 0.7* smoothstep(5000.0, 50000.0, eye_alt))); // blue hue of haze hazeColor.x = hazeColor.x * 0.83; hazeColor.y = hazeColor.y * 0.9; // additional blue in indirect light float fade_out = max(0.65 - 0.3 *overcast, 0.45); intensity = length(hazeColor); hazeColor = intensity * normalize(mix(hazeColor, 1.5* shadedFogColor, 1.0 -smoothstep(0.25, fade_out,eShade) )); // change haze color to blue hue for strong fogging hazeColor = intensity * normalize(mix(hazeColor, shadedFogColor, (1.0-smoothstep(0.5,0.9,eqColorFactor)))); } finalColor.rgb = mix(eqColorFactor * hazeColor * eShade, finalColor.rgb,transmission); } gl_FragColor = finalColor; }