# These classes provide basic functions for use in aircraft specific # Nasal context. Note that even if a class is called "door" or "light" # this doesn't mean that it can't be used for other purposes. # # Class instances don't have to be assigned to variables. They do also # work if they remain anonymous. It's even a good idea to keep them # anonymous if you don't need further access to their members. On the # other hand, you can assign the class and apply setters at the same time: # # aircraft.light.new("sim/model/foo/beacon", [1, 1]); # anonymous # var strobe = aircraft.light.new("sim/model/foo/strobe", [1, 1]).cont().switch(1); # # # Classes do create properties, but they don't usually overwrite the contents # of an existing property. This makes it possible to preset them in # a *-set.xml file or on the command line. For example: # # $ fgfs --aircraft=bo105 --prop:/controls/doors/door[0]/position-norm=1 # # # Wherever a property argument can be given, this can either be a path, # or a node (i.e. property node hash). In return, the property node can # always be accessed directly as member "node", and turned into a path # string with node.getPath(): # # var beacon = aircraft.light.new("sim/model/foo/beacon", [1, 1]); # print(beacon.node.getPath()); # # var strobe_node = props.globals.getNode("sim/model/foo/strobe", 1); # var strobe = aircraft.light.new(strobe_node, [0.05, 1.0]); # # # The classes implement only commonly used features, but are easy to # extend, as all class members are accessible from outside. For example: # # # add custom property to door node: # frontdoor.node.getNode("name", 1).setValue("front door"); # # # add method to class instance (or base class -> aircraft.door.print) # frontdoor.print = func { print(me.position.getValue()) }; # # # constants # ============================================================================== var D2R = math.pi / 180; var R2D = 180 / math.pi; # helper functions # ============================================================================== # creates (if necessary) and returns a property node from arg[0], # which can be a property node already, or a property path # var makeNode = func(n) { if (isa(n, props.Node)) return n; else return props.globals.getNode(n, 1); } # returns arg[1]-th optional argument of vector arg[0] or default value arg[2] # var optarg = func { if (size(arg[0]) > arg[1] and arg[0][arg[1]] != nil) arg[0][arg[1]]; else arg[2]; } # door # ============================================================================== # class for objects moving at constant speed, with the ability to # reverse moving direction at any point. Appropriate for doors, canopies, etc. # # SYNOPSIS: # door.new(, [, ]); # # property ... door node: property path or node # swingtime ... time in seconds for full movement (0 -> 1) # startpos ... initial position (default: 0) # # PROPERTIES: # ./position-norm (double) (default: ) # ./enabled (bool) (default: 1) # # EXAMPLE: # var canopy = aircraft.door.new("sim/model/foo/canopy", 5); # canopy.open(); # var door = { new : func { m = { parents : [door] }; m.node = makeNode(arg[0]); m.swingtime = arg[1]; m.positionN = m.node.getNode("position-norm", 1); m.enabledN = m.node.getNode("enabled", 1); if (m.enabledN.getValue() == nil) m.enabledN.setBoolValue(1); var pos = optarg(arg, 2, 0); if (m.positionN.getValue() == nil) m.positionN.setDoubleValue(pos); m.target = pos < 0.5; return m; }, # door.enable(bool) -> set ./enabled enable : func(v) { me.enabledN.setBoolValue(v); me; }, # door.setpos(double) -> set ./position-norm without movement setpos : func(pos) { me.positionN.setValue(pos); me.target = pos < 0.5; me; }, # double door.getpos() -> return current position as double getpos : func { me.positionN.getValue() }, # door.close() -> move to closed state close : func { me.move(me.target = 0) }, # door.open() -> move to open state open : func { me.move(me.target = 1) }, # door.toggle() -> move to opposite end position toggle : func { me.move(me.target) }, # door.stop() -> stop movement stop : func { interpolate(me.positionN) }, # door.move(double) -> move to arbitrary position move : func(target) { var pos = me.getpos(); if (pos != target) { var time = abs(pos - target) * me.swingtime; interpolate(me.positionN, target, time); } me.target = !me.target; }, }; # light # ============================================================================== # class for generation of pulsing values. Appropriate for controlling # beacons, strobes, etc. # # SYNOPSIS: # light.new(, [, ]); # light.new(, , [, ]); # # property ... light node: property path or node # stretch ... multiplicator for all pattern values # pattern ... array of on/off time intervals (in seconds) # switch ... property path or node to use as switch (default: ./enabled) # instead of ./enabled # # PROPERTIES: # ./state (bool) (default: 0) # ./enabled (bool) (default: 0) except if given) # # EXAMPLES: # aircraft.light.new("sim/model/foo/beacon", [0.4, 0.4]); # anonymous light #------- # var strobe = aircraft.light.new("sim/model/foo/strobe", [0.05, 0.05, 0.05, 1], # "controls/lighting/strobe"); # strobe.switch(1); #------- # var switch = props.globals.getNode("controls/lighting/strobe", 1); # var pattern = [0.02, 0.03, 0.02, 1]; # aircraft.light.new("sim/model/foo/strobe-top", 1.001, pattern, switch); # aircraft.light.new("sim/model/foo/strobe-bot", 1.005, pattern, switch); # var light = { new : func { m = { parents : [light] }; m.node = makeNode(arg[0]); var stretch = 1.0; var c = 1; if (typeof(arg[c]) == "scalar") { stretch = arg[c]; c += 1; } if (typeof(arg[c]) != "vector") { die("aircraft.nas: the arguments of aircraft.light.new() have changed!\n" ~ " *** BEFORE: aircraft.light.new(property, 0.1, 0.9, switch)\n" ~ " *** NOW: aircraft.light.new(property, [0.1, 0.9], switch)"); } m.pattern = arg[c]; c += 1; if (size(arg) > c and arg[c] != nil) m.switchN = makeNode(arg[c]); else m.switchN = m.node.getNode("enabled", 1); if (m.switchN.getValue() == nil) m.switchN.setBoolValue(0); m.stateN = m.node.getNode("state", 1); if (m.stateN.getValue() == nil) m.stateN.setBoolValue(0); forindex (var i; m.pattern) m.pattern[i] *= stretch; m.index = 0; m.loopid = 0; m.continuous = 0; m.lastswitch = 0; m.seqcount = -1; m.endstate = 0; m.count = nil; m.switchL = setlistener(m.switchN, func { m._switch_() }, 1); return m; }, # class destructor del : func { removelistener(me.switchL); }, # light.switch(bool) -> set light switch (also affects other lights # that use the same switch) switch : func(v) { me.switchN.setBoolValue(v); me }, # light.toggle() -> toggle light switch toggle : func { me.switchN.setBoolValue(!me.switchN.getValue()); me }, # light.cont() -> continuous light cont : func { if (!me.continuous) { me.continuous = 1; me.loopid += 1; me.stateN.setBoolValue(me.lastswitch); } me; }, # light.blink() -> blinking light (default) # light.blink(3) -> when switched on, only run three blink sequences; # second optional arg defines state after the sequences blink : func(count = -1, endstate = 0) { me.seqcount = count; me.endstate = endstate; if (me.continuous) { me.continuous = 0; me.index = 0; me.stateN.setBoolValue(0); me.lastswitch and me._loop_(me.loopid += 1); } me; }, _switch_ : func { var switch = me.switchN.getBoolValue(); switch != me.lastswitch or return; me.lastswitch = switch; me.loopid += 1; if (me.continuous or !switch) { me.stateN.setBoolValue(switch); } elsif (switch) { me.stateN.setBoolValue(0); me.index = 0; me.count = me.seqcount; me._loop_(me.loopid); } }, _loop_ : func(id) { id == me.loopid or return; if (!me.count) { me.loopid += 1; me.stateN.setBoolValue(me.endstate); return; } me.stateN.setBoolValue(me.index == 2 * int(me.index / 2)); settimer(func { me._loop_(id) }, me.pattern[me.index]); if ((me.index += 1) >= size(me.pattern)) { me.index = 0; if (me.count > 0) me.count -= 1; } }, }; # lowpass # ============================================================================== # class that implements a variable-interval EWMA (Exponentially Weighted # Moving Average) lowpass filter with characteristics independent of the # frame rate. # # SYNOPSIS: # lowpass.new(); # # EXAMPLE: # var lp = aircraft.lowpass.new(0.5); # print(lp.filter(10)); # prints 10 # print(lp.filter(0)); # var lowpass = { new : func(coeff) { var m = { parents : [lowpass] }; m.coeff = coeff >= 0 ? coeff : die("aircraft.lowpass(): coefficient must be >= 0"); m.value = nil; return m; }, # filter(raw_value) -> push new value, returns filtered value filter : func(v) { me.filter = me._filter_; me.value = v; }, # get() -> returns filtered value get : func { me.value; }, # set() -> sets new average and returns it set : func(v) { me.value = v; }, _filter_ : func(v) { var dt = getprop("/sim/time/delta-sec"); var c = dt / (me.coeff + dt); me.value = v * c + me.value * (1 - c); }, }; # angular lowpass # ============================================================================== # same as above, but for angles. Filters sin/cos separately and calculates the # angle again from them. This avoids unexpected jumps from 179.99 to -180 degree. # var angular_lowpass = { new : func(coeff) { var m = { parents : [angular_lowpass] }; m.sin = lowpass.new(coeff); m.cos = lowpass.new(coeff); m.value = nil; return m; }, filter : func(v) { v *= D2R; me.value = math.atan2(me.sin.filter(math.sin(v)), me.cos.filter(math.cos(v))) * R2D; }, set : func(v) { v *= D2R; me.sin.set(math.sin(v)); me.cos.set(math.cos(v)); }, get : func { me.value; }, }; # data # ============================================================================== # class that loads and saves properties to aircraft-specific data files in # ~/.fgfs/aircraft-data/ (Unix) or %APPDATA%\flightgear.org\aircraft-data\. # There's no public constructor, as the only needed instance gets created # by the system. # # SYNOPSIS: # data.add(); # data.save([]) # # properties ... about any combination of property nodes (props.Node) # or path name strings, or lists or hashes of them, # lists of lists of them, etc. # interval ... save in minutes intervals, or only once # if 'nil' or empty (and again at reinit/exit) # # SIGNALS: # /sim/signals/save ... set to 'true' right before saving. Can be used # to update values that are to be saved # # EXAMPLE: # var p = props.globals.getNode("/sim/model", 1); # var vec = [p, p]; # var hash = {"foo": p, "bar": p}; # # # add properties # aircraft.data.add("/sim/fg-root", p, "/sim/fg-home"); # aircraft.data.add(p, vec, hash, "/sim/fg-root"); # # # now save only once (and at exit/reinit, which is automatically done) # aircraft.data.save(); # # # or save now and every 30 sec (and at exit/reinit) # aircraft.data.save(0.5); # var data = { init : func { me.path = getprop("/sim/fg-home") ~ "/aircraft-data/" ~ getprop("/sim/aircraft") ~ ".xml"; me.signalN = props.globals.getNode("/sim/signals/save", 1); me.catalog = []; me.loopid = 0; me.interval = 0; setlistener("/sim/signals/reinit", func(n) { n.getBoolValue() and me._save_() }); setlistener("/sim/signals/exit", func { me._save_() }); }, load : func { printlog("warn", "trying to load aircraft data from ", me.path, " (OK if not found)"); io.read_properties(me.path, props.globals); }, save : func(v = nil) { me.loopid += 1; if (v == nil) { me._save_(); } else { me.interval = 60 * v; me._loop_(me.loopid); } }, _loop_ : func(id) { id == me.loopid or return; me._save_(); settimer(func { me._loop_(id) }, me.interval); }, _save_ : func { size(me.catalog) or return; printlog("debug", "saving aircraft data to ", me.path); me.signalN.setBoolValue(1); var data = props.Node.new(); foreach (var c; me.catalog) { if (c[0] == `/`) c = substr(c, 1); props.copy(props.globals.getNode(c, 1), data.getNode(c, 1)); } io.write_properties(me.path, data); }, add : func(p...) { foreach (var n; props.nodeList(p)) append(me.catalog, n.getPath()); }, }; # timer # ============================================================================== # class that implements timer that can be started, stopped, reset, and can # have its value saved to the aircraft specific data file. Saving the value # is done automatically by the aircraft.Data class. # # SYNOPSIS: # timer.new( [, [, ]]) # # ... property path or props.Node hash that holds the timer value # ... timer update resolution -- interval in seconds in which the # timer property is updated while running (default: 1 s) # ... bool that defines whether the timer value should be saved # and restored next time, as needed for Hobbs meters # (default: 1) # # EXAMPLES: # var hobbs_turbine = aircraft.timer.new("/sim/time/hobbs/turbine[0]", 60); # hobbs_turbine.start(); # # aircraft.timer.new("/sim/time/hobbs/battery", 60).start(); # anonymous timer # var timer = { new : func(prop, res = 1, save = 1) { var m = { parents : [timer] }; m.node = makeNode(prop); if (m.node.getType() == "NONE") m.node.setDoubleValue(0); m.systimeN = props.globals.getNode("/sim/time/elapsed-sec", 1); m.last_systime = nil; m.interval = res; m.loopid = 0; m.running = 0; if (save) { data.add(m.node); m.saveL = setlistener("/sim/signals/save", func { m._save_() }); } else { m.saveL = nil; } return m; }, del : func { me.stop(); if (me.saveL != nil) removelistener(me.saveL); }, start : func { me.running and return; me.last_systime = me.systimeN.getValue(); me.interval != nil and me._loop_(me.loopid); me.running = 1; me; }, stop : func { me.running or return; me.running = 0; me.loopid += 1; me._apply_(); me; }, reset : func { me.node.setDoubleValue(0); me.last_systime = me.systimeN.getValue(); }, _apply_ : func { var sys = me.systimeN.getValue(); me.node.setDoubleValue(me.node.getValue() + sys - me.last_systime); me.last_systime = sys; }, _save_ : func { if (me.running) me._apply_(); }, _loop_ : func(id) { id != me.loopid and return; me._apply_(); settimer(func { me._loop_(id) }, me.interval); }, }; # livery # ============================================================================= # Class that maintains livery XML files (see English Electric Lightning for an # example). The last used livery is saved on exit and restored next time. Livery # files are regular PropertyList XML files whose properties are copied to the # main tree (whereby the node types are ignored). # # SYNOPSIS: # livery.init( [, [, ]]); # # ... directory with livery XML files, relative to $FG_ROOT # ... property path to the livery name in the livery files # and the property tree (default: /sim/model/livery/name) # ... property path to the sort criterion (default: same as # -- that is: alphabetic sorting) # # EXAMPLE: # aircraft.livery.init("Aircraft/Lightning/Models/Liveries", # "sim/model/livery/variant", # "sim/model/livery/index"); # optional # # aircraft.livery.dialog.toggle(); # aircraft.livery.select("OEBH"); # aircraft.livery.next(); # var livery = { init : func(livery_dir, name_path = "sim/model/livery/name", sort_path = nil) { me.dir = livery_dir; if (me.dir[-1] != `/`) me.dir ~= "/"; me.name_path = name_path; me.sort_path = sort_path != nil ? sort_path : name_path; me.rescan(); aircraft.data.add(name_path); me.dialog = gui.Dialog.new("livery-select"); }, rescan : func { me.data = []; var path = getprop("/sim/fg-root") ~ "/" ~ me.dir; foreach (var file; directory(path)) { if (substr(file, -4) != ".xml") continue; var n = io.read_properties(path ~ file); var name = n.getNode(me.name_path); var index = n.getNode(me.sort_path); if (name == nil or index == nil) continue; append(me.data, [name.getValue(), index.getValue(), n.getValues(), substr(file, 0, size(file) - 4)]); } me.data = sort(me.data, func(a, b) { num(a[1]) == nil or num(b[1]) == nil ? cmp(a[1], b[1]) : a[1] - b[1]; }); me.select(getprop(me.name_path)); }, # select by index (out-of-bounds indices are wrapped) set : func(i) { if (i < 0) i = size(me.data) - 1; if (i >= size(me.data)) i = 0; me.current = i; props.globals.setValues(me.data[i][2]); setprop("sim/model/livery/file", me.data[i][3]); }, # select by name select : func(name) { forindex (var i; me.data) if (me.data[i][0] == name) me.set(i); }, next : func { me.set(me.current + 1); }, previous : func { me.set(me.current - 1); }, }; # livery_update # ============================================================================= # Class for maintaining liveries in MP aircraft. It is used in Nasal code that's # embedded in aircraft animation XML files, and checks in intervals whether the # parent aircraft has changed livery, in which case it changes the livery # in the remote aircraft accordingly. # # SYNOPSIS: # livery_update.new( [, [, ]]); # # ... directory with livery files, relative to $FG_ROOT # ... checking interval in seconds (default: 10) # ... callback function that's called with the ./sim/model/livery/file # contents as argument whenever the livery has changed. This can # be used for post-processing. # # EXAMPLE: # # # var livery_update = aircraft.livery_update.new( # "Aircraft/R22/Models/Liveries", 30, # func { print("R22 livery update") }); # # # # livery_update.stop(); # # # var livery_update = { new : func(liveriesdir, interval = 10, callback = nil) { var m = { parents : [livery_update] }; var root = cmdarg(); m.root = root.getPath(); m.fileN = root.getNode("sim/model/livery/file", 1); m.dir = getprop("/sim/fg-root") ~ "/" ~ liveriesdir ~ "/"; m.interval = interval; m.last = ""; m.running = 1; m.callback = callback; if (root.getName() == "multiplayer") m._loop_(); return m; }, stop : func { me.running = 0; }, _loop_ : func { me.running or return; var file = me.fileN.getValue(); if (file != nil and file != me.last) { io.read_properties(me.dir ~ file ~ ".xml", me.root); me.last = file; if (me.callback != nil) me.callback(file); } settimer(func { me._loop_() }, me.interval); }, }; # formation # ============================================================================= # A modification of the livery class. This class maintains formation # XML files (see Blackburn Buccaneer for an example). Files are regular # PropertyList XML files whose properties are copied to the # main tree (whereby the node types are ignored). # # SYNOPSIS: # formation.init( [, [, ]]); # # ... directory with livery XML files, relative to $FG_ROOT # ... property path to the livery name in the livery files # and the property tree (default: /sim/model/formation/name) # ... property path to the sort criterion (default: same as # -- that is: alphabetic sorting) # # EXAMPLE: # aircraft.formation.init("Aircraft/Buccaneer/Formations", # "sim/model/formation/variant", # "sim/model/formation/index"); # optional # # aircraft.formation.dialog.toggle(); # aircraft.formation.select("take off"); # aircraft.formation.next(); # var formation = { init : func(formation_dir, name_path = "sim/model/formation/name", sort_path = nil) { me.dir = formation_dir; if (me.dir[-1] != `/`) me.dir ~= "/"; me.name_path = name_path; me.sort_path = sort_path != nil ? sort_path : name_path; me.rescan(); aircraft.data.add(name_path); me.dialog = gui.Dialog.new("formation-select"); }, rescan : func { me.data = []; var path = getprop("/sim/fg-root") ~ "/" ~ me.dir; foreach (var file; directory(path)) { if (substr(file, -4) != ".xml") continue; var n = io.read_properties(path ~ file); var name = n.getNode(me.name_path); var index = n.getNode(me.sort_path); if (name == nil or index == nil) continue; append(me.data, [name.getValue(), index.getValue(), n.getValues()]); } me.data = sort(me.data, func(a, b) { num(a[1]) == nil or num(b[1]) == nil ? cmp(a[1], b[1]) : a[1] - b[1]; }); me.select(getprop(me.name_path)); }, # select by index (out-of-bounds indices are wrapped) set : func(i) { if (i < 0) i = size(me.data) - 1; if (i >= size(me.data)) i = 0; props.globals.setValues(me.data[i][2]); me.current = i; }, # select by name select : func(name) { forindex (var i; me.data) if (me.data[i][0] == name) me.set(i); }, next : func { me.set(me.current + 1); }, previous : func { me.set(me.current - 1); }, }; # steering # ============================================================================= # Class that implements differential braking depending on rudder position. # Note that this overrides the controls.applyBrakes() wrapper. If you need # your own version, then override it again after the steering.init() call. # # SYNOPSIS: # steering.init([ [, ]]); # # ... property path or props.Node hash that enables/disables # brake steering (usually bound to the js trigger button) # ... defines range (+- threshold) around neutral rudder # position in which both brakes are applied # # EXAMPLES: # aircraft.steering.init("/controls/gear/steering", 0.2); # aircraft.steering.init(); # var steering = { init : func(switch = "/controls/gear/brake-steering", threshold = 0.3) { me.threshold = threshold; me.switchN = makeNode(switch); me.switchN.setBoolValue(me.switchN.getBoolValue()); me.leftN = props.globals.getNode("/controls/gear/brake-left", 1); me.rightN = props.globals.getNode("/controls/gear/brake-right", 1); me.rudderN = props.globals.getNode("/controls/flight/rudder", 1); me.loopid = 0; controls.applyBrakes = func(v, w = 0) { call(func(v, w) (w < 0 ? leftN : w > 0 ? rightN : switchN).setValue(v), [v, w], nil, aircraft.steering); } setlistener(me.switchN, func(n) { me.loopid += 1; if (n.getValue()) me._loop_(me.loopid); else me.setbrakes(0, 0); }, 1); }, _loop_ : func(id) { id == me.loopid or return; var rudder = me.rudderN.getValue(); if (rudder > me.threshold) me.setbrakes(0, rudder); elsif (rudder < -me.threshold) me.setbrakes(-rudder, 0); else me.setbrakes(1, 1); settimer(func { me._loop_(id) }, 0); }, setbrakes : func(left, right) { me.leftN.setDoubleValue(left); me.rightN.setDoubleValue(right); }, }; # autotrim # ============================================================================= # Singleton class that supports quick trimming and compensates for the lack # of resistance/force feedback in most joysticks. Normally the pilot trims such # that no real or artificially generated (by means of servo motors and spring # preloading) forces act on the stick/yoke and it is in a comfortable position. # This doesn't work well on computer joysticks. # # SYNOPSIS: # autotrim.start(); # on key/button press # autotrim.stop(); # on key/button release (mod-up) # # USAGE: # (1) move the stick such that the aircraft is in an orientation that # you want to trim for (forward flight, hover, ...) # (2) press autotrim button and keep it pressed # (3) move stick/yoke to neutral position (center) # (4) release autotrim button # var autotrim = { init : func { me.elevator = me.Trim.new("elevator"); me.aileron = me.Trim.new("aileron"); me.rudder = me.Trim.new("rudder"); me.loopid = 0; me.active = 0; }, start : func { me.active and return; me.active = 1; me.elevator.start(); me.aileron.start(); me.rudder.start(); me._loop_(me.loopid += 1); }, stop : func { me.active or return; me.active = 0; me.loopid += 1; me.update(); }, _loop_ : func(id) { id == me.loopid or return; me.update(); settimer(func { me._loop_(id) }, 0); }, update : func { me.elevator.update(); me.aileron.update(); me.rudder.update(); }, Trim : { new : func(name) { var m = { parents : [ autotrim.Trim ] }; m.trimN = props.globals.getNode("/controls/flight/" ~ name ~ "-trim", 1); m.ctrlN = props.globals.getNode("/controls/flight/" ~ name, 1); return m; }, start : func { me.last = me.ctrlN.getValue(); }, update : func { var v = me.ctrlN.getValue(); me.trimN.setDoubleValue(me.trimN.getValue() + me.last - v); me.last = v; }, }, }; # HUD control class to handle both HUD implementations # ============================================================================== # var HUD = { init : func { me.vis0N = props.globals.getNode("/sim/hud/visibility[0]", 1); me.vis1N = props.globals.getNode("/sim/hud/visibility[1]", 1); me.currcolN = props.globals.getNode("/sim/hud/current-color", 1); me.paletteN = props.globals.getNode("/sim/hud/palette", 1); me.brightnessN = props.globals.getNode("/sim/hud/color/brightness", 1); me.currentN = me.vis0N; }, cycle_color : func { # h-key if (!me.currentN.getBoolValue()) # if off, turn on return me.currentN.setBoolValue(1); var i = me.currcolN.getValue() + 1; # if through, turn off if (i < 0 or i >= size(me.paletteN.getChildren("color"))) { me.currentN.setBoolValue(0); me.currcolN.setIntValue(0); } else { # otherwise change color me.currentN.setBoolValue(1); me.currcolN.setIntValue(i); } }, cycle_brightness : func { # H-key me.is_active() or return; var br = me.brightnessN.getValue() - 0.2; me.brightnessN.setValue(br > 0.01 ? br : 1); }, normal_type : func { # i-key me.is_active() or return; me.oldinit1(); me.vis0N.setBoolValue(1); me.vis1N.setBoolValue(0); me.currentN = me.vis0N; }, cycle_type : func { # I-key me.is_active() or return; if (me.currentN == me.vis0N) { me.vis0N.setBoolValue(0); me.vis1N.setBoolValue(1); me.currentN = me.vis1N; } elsif (me.currentN == me.vis1N) { me.vis0N.setBoolValue(1); me.vis1N.setBoolValue(0); me.oldinit2(); me.currentN = me.vis0N; } }, oldinit1 : func { fgcommand("hud-init") }, oldinit2 : func { fgcommand("hud-init2") }, is_active : func { me.vis0N.getValue() or me.vis1N.getValue() }, }; # module initialization # ============================================================================== # _setlistener("/sim/signals/nasal-dir-initialized", func { props.initNode("/sim/time/delta-sec", 0); props.initNode("/sim/time/delta-realtime-sec", 0.00000001); HUD.init(); data.init(); autotrim.init(); if (getprop("/sim/startup/save-on-exit")) { data.load(); var n = props.globals.getNode("/sim/aircraft-data"); if (n != nil) foreach (var c; n.getChildren("path")) if (c.getType() != "NONE") data.add(c.getValue()); } else { data._save_ = func {} data._loop_ = func {} } });