

2

FlightGear Flight Simulator – Installation and
Getting Started

Michael Basler (pmb@epost.de) and Martin Spott (Martin.Spott@uni-duisburg.de)

including contributions by
Jon Berndt (jsb@hal-pc.org), Bernhard Buckel (buckel@mail.uni-wuerzburg.de),
Cameron Moore (cameron@unbeatenpath.net), Curt Olson (curt@flightgear.org),

Dave Perry (skidavem@mindspring.com), Michael Selig (m-selig@uiuc.edu),
Darrell Walisser (walisser@mac.com), and others

Getting Started Version 0.6
September, 9th, 2002

Manual was written forFlightGear version 0.8.0.

mailto:pmb@epost.de
mailto:Martin.Spott@uni-duisburg.de
mailto:jsb@hal-pc.org
mailto:buckel@mail.uni-wuerzburg.de
mailto:cameron@unbeatenpath.net
mailto:curt@flightgear.org
mailto:skidavem@mindspring.com
mailto:m-selig@uiuc.edu
mailto:walisser@mac.com

Contents

I Installation 9

1 Want to have a free flight? TakeFlightGear! 10
1.1 Yet Another Flight Simulator? 10
1.2 System Requirements . 13
1.3 Choosing A Version . 15
1.4 Flight Dynamics Models . 16
1.5 About This Guide . 17

2 Building the plane: Compiling the program 19
2.1 Preparing the development environment under Windows 20
2.2 Preparing the development environment under Windows 22
2.3 One-time preparations for Linux and Windows users 23

2.3.1 Installation ofZLIB . 23
2.3.2 Installation ofMetakit 24

2.4 CompilingFlightGear under Linux/Windows 24
2.5 CompilingFlightGear under Mac OS X 27
2.6 Compiling on other systems . 30
2.7 Installing the base package . 31
2.8 For test pilots only: Building the CVS snapshots 31

3 Preflight: Installing FlightGear 33
3.1 Installing the binary distribution on a Windows system 33
3.2 Installing the binary distribution on a Macintosh system 34
3.3 Installing the binary distribution on a Debian Linux system 34
3.4 Installing the binary distribution on a SGI IRIX system 35
3.5 Installing add-on scenery . 35
3.6 Installing documentation . 36

3

4 CONTENTS

II Flying with FlightGear 37

4 Takeoff: How to start the program 38
4.1 Launching the simulator under Unix/Linux 38
4.2 Launching the simulator under Windows 39
4.3 Launching the simulator under Mac OS X 40
4.4 Command line parameters . 40

4.4.1 General Options . 40
4.4.2 Features . 42
4.4.3 Aircraft . 43
4.4.4 Flight model . 43
4.4.5 Initial Position and Orientation 44
4.4.6 Rendering Options . 45
4.4.7 HUD Options . 46
4.4.8 Time Options . 46
4.4.9 Network Options . 46
4.4.10 Route/Waypoint Options 47
4.4.11 IO Options . 47
4.4.12 Debugging options . 48

4.5 Joystick support . 48
4.5.1 Built-in joystick support 48
4.5.2 Joystick support via .fgfsrc entries 54

4.6 A glance over our hangar . 56

5 In-flight: All about instruments, keystrokes and menus 59
5.1 Starting the engine . 59
5.2 Keyboard controls . 60
5.3 Menu entries . 64
5.4 The Instrument Panel . 66
5.5 The Head Up Display . 70
5.6 Mouse controlled actions . 71
5.7 Some further reading for student pilots 72

III Appendices 74

A Missed approach: If anything refuses to work 75
A.1 FlightGear Problem Reports . 75
A.2 General problems . 76
A.3 Potential problems under Linux 77

CONTENTS 5

A.4 Potential problems under Windows 78

B Some words on OpenGL graphics drivers 80
B.1 NVIDIA chip based cards under Linux 81
B.2 NVIDIA chip based cards under Windows 81
B.3 3DFX chip based cards under Windows 81
B.4 An alternative approach for Windows users 82
B.5 3DFX chip based cards under Linux 82
B.6 ATI chip based cards under Linux 82
B.7 Building your own OpenGL support under Linux 82
B.8 OpenGL on Macintosh . 86

C Landing: Some further thoughts before leaving the plane 88
C.1 A Sketch on the History ofFlightGear 88

C.1.1 Scenery . 89
C.1.2 Aircraft . 90
C.1.3 Environment . 91
C.1.4 User Interface . 92

C.2 Those, who did the work . 93
C.3 What remains to be done . 102

Preface

FlightGear is a free Flight Simulator developed cooperatively over the Internet by
a group of Flight Simulation and Programming Enthusiasts. This ”Installation and
Getting Started” is meant to give beginners a guide in gettingFlightGear up and
running. It is not intended to provide complete documentation of all the features
and add-ons ofFlightGear but, instead, focuses on those aspects necessary to get
into the air.

This guide is split into two parts. The first part describes how to install the
program while the second part details on how to actually fly withFlightGear.

The chapters concentrate on the following aspects:

Part I: Installation

Chapter 1,Want to have a free flight? TakeFlightGear, introduces the concept,
describes the system requirements, and classifies the different versions available.

Chapter 2,Building the plane: Compiling the program, explains how to build
(compile and link) the simulator. Depending on your platform this may or may
not be required. Generally, there will be executable programs (binaries) available
for several platforms. Those on such systems who want to take off immediately,
without going through the potentially troublesome process of compiling, may skip
this Chapter.

In Chapter 3,Preflight: InstallingFlightGear, you will find instructions for in-
stalling the binaries in case you did not build them yourself as specified in the
previous Chapter. You will need to install scenery, textures, and other support files
collected in the base package.

Part II: Flying with FlightGear

The following Chapter 4,Takeoff: How to start the program, describes how to actu-
ally start the installed program. It includes an overview on the numerous command
line options as well as configuration files.

Chapter 5,In-flight: All about instruments, keystrokes and menus, describes how
to operate the program, i. e. how to actually fly withFlightGear. This includes

6

CONTENTS 7

a (hopefully) complete list of pre-defined keyboard commands, an overview on
the menu entries, detailed descriptions on the instrument panel and HUD (head up
display), as well as hints on using the mouse functions.

In Appendix A,Missed approach: If anything refuses to work, we try to help you
work through some common problems faced when usingFlightGear.

The Appendix B,OpenGL graphics drivers, describes some special problems you
may encounter in case your system lacks support for the OpenGL graphics API
OpenGL whichFlightGear is based on.

In the final Appendix C,Landing: Some further thoughts before leaving the plane,
we would like to give credit to those who deserve it, sketch an overview on the
development ofFlightGearand point out what remains to be done.

Accordingly, we suggest reading the Chapters as follows:

Installation
Users of binary distributions (notably under Windows): 3
Installation under Linux/UNIX: 2, 3
Installation under Macintosh: 3
Operation
Program start (all users): 4
Keycodes, Panel, Mouse. . . (all users): 5
Troubleshooting
General issues: A
Graphics problems: B
Optionally 1, C

While this introductory guide is meant to be self contained, we strongly suggest
having a look into further documentation, especially in case of trouble:

• For additional hints on troubleshooting and more,please read the FAQ

http://www.flightgear.org/Docs/FlightGear-FAQ.html,

The FAQ contains a host of valuable information, especially on rapidly chang-
ing flaws and additional reading, thus we strongly suggest consulting it in
conjunction with our guide.

• A handyleafleton operation for printout is available at

http://www.flightgear.org/Docs/InstallGuide/FGShortRef.html,

http://www.flightgear.org/Docs/FlightGear-FAQ.html
http://www.flightgear.org/Docs/InstallGuide/FGShortRef.html

8 CONTENTS

• Additional user documentation on special aspects is available within the base
package under the directory/FlightGear/Docs .

Finally:

We know, most people hate reading manuals. If you are sure the graphics driver
for your card supports OpenGL (check documentation; for instance all NVIDIA
Windows and Linux drivers for TNT/TNT2/Geforce/Geforce2/Geforce3 do) and if
you are using one of the following operating systems:

• Windows 95/98/ME/NT/2000/XP,

• Macintosh Mac OSX

• Linux

• SGI Irix

you can possibly skip at least Part I of this manual and exploit the pre-compiled
binaries. These as well as instructions on how to set them up, can be found at

http://www.flightgear.org/Downloads/.

In case you are runningFlightGear on Linux, you may also be able to get bina-
ries bundled with your distribution. Several vendors already includeFlightGear
binaries into their distributions.

Just download them, install them according to the description and run them via
the installedrunfgfs script or the batch filerunfgfs.bat , respectively.

There is no guarantee for this approach to work, though. If it doesn’t, don’t
give up! Have a closer look through this guide notably Section 3 and be sure to
check out the FAQ.

http://www.flightgear.org/Downloads/

Part I

Installation

9

Chapter 1

Want to have a free flight? Take
FlightGear!

1.1 Yet Another Flight Simulator?

Did you ever want to fly a plane yourself, but lacked the money or ability to do so?
Are you a real pilot looking to improve your skills without having to take off? Do
you want to try some dangerous maneuvers without risking your life? Or do you
just want to have fun with a more serious game without any violence? If any of
these questions apply to you, PC flight simulators are just for you.

You may already have some experience using Microsoft’sc© Flight Simulator
or any other of the commercially available PC flight simulators. As the price tag of
those is usually within the $50 range, buying one of them should not be a serious
problem given that running any serious PC flight simulator requires PC hardware
within the $1500 range, despite dropping prices.

With so many commercially available flight simulators, why would we spend
thousands of hours of programming and design work to build a free flight simula-
tor? Well, there are many reasons, but here are the major ones:

• All of the commercial simulators have a serious drawback: they are made
by a small group of developers defining their properties according to what
is important to them and providing limited interfaces to end users. Anyone
who has ever tried to contact a commercial developer would agree that get-
ting your voice heard in that environment is a major challenge. In contrast,
FlightGear is designed by the people and for the people with everything out
in the open.

• Commercial simulators are usually a compromise of features and usability.

10

1.1 YET ANOTHER FLIGHT SIMULATOR? 11

Most commercial developers want to be able to serve a broad segment of
the population, including serious pilots, beginners, and even casual gamers.
In reality the result is always a compromise due to deadlines and funding.
As FlightGear is free and open, there is no need for such a compromise.
We have no publisher breathing down our necks, and we’re all volunteers
that make our own deadlines. We are also at liberty to support markets that
no commercial developer would consider viable, like the scientific research
community.

• Due to their closed-source nature, commercial simulators keep developers
with excellent ideas and skills from contributing to the products. WithFlight-
Gear, developers of all skill levels and ideas have the potential to make a
huge impact on the project. Contributing to a project as large and complex
asFlightGear is very rewarding and provides the developers with a great
deal of pride in knowing that we are shaping the future of a great simulator.

• Beyond everything else, it’s just plain fun! I suppose you could compare us
to real pilots that build kit-planes or scratch-builts. Sure, we can go out a
buy a pre-built aircraft, but there’s just something special about building one
yourself.

The points mentioned above form the basis of why we createdFlightGear.
With those motivations in mind, we have set out to create a high-quality flight
simulator that aims to be a civilian, multi-platform, open, user-supported, and user-
extensible platform. Let us take a closer look at each of these characteristics:

• Civilian: The project is primarily aimed at civilian flight simulation. It
should be appropriate for simulating general aviation as well as civilian air-
craft. Our long-term goal is to haveFlightGear FAA-approved as a flight
training device. To the disappointment of some users, it is currently not a
combat simulator; however, these features are not explicitly excluded. We
just have not had a developer that was seriously interested in systems neces-
sary for combat simulation.

• Multi-platform: The developers are attempting to keep the code as platform-
independent as possible. This is based on their observation that people in-
terested in flight simulations run quite a variety of computer hardware and
operating systems. The present code supports the following Operating Sys-
tems:

– Linux (any distribution and platform),

12 1. WANT TO HAVE A FREE FLIGHT?

– Windows NT/2000/XP (Intel/AMD platform),

– Windows 95/98/ME,

– BSD UNIX,

– SGI IRIX,

– Sun-OS,

– Macintosh.

At present, there is no known flight simulator – commercial or free – sup-
porting such a broad range of platforms.

• Open: The project is not restricted to a static or elite cadre of developers.
Anyone who feels they are able to contribute is most welcome. The code (in-
cluding documentation) is copyrighted under the terms of the GNU General
Public License (GPL).

The GPL is often misunderstood. In simple terms it states that you can copy
and freely distribute the program(s) so licensed. You can modify them if
you like and even charge as much money as want to for the distribution of
the modified or original program. However, you must freely provide the
entire source code to anyone who wants it, and it must retain the original
copyrights. In short:

”You can do anything with the software except make it non-free”.

The full text of the GPL can be obtained from theFlightGear source code
or from

http://www.gnu.org/copyleft/gpl.html.

• User-supported and user-extensible:Unlike most commercial simulators,
FlightGear”s scenery and aircraft formats, internal variables, APIs, and ev-
erything else are user accessible and documented from the beginning. Even
without any explicit development documentation (which naturally has to be
written at some point), one can always go to the source code to see how
something works. It is the goal of the developers to build a basic engine
to which scenery designers, panel engineers, maybe adventure or ATC rou-
tine writers, sound artists, and others can build upon. It is our hope that the
project, including the developers and end users, will benefit from the creativ-
ity and ideas of the hundreds of talented ”simmers” around the world.

http://www.gnu.org/copyleft/gpl.html

1.2. SYSTEM REQUIREMENTS 13

Without doubt, the success of the Linux project, initiated by Linus Torvalds,
inspired several of the developers. Not only has Linux shown that distributed de-
velopment of highly sophisticated software projects over the Internet is possible,
it has also proven that such an effort can surpass the level of quality of competing
commercial products.

Fig. 1: FlightGear under UNIX: Bad approach to San Francisco International - by
one of the authors of this manual. . .

1.2 System Requirements

In comparison to other recent flight simulators, the system requirements forFlight-
Gear are not extravagant. A decent PIII/800, or something in that range, should
be sufficient given you have a proper 3-D graphics card. Additionally, any modern
UNIX-type workstation with a 3-D graphics card will handleFlightGear as well.

One important prerequisite for runningFlightGear is a graphics card whose
driver supports OpenGL. If you don’t know what OpenGL is, the overview given
at the OpenGL website

http://www.opengl.org

http://www.opengl.org

14 1. WANT TO HAVE A FREE FLIGHT?

says it best: “Since its introduction in 1992, OpenGL has become the industry’s
most widely used and supported 2-D and 3-D graphics application programming
interface (API)...”.

FlightGear does not run (and will never run) on a graphics board which only
supports Direct3D. Contrary to OpenGL, Direct3D is a proprietary interface, being
restricted to the Windows operating system.

You may be able to runFlightGear on a computer that features a 3-D video
card not supporting hardware accelerated OpenGL – and even on systems with-
out 3-D graphics hardware at all. However, the absence of hardware accelerated
OpenGL support can bring even the fastest machine to its knees. The typical signal
for missing hardware acceleration are frame rates below 1 frame per second.

Any modern 3-D graphics featuring OpenGL support will do. For Windows
video card drivers that support OpenGL, visit the home page of your video card
manufacturer. You should note that sometimes OpenGL drivers are provided by
the manufacturers of the graphics chip instead of by the makers of the board. If you
are going to buy a graphics card for runningFlightGear, one based on a NVIDIA
chip (TNT X/Geforce X) might be a good choice.

To install the executable and basic scenery, you will need around 50 MB of
free disk space. In case you want/have to to compile the program yourself you
will need about an additional 500 MB for the source code and for temporary files
created during compilation. This does not include the development environment,
which will vary in size depending on the operating system and environment being
used. Windows users can expect to need approximately 300 MB of additional disk
space for the development environment. Linux and other UNIX machines should
have most of the development tools already installed, so there is likely to be little
additional space needed on those platforms.

For the sound effects, any capable sound card should suffice. Due to its flexible
design,FlightGear supports a wide range of joysticks and yokes as well as rudder
pedals under Linux and Windows.FlightGear can also provide interfaces to full-
motion flight chairs.

FlightGear is being developed primarily under Linux, a free UNIX clone (to-
gether with lots of GNU utilities) developed cooperatively over the Internet in
much the same spirit asFlightGear itself. FlightGear also runs and is partly de-
veloped under several flavors of Windows. BuildingFlightGear is also possible on
a Macintosh OSX and several different UNIX/X11 workstations. Given you have
a proper compiler installed,FlightGear can be built under all of these platforms.
The primary compiler for all platforms is the free GNU C++ compiler (the Cygnus
Cygwin compiler under Win32).

If you want to runFlightGear under Mac OSX we suggest a Power PC G3 300
MHz or better. As a graphics card we would suggest an ATI Rage 128 based card

1.3. CHOOSING A VERSION 15

as a minimum. Joysticks are supported under Mac OS 9.x only; there is no joystick
support under Max OSX at this time.

1.3 Choosing A Version

Concerning theFlightGear source code there exist two branches, a stable branch
and a developmental branch. Even version numbers like 0.6, 0.8, and (someday
hopefully) 1.0 refer to stable releases, while odd numbers like 0.7, 0.9, and so on
refer to developmental releases. The policy is to only do bug fixes in the even
versions, while new features are generally added to odd-numbered versions which,
after all things have stabilized, will become the next stable release with a version
number calculated by adding 0.1.

To add to the confusion, there usually are several versions of the ”unstable”
branch. First, there is a ”latest official release” which the pre-compiled binaries are
based on. It is available from

ftp://ftp.flightgear.org/pub/fgfs/Source/FlightGear-X.Y.Z.tar.gz

For developers there exist CVS snapshots of the source code, available from

ftp://www.flightgear.org/pub/flightgear/Devel/Snapshots/.

While theses are quite recent, they may still be sometimes a few days back behind
development. Thus, if you really want to get the very latest and greatest (and, at
times, buggiest) code, you can use a tool called anonymous cvs available from

http://www.cvshome.org/

to get the recent code. A detailed description of how to set this up forFlightGear
can be found at

http://www.flightgear.org/cvsResources/.

Unfortunately, the system implemented above does not really work as it should. As
a matter of fact, the stable version is usually so much outdated, that it does not at
all reflect the state of developmentFlightGear has reached. Given that the recent
developmental versions on the other hands may contain bugs (. . . undocumented
features), we recommend using the ”latest official (unstable) release” for the aver-
age user. This is the latest version named at

http://www.flightgear.org/News/;

usually this is also the version which the binary distributions available at

http://www.flightgear.org/Downloads/

are based on. If not otherwise stated, all procedures in this “Installation and Getting
Started” will be based on these packages.

ftp://ftp.flightgear.org/pub/fgfs/Source/FlightGear-X.Y.Z.tar.gz
ftp://www.flightgear.org/pub/flightgear/Devel/Snapshots/
http://www.cvshome.org/
http://www.flightgear.org/cvsResources/
http://www.flightgear.org/News/
http://www.flightgear.org/Downloads/

16 1. WANT TO HAVE A FREE FLIGHT?

1.4 Flight Dynamics Models

Historically, FlightGear has been based on a flight model it inherited (together
with the Navion airplane) from LaRCsim. As this had several limitations (most
important, many characteristics were hard wired in contrast to using configuration
files), there were several attempts to develop or include alternative flight models.
As a result,FlightGear supports several different flight models, to be chosen from
at runtime.

The most important one is the JSB flight model developed by Jon Berndt. Ac-
tually, the JSB flight model is part of a stand-alone project calledJSBSim, having
its home at

http://jsbsim.sourceforge.net/.

Concerning airplanes, the JSB flight model at present provides support for a Cessna
172, a Cessna 182, a Cessna 310, and for an experimental plane called X15. Jon
and his group are gearing towards a very accurate flight model, and the JSB model
has becomeFlightGear’s default flight model.

As an interesting alternative, Christian Mayer developed a flight model of a hot
air balloon. Moreover, Curt Olson integrated a special ”UFO” slew mode, which
helps you to quickly fly from point A to point B.

Recently, Andrew Ross contributed another flight model calledYASim for Yet
Another Simulator. At present, it sports another Cessna 172, a Turbo 310, a fairly
good DC-3 model, along with a Boeing 747, Harrier, and A4.YASim takes a fun-
damentally different approach since it’s based on geometry information rather than
aerodynamic coefficients. WhereJSBSimwill be exact for every situation that is
known and flight tested, but may have odd and/or unrealistic behavior outside nor-
mal flight, YASimwill be sensible and consistent in almost every flight situation,
but is likely to differ in performance numbers.

As a further alternative, there is the UIUC flight model, developed by a team
at the University of Illinois at Urbana-Champaign. This work was initially geared
toward modeling aircraft in icing conditions together with a smart icing system to
better enable pilots to fly safely in an icing encounter. While this research con-
tinues, the project has expanded to include modeling ”nonlinear” aerodynamics,
which result in more realism in extreme attitudes, such as stall and high angle of
attack flight. Two good examples that illustrate this capability are the Airwave
Xtreme 150 hang glider and the 1903 Wright Flyer. For the hang glider, throttle
can be use to fly to gliding altitude or Ctrl-U can be used to jump up in 1000-ft
increments. Try your hand at the unstable Wright Flyer and don’t stall the canard!
Considerable up elevator trim will be required for level flight. In general, the aero-
dynamics are probably very close to the original Wright Flyer as they are partly

http://jsbsim.sourceforge.net/

1.5. ABOUT THIS GUIDE 17

based on experimental data taken on a replica tested recently at the NASA Ames
Research Center. Also included are two more models, a Beech 99 and Marchetti
S-211 jet trainer, which are older generation UIUC/FGFS models and based on
simpler ”linear” aerodynamics. More details of the UIUC flight model and a list of
aircraft soon to be upgraded can be found on their website at

http://amber.aae.uiuc.edu/˜m-selig/apasim.html

Note that the 3D models of the UIUC airplanes can be downloaded from a site
maintained by Wolfram Kuss

http://home.t-online.de/home/Wolfram.Kuss/

It is even possible to drive FlightGear’s scene display using an external FDM
running on a different computer – although this might not be a setup recommended
to people just getting in touch withFlightGear.

1.5 About This Guide

There is little, if any, material in this Guide that is presented here exclusively.
You could even say with Montaigne that we ”merely gathered here a big bunch
of other men’s flowers, having furnished nothing of my own but the strip to hold
them together”. Most (but fortunately not all) of the information herein can also be
obtained from theFlightGear web site located at

http://www.flightgear.org/

Please, keep in mind that there are several mirrors of theFlightGear web sites,
all of which are linked to from theFlightGear homepage listed above. You may
prefer to downloadFlightGear from a mirror closer to you than from the main site.

This FlightGear Installation and Getting Startedmanual is intended to be a
first step towards a completeFlightGear documentation. The target audience is
the end-user who is not interested in the internal workings of OpenGL or in build-
ing his or her own scenery. It is our hope, that someday there will be an accom-
panyingFlightGear Programmer’s Guide(which could be based on some of the
documentation found at

http://www.flightgear.org/Docs;

a FlightGear Scenery Design Guide, describing the Scenery tools now packaged
asTerraGear; and aFlightGear Flight Schoolpackage.

As a supplement, we recommend reading theFlightGear FAQ to be found at
http://www.flightgear.org/Docs/FlightGear-FAQ.html

http://amber.aae.uiuc.edu/~m-selig/apasim.html
http://home.t-online.de/home/Wolfram.Kuss/
http://www.flightgear.org/
http://www.flightgear.org/Docs
http://www.flightgear.org/Docs/FlightGear-FAQ.html

18 1. WANT TO HAVE A FREE FLIGHT?

which has a lot of supplementary information that may not be included in this
manual.

We kindly ask you to help us refine this document by submitting correc-
tions, improvements, and suggestions. All users is invited to contribute de-
scriptions of alternative setups (graphics cards, operating systems etc.). We
will be more than happy to include those into future versions of thisInstalla-
tion and Getting Started(of course not without giving credit to the authors).

While we intend to continuously update this document, we may not be able to
produce a new version for every single release ofFlightGear. To do so would re-
quire more manpower that we have now, so please feel free to jump in and help out.
We hope to produce documentation that measures up to the quality ofFlightGear
itself.

Chapter 2

Building the plane: Compiling
the program

This central chapter describes how to buildFlightGear on several systems. In case
you are on a Win32 (i. e. Windows95/98/ME/NT/2000/XP) platform or any of the
other platforms which binary executables are available for, you may not want to
go though that potentially troublesome process but skip that chapter instead and
straightly go to the next one. (Not everyone wants to build his or her plane himself
or herself, right?) However, there may be good reason for at least trying to build
the simulator:

• In case you are on a UNIX/Linux platform there may be no pre-compiled bi-
naries available for your system. In practice it is common to install programs
like this one on UNIX systems by recompiling them.

• There are several options you can set during compile time only.

• You may be proud you did.

On the other hand, compilingFlightGear is not a task for novice users. Thus, if
you’re a beginner (we all were once) on a platform which binaries are available for,
we recommend postponing this task and just starting with the binary distribution
to get you flying.

As you will notice, this Chapter is far from being complete. Basically, we de-
scribe compiling for two operating systems only, Windows and Linux, and for only
one compiler, the GNU C compiler.FlightGear has been shown to be built under
different compilers (including Microsoft Visual C) as well as different systems
(Macintosh) as well. The reason for these limitations are:

19

20 2. BUILDING THE PLANE

• Personally, we have access to a Windows machine running the Cygnus com-
piler only.

• According to the mailing lists, these seem to be the systems with the largest
user base.

• These are the simplest systems to compileFlightGear on. Other compilers
may need special add-ons (workplace etc.) or even modification of the code.

• The GNU compiler is free in the same sense of the GPL asFlightGear is.

You might want to check Section A,Missed approach, if anything fails during
compilation. In case this does not help we recommend sending a note to one of the
mailing lists (for hints on subscription see Chapter C).

There are several Linux distributions on the market, and most of them should
work. Some come even bundled with (often outdated) versions ofFlightGear.
However, if you are going to download or buy a distribution, Debian (Woody) is
suggested by most people. SuSE works well, too.

Contrary to Linux/Unix systems, Windows usually comes without any devel-
opment tools. This way, you first have to install a development environment. On
Windows, in a sense, before building the plane you will have to build the plant
for building planes. This will be the topic of the following section, which can be
omitted by Linux users.

2.1 Preparing the development environment under Win-
dows

There is a powerful development environment available for Windows and this even
for free: The Cygnus development tools, resp.Cygwin. Their home is at

http://sources.redhat.com/cygwin/,

and it is always a good idea to check back what is going on there now and then.
Nowadays, installingCygwin is nearly automatic. First, make sure the drive

you wantCygwin, PLIB , SimGearandFlightGear to live on, has nearly 1 GB of
free disk space. Create a temporary directory and download the installer from the
site named above to that directory. (While the installer does an automatic installa-
tion of the Cygnus environment, it is a good idea to download a new installer from
time to time.)

Invoke the installer now. It gives you three options. To avoid having to down-
load stuff twice in case of a re-installation or installation on a second machine,

http://sources.redhat.com/cygwin/

2.1. PREPARING THE DEVELOPMENT ENVIRONMENT UNDER WINDOWS21

we highly recommended to take a two-step procedure. First, select the option
Download from Internet . Insert the path of your temporary directory, your
Internet connection settings and then choose a mirror form the list. Near servers
might be preferred, but may be sometimes a bit behind with mirroring. We found

ftp://mirrors.rcn.net

a very recent and fast choice. In the next windows the default settings are usually
a good start. Now chooseNext , sit back and wait.

If you are done, invoke the installer another time, now with the optionInstall
from local directory . After confirming the temporary directory you can
select a root directory (acting as the root directory of your pseudo UNIX file sys-
tem). Cygnus does not recommend taking the actual root directory of a drive, thus
choosec:/Cygwin (while other drives thanc: work as well). Now, allCygwin
stuff and allFlightGear stuff lives under this directory. In addition, select

Default text file type: Unix
In addition, you have the choice to install the compiler for all users or just for you.

The final window before installation gives you a selection of packages to in-
stall. It is hard, to provide a minimum selection of packages required forFlight-
Gear and the accompanying libraries to install. We have observed the following
(non minimum) combination to work:

• Admin skip

• Archive install

• Base install

• Database skip

• Devel install

• Doc install

• Editors skip

• Graphics install

• Interpreters install

• Libs install

• Mail skip

• Net skip

ftp://mirrors.rcn.net

22 2. BUILDING THE PLANE

• Shells install

• Text install

• Utils install

• Webskip

• XFree86 do not install!

Note XFree86 must be not installed for buildingFlightGear and the accom-
panying libraries. If it is installed you have to deinstall it first. OtherwiseFlight-
Gear’s configuration scripts will detect the XFree86 OpenGL libraries and link to
them, while the code is not prepared to do so.

As a final step you should include the binary directory (for instance:
c:/Cygwin/bin) into your path by addingpath=c:\Cygwin\bin in your
autoexec.bat under Windows 95/98/ME. Under WindowsNT/2000/XP, use
theExtended tab under theSystem properties page in Windowscontrol
panel . There you’ll find a buttonEnvironment variables , where you can
add the named directory.

Now you are done. Fortunately, all this is required only once. At this point you
have a nearly UNIX-like (command line) development environment. Because of
this, the following steps are nearly identical under Windows and Linux/Unix.

2.2 Preparing the development environment under Win-
dows

Linux, like any UNIX, usually comes with a compiler pre-installed. On the other
hand, you still have to make sure several required libraries being present.

First, make sure you have all necessary OpenGL libraries. Fortunately, most of
the recent Linux distributions (i.e. SuSE-7.3) put these already into the right place.
(There have been reports, though, that on Slackware you may have to copy the
libraries to/usr/local/lib and the headers to/usr/local/include by
hand after buildingglut-3.7). Be sure to install the proper packages: Besides
the basic X11 stuff you want to have - SuSE as an example - the following pack-
ages: mesa, mesa-devel, mesasoft, xf86glx, xf86glu, xf86glu-devel, mesaglut,
mesaglut-devel and plib.

Also you are expected to have a bunch of tools installed that are usually re-
quired to compile the Linux kernel. So you may use the Linux kernel source
package top determine the required dependencies. The following packages might

2.3. ONE-TIME PREPARATIONS FOR LINUX AND WINDOWS USERS 23

prove to be useful when fiddling with theFlightGear sources: automake, autoconf,
libtool, bison, flex and some more, that are not required to build a Linux kernel.

Please compare the release of the Plib library with the one that ships with
your Linux distribution. It might be the case thatFlightGear requires a newer
one that is not yet provided by your vendor.

2.3 One-time preparations for Linux and Windows users

There are a couple of 3rd party libraries which your Linux or Windows system may
or may have not installed, i.e. theZLIB library and theMetakit library. You can
either check your list of installed packages or just try buildingSimGear: It should
exit and spit an error message (observe this!) if one of these libraries is missing.

If you make this observation, install the missing libraries, which only is re-
quired once (unless you don’t re-install you development environment).

Both libraries come bundled withSimGear, which links to them, bus does not
automatically install them. For installing either of them, get the most recent file
SimGear-X.X.X.tar.gz from

http://www.simgear.org/downloads.html

Download it to /usr/local/source . Change to that directory and unpack
SimGearusing

tar xvfz SimGear-X.X.X.tar.gz .
You will observe a directorysrc-libs which contains the two names li-

braries.

2.3.1 Installation ofZLIB

cd into SimGear-X.X.X/scr-libs and unpackZLIB using

tar xvfz zlib-X.X.X.tar.gz .

Next, change to the newly created directoryzlib-X.X.X and type

./configure
make
make install

Under Linux, you have to become root for being able tomake install , for
instance via thesu command.

http://www.simgear.org/downloads.html

24 2. BUILDING THE PLANE

2.3.2 Installation ofMetakit

cd into SimGear-X.X.X/scr-libs and unpackMetakit using

tar xvfz metakit-X.X.X.tar.gz .

Next, change to directoryzlib-X.X.X/builds (!) and type (where the con-
figure option--with-tcl=no is at least required on a Cygwin system):

./configure --with-tcl=no
make
make install

Under Linux, you have to become root for being able tomake install , for
instance via thesu command.

You may want to consult the Readme files underSimGear-X.X.X/scr-libs
in case you run into trouble.

2.4 Compiling FlightGear under Linux/Windows

The following steps are identical under Linux/Unix and under Windows with minor
modifications. Under Windows, just open theCygwin icon from the Start menu or
from the desktop to get a command line.

To begin with, theFlightGear build process is based on four packages which
you need to built and installed in this order:

• PLIB

• SimGear

• FlightGear, program

• FlightGear, base (data - no compilation required)

1. First, choose an install directory for FlightGear. This will not be the one
your binaries will live in but the one for your source code and compilation
files. We suggest

cd:/usr/local/

mkdir source

2. Now, you have to install a support libraryPLIB which is absolutely essential
for the building process.PLIB contains most of the basic graphics rendering,

2.4. COMPILING FLIGHTGEAR UNDER LINUX/WINDOWS 25

audio, and joystick routines. Download the latest stable version ofPLIB
from

http://plib.sourceforge.net/

to /usr/local/source . Change to that directory and unpackPLIB us-
ing

tar xvfz plib-X.X.X.tar.gz .

cd into plib-X.X.X and run

./configure
make
make install .

Under Linux, you have to become root for being able tomake install ,
for instance via thesu command.

Confirm you now havePLIB ’s header files (asssg.h etc.) under
/usr/include/plib (and nowhere else).

3. Next, you have to install another librarySimGearcontaining the basic simu-
lation routines. Get the most recent fileSimGear-X.X.X.tar.gz from

http://www.simgear.org/downloads.html

Download it to/usr/local/source . Change to that directory and un-
packSimGearusing

tar xvfz SimGear-X.X.X.tar.gz .

cd into SimGear-X.X.X and run

./configure
make
make install

Again, under Linux, you have to become root for being able tomake install ,
for instance via thesu command.

4. Now, you’re prepared to buildFlightGear itself, finally. Get
FlightGear-X.X.X.tar.gz from

http://www.flightgear.org/Downloads/

and download it to/usr/local/source . UnpackFlightGear using

http://plib.sourceforge.net/
http://www.simgear.org/downloads.html
http://www.flightgear.org/Downloads/

26 2. BUILDING THE PLANE

tar xvfz FlightGear-X.X.X.tar.gz .

cd into FlightGear-X.X.X and run

./configure

configure knows about numerous options, with the more relevant ones to be
specified via switches as

• --with-network-olk : Include Oliver Delise’s multi-pilot network-
ing support,

• --with-new-environment : Include new experimental environ-
ment subsystem,

• --with-weathercm : Use WeatherCM instead of FGEnvironment,

• --with-plib= PREFIX: Specify the prefix path toPLIB ,

• --with-metakit= PREFIX: Specify the prefix path toMetakit,

• --with-simgear= PREFIX: Specify the prefix path toSimGear,

• --prefix=/XXX : InstallFlightGear in the directoryXXX.

• --disable-jsbsim : DisableJSBSimm FDM (in case of trouble
compiling it).

• --disable-yasim : DisableYASimFDM (in case of trouble com-
piling it).

• --disable-larcsim : DisableLaRCsimFDM (in case of trouble
compiling it).

• --disable-uiuc : Disable UIUC FDM (in case of trouble compil-
ing it).

A good choice would be--prefix=/usr/local/FlightGear . In
this caseFlightGear’s binaries will live under/usr/local/FlightGear/bin .
(If you don’t specify a--prefix the binaries will go into/usr/local/bin
while the base package files are expected under/usr/local/lib/FlightGear .)

Assumingconfigure finished successfully, run

make
make install .

Again, under Linux, you have to become root for being able tomake install ,
for instance via thesu command.

2.5. COMPILING FLIGHTGEAR UNDER MAC OS X 27

Note: You can save a significant amount of space by stripping all the debug-
ging symbols off the executable. To do this, make a

cd /usr/local/FlightGear/bin

to the directory in theinstall tree where your binaries live and run

strip * .

This completes building the executable and should result in a filefgfs (Unix)
or fgfs.exe (Windows) under/usr/local/FlightGear/bin

Note: If for whatever reason you want to re-build the simulator, use the com-
mandmake distclean either in theSimGear-X.X.X or in theFlightGear-X.X.X
directory to remove all the build. If you want to re-runconfigure (for in-
stance because of having installed another version ofPLIB etc.), remove the files
config.cache from these same directories before.

2.5 Compiling FlightGear under Mac OS X

For compiling under Mac OS X you will need

• Mac X OS 10.1+ with developer tools installed.

• 500MB disk (minimum) free disk space.

• Fearlessness of command line compiling.

This will need a bit more bravery than building under Windows or Linux. First,
there are less people who tested it under sometimes strange configurations. Second,
the process as described here itself needs a touch more experience by using CVS
repositories.

First, download the development files. They contain files that help simplify the
build process, and software for automake, autoconf, and plib:

http://expert.cc.purdue.edu/˜walisser/fg/fgdev.tar.gz

or

http://homepage.mac.com/walisser

Once you have this extracted, make sure you are using TCSH as your shell, since
the setup script requires it.
Important for Jaguar users:

http://expert.cc.purdue.edu/~walisser/fg/fgdev.tar.gz
http://homepage.mac.com/walisser

28 2. BUILDING THE PLANE

If you run Mac OS X 10.2 or later, gcc 3.1 is the default compiler. However,
only version 2.95 works withFlightGear as of this writing. To change the default
compiler, run this command (as root). You’ll only have to do this once and it will
have a global effect on the system.

sudo gcc select 2

1. Setup the build environment:
cd fgdev
source bin/prepare.csh

2. Install the latest versions of the automake and autoconf build tools:
cd $BUILDDIR/src/automake-X.X.X
./configure --prefix=$BUILDDIR
make install
rehash

cd $BUILDDIR/src/autoconf-X.XX
./configure --prefix=$BUILDDIR
make install
rehash

3. Download PLIB
cd $BUILDDIR/src
setenv CVSROOT :pserver:anonymous@cvs.plib.sf.net:
/cvsroot/plib (one line!)
cvs login
Press<enter> for password
cvs -z3 checkout plib

4. Build PLIB
cd $BUILDDIR/src/plib
./autogen.sh
./configure --prefix=$BUILDDIR
make install

5. Get theSimGearsources
cd $BUILDDIR/src
setenv CVSROOT :pserver:cvs@cvs.simgear.org:
/var/cvs/SimGear-0.0 (one line)
cvs login
Enter<guest> for password

2.5. COMPILING FLIGHTGEAR UNDER MAC OS X 29

cvs -z3 checkout SimGear

6. Build Metakit
cd $BUILDDIR/src/SimGear/src-libs
tar -zxvf metakit-X.X.X-32.tar.gz
cd metakit-X.X.X/builds
../unix/configure --prefix=&BUILDDIR
--enable-static --disable-dynamic (one line)
make install

7. Build SimGear
cd $BUILDDIR/src/SimGear
./autogen.sh
./configure --prefix=$BUILDDIR
make install

8. Get theFlightGear sources
cd $BUILDDIR/src
setenv CVSROOT :pserver:cvs@cvs.flightgear.org:
/var/cvs/FlightGear-0.X (one line!)
cvs login
Enter<guest> for password
cvs -z3 checkout FlightGear

9. Build FlightGear
cd $BUILDDIR/src/FlightGear
patch -p0 < ../jsb.diff
./autogen.sh
./configure --prefix=$BUILDDIR
--with-threads --without-x (one line)
make install

10. Get the base data files (if you don’t have them already)
cd $BUILDDIR
setenv CVSROOT :pserver:cvsguest@rockfish.net:
/home/cvsroot (one line)
cvs login
Password is ”cvsguest”
cvs -z3 checkout fgfsbase

30 2. BUILDING THE PLANE

11. Move data files (if you have them already)
just make a symlink or copy data files to ”fgfsbase” in $BUILDDIR
alternatively adjust--fg-root=xxx parameter appropriately

12. Run FlightGear
cd $BUILDDIR
src/FlightGear/src/Main/fgfs

2.6 Compiling on other systems

Compiling on other UNIX systems - at least on IRIX and on Solaris, is pretty sim-
ilar to the procedure on Linux - given the presence of a working GNU C compiler.
Especially IRIX and also recent releases of Solaris come with the basic OpenGL
libraries. Unfortunately the ”glut” libraries are mostly missing and have to be in-
stalled separately (see the introductory remark to this chapter). As compilation of
the ”glut” sources is not a trivial task to everyone, you might want to use a pre-
built binary. Everything you need is a static library ”libglut.a” and an include file
”glut.h”. An easy way to make them usable is to place them into/usr/lib/ and
/usr/include/GL/ . In case you insist on building the library yourself, you
might want to have a look at FreeGLUT

http://freeglut.sourceforge.net/

which should compile with minor tweaks. Necessary patches might be found in

ftp://ftp.uni-duisburg.de/X11/OpenGL/freeglutportable.patch

Please note that you donot want to create 64 bit binaries in IRIX with GCC (even if
your CPU is a R10/12/14k) because GCC produces a broken ”fgfs” binary (in case
the compiler doesn’t stop with ”internal compiler error”). Things might look better
if Eric Hofman manages to tweak theFlightGear sources for proper compiling
with MIPSPro compiler (it’s already mostly done).

There should be a workplace for Microsoft Visual C++ (MSVC6) included in
the officialFlightGeardistribution. Macintosh users find the required CodeWarrior
files as a.bin archive at

http://icdweb.cc.purdue.edu/˜walisser/fg/.

Numerous (although outdated, at times) hints on compiling on different sys-
tems are included in the source code underdocs-mini .

http://freeglut.sourceforge.net/
ftp://ftp.uni-duisburg.de/X11/OpenGL/freeglut_portable.patch
http://icdweb.cc.purdue.edu/~walisser/fg/

2.7. INSTALLING THE BASE PACKAGE 31

2.7 Installing the base package

If you succeeded in performing the steps named above, you will have a directory
holding the executables forFlightGear. This is not yet sufficient for performing
FlightGear, though. Besides those, you will need a collection of support data files
(scenery, aircraft, sound) collected in the so-called base package. In case you com-
piled the latest official release, the accompanying base package is available from

ftp://www.flightgear.org/pub/flightgear/Shared/fgfs-base-X.X.X.tar.gz.
This package is usually quite large (around 25 MB), but must be installed for

FlightGear to run. There is no compilation required for it. Just download it to
/usr/local and install it with

tar xvfz fgfs-base-X.X.X.tar.gz .
Now you should find all theFlightGear files under/usr/local/Flightgear
in the following directory structure::

/usr/local/Flightgear
/usr/local/Flightgear/Aircraft
/usr/local/Flightgear/Aircraft-uiuc
. . .
/usr/local/Flightgear/bin
. . .
/usr/local/Flightgear/Weather .

2.8 For test pilots only: Building the CVS snapshots

It you are into adventures or feel you’re an advanced user, you can try one of the
recent bleeding edge snapshots at

http://www.flightgear.org/Downloads/.

In this case you have to get the most recent Snapshot fromSimGearat

http://www.simgear.org/downloads.html

as well. But be prepared: These are for development and may (and often do)
contain bugs.

If you are using these CVS snapshots, the base package named above will
usually not be in sync with the recent code and you have to download the most
recent developer’s version from

http://rockfish.net/fg/.

ftp://www.flightgear.org/pub/flightgear/Shared/fgfs-base-X.X.X.tar.gz
http://www.flightgear.org/Downloads/
http://www.simgear.org/downloads.html
http://rockfish.net/fg/

32 2. BUILDING THE PLANE

We suggest downloading this packagefgfs base-snap.X.X.X.tar.gz to
a temporary directory. Now, decompress it using

tar xvfz fgfs base-snap.X.X.X.tar.gz .

Finally, double-check you got the directory structure named above.

Chapter 3

Preflight: Installing FlightGear

You can skip this Section if you builtFlightGear along the lines described in the
previous Chapter. If you did not and you’re jumping in here, your first step will
consist in installing the binaries. At present, there are pre-compiled binaries avail-
able for

• Windows (any flavor),

• Macintosh OSX,

• Linux,

• SGI Irix.

3.1 Installing the binary distribution on a Windows sys-
tem

The following supposes you are on a Windows (95/98/Me/NT/2000/XP) system.
Installing the binaries is quite simple. Go to

ftp://www.flightgear.org/pub/flightgear/Win32/

and download the three filesfgfs-base-X.X.X.zip , fgfs-manual-X.X.X.zip ,
andfgfs-win32-bin-X.X.X.zip from

ftp://www.flightgear.org/pub/flightgear/Win32/

to a drive of your choice. Windows XP includes a program for unpacking *.zip
files. If you are working under an older version of Windows, we suggest getting
Winzip from

33

ftp://www.flightgear.org/pub/flightgear/Win32/
ftp://www.flightgear.org/pub/flightgear/Win32/

34 3. PREFLIGHT

http://www.winzip.com/.

For a free alternative, you may considerunzip from Info-ZIP,

http://www.info-zip.org/pub/infozip/

Extract the files named above. If you choose drivec: you should find a file
runfgfs.bat underc:/Flightgear now. Double-clicking it should invoke
the simulator.

In case of doubt about the correct directory structure, see the summary at the
end of chapter 2.

3.2 Installing the binary distribution on a Macintosh sys-
tem

If your Macintosh is running the conventional Mac OS 9 or earlier, there are ver-
sions up toFlightGear 0.7.6 available being provided courtesy Darrell Walisser).
Download the fileFlightGear_Installer_0.X.X.sit from the correspond-
ing subdirectory under

http://icdweb.cc.purdue.edu/ walisser/fg/.

This file contains the program as well as the required base package files (scenery
etc.). For unpacking, useStuffit Expander 5.0 or later.

The latest build available for Mac OS 9.x is 0.7.6, located in the same place.
The base package is part of the download for Mac OS 9.x, but not for Mac OSX.

Alternatively, if you are running Mac OS X, downloadfgfs-0.X.X.gz
from the same site named above. The Mac OS X builds are in a gzip file in the
same directory. There is a Readme file in the directory to help people identify what
to download.

Mac OS X requires that you first download the base package. Then extract it
with
tar -zxvf fgfs-base-X.X.X.tar.gz
gunzip fgfs-X.X.X.-date.gz
Note that there is norunfgfs script for Mac OS X yet.

3.3 Installing the binary distribution on a Debian Linux
system

Download the fileflightgear_0.7.6-6_i386.deb (being provided cour-
tesy Ove Kaaven) from any of the Debian mirror sites listed at

http://www.winzip.com/
http://icdweb.cc.purdue.edu/~walisser/fg/

3.4. INSTALLING THE BINARY DISTRIBUTION ON A SGI IRIX SYSTEM35

http://packages.debian.org/unstable/games/flightgear.html.

Like any Debian package, this can be installed via

dpkg --install flightgear_0.7.6-6_i386.deb .

After installation, you will find the directory/usr/local/Flightgear con-
taining the scriptrunfgfs to start the program.

3.4 Installing the binary distribution on a SGI IRIX sys-
tem

If there are binaries available for SGI IRIX systems, download all the required files
(being provided courtesy Erik Hofman) from

http://www.a1.nl/ ehofman/fgfs/

and install them. Now you can startFlightGear via running the script
/opt/bin/fgfs .

3.5 Installing add-on scenery

There are two complete sets of scenery files with worldwide coverage available,
now, being based on different source data. One data set was created by Curt Olson
and can be downloaded via a clickable map from

http://www.flightgear.org/Downloads/world-scenery.html

Moreover, Curt provides the complete set of US Scenery on CD-ROM for those
who really would like to fly over all of the USA. For more detail, check the remarks
on the downloads page above.

An alternative data set was produced by William Riley and is available from

http://www.randdtechnologies.com/fgfs/newScenery/world-scenery.html

again using a .
While the first data set is based on the USGS data, the second one is based on

the so-called VMap0 data set. While there may be more differences to discover, the
first one has much better coast lines, while the latter sports world-wide coverage of
streets, rivers, lakes, and more. Scenery provided in the base package is based on
the second data set (though covering a small area around San Francisco, only).

Installation of both data sets is identical. You have to unpack them under
/Flightgear/Scenery . Do not de-compress the numbered scenery files like
958402.gz! This will be done byFlightGear on the fly.

http://packages.debian.org/unstable/games/flightgear.html
http://www.a1.nl/~ehofman/fgfs/
http://www.flightgear.org/Downloads/world-scenery.html
http://www.randdtechnologies.com/fgfs/newScenery/world-scenery.html

36 3. PREFLIGHT

As an example, consider installation of the scenery package w120n30 contain-
ing the Grand Canyon Scenery.

After having installed the base package, you should have ended up with the
following directory structure:

/usr/local/FlightGear/Scenery
/usr/local/FlightGear/w130n30
/usr/local/FlightGear/w130n30/w122n37
/usr/local/FlightGear/Scenery/w130n30/w123n37

with the directories w122n37 and w123n37m, resp. containing numerous *.gz files.
Installation of the Grand Canyon scenery adds to this the directories

/usr/local/FlightGear/w120n30/w112n30
/usr/local/FlightGear/w120n30/w112n31
...
/usr/local/FlightGear/w120n30/w120n39 .

You can exploit the--fg-scenery= pathcommand line option, if you want
to install different scenery sets in parallel or want to have scenery sitting in another
place.

3.6 Installing documentation

Most of the packages named above include the completeFlightGear documenta-
tion including a .pdf version of thisInstallation and Getting StartedGuide intended
for pretty printing using Adobe’s Acrobat Reader being available from

http://www.adobe.com/acrobat

Moreover, if properly installed, the .html version can be accessed viaFlightGear’s
help menu entry.

Besides, the source code contains a directorydocs-mini containing numer-
ous ideas on and solutions to special problems. This is also a good place for further
reading.

http://www.adobe.com/acrobat

Part II

Flying with FlightGear

37

Chapter 4

Takeoff: How to start the
program

4.1 Launching the simulator under Unix/Linux

Under Linux (or any other flavor of Unix),FlightGear will be invoked by

runfgfs --option1 --option2... ,

where the options will be described in Section 4.4 below.
If something strange happens while using this shell script, if you want to do

some debugging (i.e. using ”strace”) or if you just feel nice to be ”keen”, then
you can startFlightGear directly by executing the ”fgfs” binary. In this case you
should at least add one variable to your environment, which is needed to locate
the (mostly) shared library built from the sources of theSimGearpackage. Please
add the respective directory to yourLD_LIBRARY_PATH. You can do so with the
following on Bourne shell (compatibles):

LD_LIBRARY_PATH=/usr/local/FlightGear/lib:$LD_LIBRARY_PATH
export LD_LIBRARY_PATH/

or on C shell (compatibles):

setenv LD_LIBRARY_PATH
/usr/local/FlightGear/lib:$LD_LIBRARY_PATH

Besides this (used by the dynamic linker) ”fgfs” knows about the following envi-
ronment variable:

FG_ROOT: root directory for theFlightGear base package,
which corresponds to the--fg-root= pathoption as described in Sec. 4.4.1

38

4.2. LAUNCHING THE SIMULATOR UNDER WINDOWS 39

4.2 Launching the simulator under Windows

For launchingFlightGear from Windows explorer, change to the directory/FlightGear
and double-click the filerunfgfs.bat . You can also pass command line options
from Sec. 4 to the batch file (if running it form a Command shell). However, you
have to enclose them in double quotes in this case as follows:

runfgfs.bat ’’--aircraft=4a-yasim’’ ’’--airport-id=KLAX’’ .

Fig. 3: Ready for takeoff. Waiting at the default startup position at San Francisco
Itl., KSFO.

Alternatively, if for one or the other reason the batch file above does not work
or is missing, you can open a command shell, change to the directory where your
binary resides (typically something likec:/FlightGear/bin where you might
have to substitutec: in favor of yourFlightGear directory), set the environment
variable via (note the backslashes!)

SET FGROOT=c:\FlightGear \

40 4. TAKEOFF

and invokeFlightGear (within the same Command shell, as environment settings
are only valid locally within the same shell) via

fgfs --option1 --option2... .

Of course, you can create your ownrunfgfs.bat with WindowsEditor
using the two lines above.

For getting maximum performance it is recommended to minimize (iconize)
the text output window while runningFlightGear.

4.3 Launching the simulator under Mac OS X

Say, you downloaded the base package and binary to your home directory. Then
you can openTerminal.app and execute the following sequence:

setenv FG ROOT /fgfs-base-X.X.X ./fgfs-X.X.X.-date
--option1 -- option 2 (one line)

or

./fgfs-X.X.X-version-date --fg-root= /̃fgfs-base-X.X.X
--option1 --option2 . (one line)

4.4 Command line parameters

Following is a complete list and short description of the numerous command line
options available forFlightGear. If you are runningFlightGear under Windows
you can include these intorunfgfs.bat .

However, in case of options you want to re-use continually it is recommended
to include them into a file called.fgfsrc under Unix systems andsystem.fgfsrc ,
resp. under Windows. This file has to be in the topFlightGear directory (for in-
stance /usr/local/Flightgear). As it depends on your preferences, it is not delivered
with FlightGear, but can be created with any text editor (notepad, emacs, vi, if you
like).

4.4.1 General Options

• --help : Shows the most relevant command line options only.

• --help -verbose : Shows all command line options.

• --fg-root= path: Tells FlightGear where to look for its root data files if
you didn’t compile it with the default settings.

4.4. COMMAND LINE PARAMETERS 41

• --fg-scenery= path: Allows specification of a path to the base scenery
path , in case scenery is not at the default position under
$FG ROOT/Scenery ; this might be especially useful in case you have
scenery on a CD-ROM.

• --disable-game-mode : Disables full screen display.

• --enable-game-mode : Enables full screen display.

• --disable-splash-screen : Turns off the rotating 3DFX logo when
the accelerator board gets initialized (3DFX only).

• --enable-splash-screen : If you like advertising, set this!

• --disable-intro-music : No audio sample is being played whenFlight-
Gearstarts up. Suggested in case of trouble with playing the intro.

• --enable-intro-music : If your machine is powerful enough, enjoy
this setting.

• --disable-mouse-pointer : Disables extra mouse pointer.

• --enable-mouse-pointer : Enables extra mouse pointer. Useful in
full screen mode for old Voodoo based cards.

• --enable-random-objects : Include random scenery objects (build-
ings/trees). This is the default.

• --disable-random-objects : Exclude random scenery objects (build-
ings/trees).

• --disable-freeze : This will put you intoFlightGear with the engine
running, ready for Take-Off.

• --enable-freeze : StartsFlightGear in frozen state.

• --disable-fuel-freeze : Fuel is consumed normally.

• --enable-fuel-freeze : Fuel tank quantity is forced to remain con-
stant.

• --disable-clock-freeze : Time of day advances normally.

• --enable-clock-freeze : Do not advance time of day.

42 4. TAKEOFF

• --control-mode : Specify your control device (joystick, keyboard, mouse)
Defaults to joystick (yoke).

• --disable-auto-coordination : Switches auto coordination between
aileron/rudder off (default).

• --enable-auto-coordination : Switches auto coordination between
aileron/rudder on (recommended without pedals).

• --browser-app=/path/to/app : specify location of your web browser.
Example:--browser-app=
’’C: \Programme \Internet Explorer \iexplore.exe’’ (Note
the ” ” because of the broken word Internet Explorer!).

• --prop:name=value: set propertyname to value
Example:--prop:/engines/engine0/running=true for starting
with running engines. Another example:
--aircraft=c172
--prop:/consumables/fuels/tank[0]/level-gal=10
--prop:/consumables/fuels/tank[1]/level-gal=10
filles the Cessna for a short flight.

• --config=path: Load additional properties from the given path. Exam-
ple: runfgfs --config=./Aircraft/X15-set.xml

• --units-feed : Use feet for distances.

• --units-meters : Use meters for distances.

4.4.2 Features

• --disable-hud : Switches off the HUD (HeadUp Display).

• --enable-hud : Turns the HUD on.

• --enable-anti-aliased-hud : Turns on anti-aliaseded HUD lines
for better quality, if hardware supports this.

• --disable-anti-aliased-hud : Turns off anti-aliaseded HUD lines.

• --enable-panel : Turns the instrument panel on (default).

• --disable-panel : Turns the instrument panel off.

• --disable-sound : Self explaining.

• --enable-sound : See above.

4.4. COMMAND LINE PARAMETERS 43

4.4.3 Aircraft

• --aircraft= name of aircraft definition fileExample:--aircraft=c310 .
For possible choices check the directory/FlightGear/Aircraft . Do
not include the extension’’-set.xml’’ into the aircraft name but use
the remaining beginning of the respective file names for choosing an air-
craft. This way flight model, panel etc. are all loaded in a consistent way.
For a full list, see Sec. 4.6 below.

• --show-aircraft : Print a list of the currently available aircraft types.

4.4.4 Flight model

• --fdm= abcdSelect the core flight model. Options arejsb, larcsim,
yasim, magic, balloon, external, ada, null . Default value
is jsb (JSBSim). larcsim is the flight model whichFlightGear inherited
from the LaRCSim simulator. yasim is Any Ross’ Yet Another Flight Dy-
namics Simulator. Magic is a slew mode (which drives the UFO aircraft).
Balloon is a hot air balloon. External refers to remote control of the simula-
tor. Null selects no flight dynamics model at all. The UIUC flight model is
not chosen this way but via the next option! For further information on flight
models cf. Section 1.4 and below.

• --aero= abcd Specifies the aircraft model to load. Default is a Cessna
c172. Alternatives available depend on the flight model chosen.

• --model-hz= n Run the Flight Dynamics Model with this rate (iterations
per second).

• --speed= n Run the Flight Dynamics Model this much faster than real
time.

• --notrim Do NOT attempt to trim the model when initializing JSBSim.

• --on-ground : Start up at ground level (default).

• --in-air : Start up in the air. Naturally, you have to specify an initial
altitude as below for this to make sense. This is a must for the X15.

• --wind= DIR@SPEED: Specify wind coming from the direction DIR (in
degrees) at speed SPEED (knots). Values may be specified as a range by
using a clon separator; e.g. 180:220@10:15

• --random-wind : Adds random wind to make flying more incentive

44 4. TAKEOFF

4.4.5 Initial Position and Orientation

• --airport-id= ABCD: If you want to start directly at an airport, enter its
international code, i.e. KJFK for JFK airport in New York etc. A long/short
list of the IDs of the airports being implemented can be found in/Flight
Gear/Airports . You only have to unpack one of the files withgunzip .
Keep in mind, you need the terrain data for the relevant region, though!

• --offset-distance= nm: Here you can specify the distance to thresh-
old in nm.

• --offset-azimuth= deg: Here you can specify the heading to threshold
in degrees.

• --lon= degrees: This is the startup longitude in degrees (west = -).

• --lat= degrees: This is the startup latitude in degrees (south = -).

• --altitude= feet: This is useful if you want to start in free flight in
connection with--in-air . Altitude specified in feet unless you choose
--units-meters .

• --heading= degrees: Sets the initial heading (yaw angle) in degrees.

• --roll= degrees: Sets the startup roll angle (roll angle) in degrees.

• --pitch= degrees: Sets the startup pitch angle (pitch angle) in degrees.

• --uBody= feet per second: Speed along the body X axis in feet per second,
unless you choose--units-meters .

• --vBody= feet per second: Speed along the body Y axis in feet per second,
unless you choose--units-meters .

• --wBody= feet per second: Speed along the body Z axis in feet per second,
unless you choose--units-meters .

• --vc= knots: Allows specifying the initial airspeed in knots (only in con-
nection with--fdm=jsb).

• --mach= num: Allows specifying the initial airspeed as Mach number (only
in connection with--fdm=jsb).

• --glideslope= degrees: Allows specifying the flight path angle (can be
positive).

• --roc= fpm: Allows specifying the initial climb rate (can be negative).

4.4. COMMAND LINE PARAMETERS 45

4.4.6 Rendering Options

• --bpp= depth: Specify the bits per pixel.

• --fog-disable : To cut down the rendering efforts, distant regions are
vanishing in fog by default. If you disable fogging, you’ll see farther but
your frame rates will drop.

• --fog-fastest : The scenery will not look very nice but frame rate will
increase.

• --fog-nicest : This option will give you a fairly realistic view of flying
on a hazy day.

• --enable-clouds : Enable cloud layer (default).

• --disable-clouds : Disable cloud layer.

• --fov= degrees: Sets the field of view in degrees. Default is 55.0.

• --disable-fullscreen : Disable full screen mode (default).

• --enable-fullscreen : Enable full screen mode.

• --shading-flat : This is the fastest mode but the terrain will look ugly!
This option might help if your video processor is really slow.

• --shading-smooth : This is the recommended (and default) setting -
things will look really nice.

• --disable-skyblend : No fogging or haze, sky will be displayed using
just one color. Fast but ugly!

• --enable-skyblend : Fogging/haze is enabled, sky and terrain look re-
alistic. This is the default and recommended setting.

• --disable-textures : Terrain details will be disabled. Looks ugly, but
might help if your video board is slow.

• --enable-textures : Default and recommended.

• --enable-wireframe : If you want to know how the world ofFlight-
Gear looks like internally, try this!

• --disable-wireframe : No wireframe. Default.

46 4. TAKEOFF

• --geometry= WWWxHHH: Defines the size of the window used, i.e.WWWxHHH
can be640x480 , 800x600 , or 1024x768 .

• --view-offset= xxx: Allows setting the default forward view direction
as an offset from straight ahead. Possible values areLEFT, RIGHT, CENTER,
or a specific number of degrees. Useful for multi-window display.

• --visibility= meters: You can specify the initial visibility in meters
here.

• --visibility-miles= miles: You can specify the initial visibility in
miles here.

4.4.7 HUD Options

• --hud-tris : HUD displays the number of triangles rendered.

• --hud-culled : HUD displays percentage of triangles culled.

4.4.8 Time Options

• --time-offset= [+-]hh:mm:ss: Offset local time by this amount.

• --time-match-real : Synchronize real-world andFlightGear time.

• --time-match-local : Synchronize local real-world andFlightGear
time.

• --start-date-sys= yyyy:mm:dd:hh:mm:ss: Specify a starting time and
date. Uses your system time.

• --start-date-gmt= yyyy:mm:dd:hh:mm:ss: Specify a starting time and
date. Time is Greenwich Mean Time.

• --start-date-lat= yyyy:mm:dd:hh:mm:ss: Specify a starting time and
date. Uses local aircraft time.

4.4.9 Network Options

• --httpd= port: Enable http server on the specified port.

• --telnet= port: Enable telnet server on the specified port.

• --jpg-httpd= port: Enable screen shot http server on the specified port.

4.4. COMMAND LINE PARAMETERS 47

• --enable-network-olk : Enables Oliver Delises’s multi-pilot mode.

• --disable-network-olk : Disables Oliver Delises’s multi-pilot mode
(default).

• --net-hud : HUD displays network info.

• --net-id= name: Specify your own callsign

4.4.10 Route/Waypoint Options

• --wp= ID[@alt] : Allows specifying a waypoint for the GC autopilot; it is
possible to specify multiple waypoints (i.e. a route) via multiple instances of
this command.

• --flight-plan= [file] : This is more comfortable if you have several
waypoints. You can specify a file to read them from.

Note: These options are rather geared to the advanced user who knows what
he is doing.

4.4.11 IO Options

• --garmin= params: Open connection using the Garmin GPS protocol.

• --joyclient= params: Open connection to an Agwagon joystick.

• --native-ctrls= params: Open connection using the FG native Con-
trols protocol.

• --native-fdm= params: Open connection using the FG Native FDM pro-
tocol.

• --native= params: Open connection using the FG Native protocol.

• --nmea= params: Open connection using the NMEA protocol.

• --opengc= params: Open connection using the OpenGC protocol.

• --props= params: Open connection using the interactive property man-
ager.

• --pve= params: Open connection using the PVE protocol.

48 4. TAKEOFF

• --ray= params: Open connection using the RayWoodworth motion chair
protocol.

• --rul= params: Open connection using the RUL protocol.

• --atc610x : Enable atc610x interface.

4.4.12 Debugging options

• --trace-read= params: Trace the reads for a property; multiple instances
are allowed.

• --trace-write= params: Trace the writes for a property; multiple in-
stances are allowed.

4.5 Joystick support

Could you imagine a pilot in his or her Cessna controlling the machine with a key-
board alone? For getting the proper feeling of flight you will need a joystick/yoke
plus rudder pedals, right? However, the combination of numerous types of joy-
sticks, flightsticks, yokes, pedals etc. on the market with the several target operat-
ing systems, makes joystick support a nontrivial task inFlightGear.

Beginning with version 0.8.0,FlightGear has a reworked integrated joystick
support, which automatically detects any joystick, yoke, or pedals attached. Just
try it! If this does work for you, lean back and be happy!

Unfortunately, given the several combinations of operating systems supported
by FlightGear (possibly in foreign languages) and joysticks available, chances are
your joystick does not work out of the box. Basically, there are two alternative
approaches to get it going, with the first one being preferred.

4.5.1 Built-in joystick support

General remarks

In order for joystick auto-detection to work, a joystick bindings xml file must exist
for each joystick. This file describes what axes and buttons are to be used to control
which functions inFlightGear. The associations between functions and axes or
buttons are called ”bindings”. This bindings file can have any name as long as a
corresponding entry exists in the joysticks description file

/FlightGear/joysticks.xml

4.5. JOYSTICK SUPPORT 49

which tellsFlightGear where to look for all the bindings files. We will look at
examples later.

FlightGear includes several such bindings files for several joystick manufac-
turers in folders named for each manufacturer. For example, if you have a CH
Products joystick, look in the folder

/FlightGear/Input/Joysticks/CH

for a file that might work for your joystick. If such a file exists and your joystick
is working with other applications, then it should work withFlightGear the first
time you run it. If such a file does not exist, then we will discuss in a later section
how to create such a file by cutting and pasting bindings from the examples that
are included withFlightGear.

Verifying your joystick is working

Does your computer see your joystick? One way to answer this question under
Linux is to reboot your system and immediately enter on the command line

dmesg | grep Joystick

which pipes the boot message to grep which then prints every line in the boot mes-
sage that contains the string ”Joystick”. When you do this with a Saitek joystick
attached, you will see a line similar to this one:

input0: USB HID v1.00 Joystick [SAITEK CYBORG 3D USB] on
usb2:3.0

This line tells us that a joystick has identified itself as SAITEK CYBORG 3D USB
to the operating system. It does not tell us that the joystick driver sees your joystick.
If you are working under Windows, the method above does not work, but you can
still go on with the next paragraph.

Confirming that the driver recognizes your joystick

FlightGearships with a utility called jsdemo. It will report the number of joysticks
attached to a system, their respective ”names”, and their capabilities. Under Linux,
you can run jsdemo from the folder/FlightGear/bin as follows:

$ cd /usr/local/FlightGear/bin
$./js demo

Under Windows, open a command shell (Start|All Programs|Accessories), go to
theFlightGear binary folder and start the program as follows (givenFlightGear is
installed underc: \Flightgear)

50 4. TAKEOFF

cd \FlightGear \bin
js demo.exe

On our system, the first few lines of output are (stop the program with ˆ C if it
is quickly scrolling past your window!) as follows:

Joystick test program .

Joystick 0: ’’CH PRODUCTS CH FLIGHT SIM YOKE USB ’’

Joystick 1: ’’CH PRODUCTS CH PRO PEDALS USB ’’

Joystick 2 not detected

Joystick 3 not detected

Joystick 4 not detected

Joystick 5 not detected

Joystick 6 not detected

Joystick 7 not detected

+--------------------JS.0----------------------+--------------------JS.1----------------------+

| Btns Ax:0 Ax:1 Ax:2 Ax:3 Ax:4 Ax:5 Ax:6 | Btns Ax:0 Ax:1 Ax:2 |

+--+--+

| 0000 +0.0 +0.0 +1.0 -1.0 -1.0 +0.0 +0.0 . | 0000 -1.0 -1.0 -1.0 |

First note that jsdemo reports which number is assigned to each joystick recog-
nized by the driver. Also, note that the ”name” each joystick reports is also in-
cluded between quotes. We will need the names for each bindings file when we
begin writing the binding xml files for each joystick.

Identifying the numbering of axes and buttons

Axis and button numbers can be identified using jsdemo as follows. By observing
the output of jsdemo while working your joystick axes and buttons you can deter-
mine what axis and button numbers are assigned to each joystick axis and button.
It should be noted that numbering generally starts with zero.

The buttons are handled internally as a binary number in which bit 0 (the least
significant bit) represents button 0, bit 1 represents button 1, etc., but this number
is displayed on the screen in hexadecimal notation, so:

0001⇒ button 0 pressed
0002⇒ button 1 pressed
0004⇒ button 2 pressed
0008⇒ button 3 pressed
0010⇒ button 4 pressed
0020⇒ button 5 pressed
0040⇒ button 6 pressed

4.5. JOYSTICK SUPPORT 51

... etc. up to ...
8000⇒ button 15 pressed
... and ...
0014⇒ buttons 2 and 4 pressed simultaneously
... etc.

For Linux users, there is another option for identifying the ”name” and the
numbers assigned to each axis and button. Most Linux distributions include a very
handy program, ”jstest”. With a CH Product Yoke plugged into the system, the
following output lines are displayed by jstest:

jstest /dev/js3

Joystick (CH PRODUCTS CH FLIGHT SIM YOKE USB) has 7 axes and 12 buttons. Driver version is 2.1.0

Testing...(interrupt to exit)

Axes: 0: 0 1: 0 2: 0 3: 0 4: 0 5: 0 6: 0 Buttons: 0:off 1:off 2:off 3:on 4:off 5:off 6:off 7:off

8:off 9:off 10:off 11:off

Note the ”name” between parentheses. This is the name the system associates with
your joystick.

When you move any control, the numbers change after the axis number corre-
sponding to that moving control and when you depress any button, the ”off” after
the button number corresponding to the button pressed changes to ”on”. In this
way, you can quickly write down the axes numbers and button numbers for each
function without messing with binary.

Writing or editing joystick binding xml files

At this point, you have confirmed that the operating system and the joystick driver
both recognize your joystick(s). You also know of several ways to identify the
joystick ”name” your joystick reports to the driver and operating system. You will
need a written list of what control functions you wish to have assigned to which
axis and button and the corresponding numbers.

Make the following table from what you learned from jsdemo or jstest above
(pencil and paper is fine). Here we assume there are 5 axes including 2 axes asso-
ciated with the hat.

52 4. TAKEOFF

Axis Button
elevator = 0 view cycle = 0
rudder = 1 all brakes = 1
aileron = 2 up trim = 2
throttle = 3 down trim = 3

leftright hat = 4 extend flaps = 4
foreaft hat = 5 retract flaps = 5

decrease RPM = 6
increase RPM = 7

We will assume that our hypothetical joystick supplies the ”name” QUICK
STICK 3D USB to the system and driver. With all the examples included with
FlightGear, the easiest way to get a so far unsupported joystick to be auto detected,
is to edit an existing binding xml file. Look at the xml files in the sub-folders of
/FlightGear/Input/Joysticks/ . After evaluating at several of the xml
binding files supplied withFlightGear, we decide to edit the file
/FlightGear/Input/Joysticks/Saitek/Cyborg-Gold-3d-USB.xml .
This file has all the axes functions above assigned to axes and all the button func-
tions above assigned to buttons. This makes our editing almost trivial.

Before we begin to edit, we need to choose a name for our bindings xml file,
create the folder for the QS joysticks, and copy the original xml file into this direc-
tory with this name.

$ cd /usr/local/FlightGear/Input/Joysticks
$ mkdir QS
$ cd QS
$ cp /usr/local/FlightGear/Input/Joysticks/Saitek/
Cyborg-Gold-3d-USB.xml QuickStick.xml

Here, we obviously have supposed a Linux/UNIX system withFlightGear be-
ing installed under/usr/local/FlightGear . For a similar procedure under
Windows withFlightGear being installed underc: FlightGear , open a com-
mand shell and type

c:
cd /FlightGear/Input/Joysticks
mkdir QS
cd QS
copy /FlightGear/Input/Joysticks/Saitek/
Cyborg-Gold-3d-USB.xml QuickStick.xml

Next, openQuickStick.xml with your favorite editor. Before we forget to
change the joystick name, search for the line containing<name>. You should find

4.5. JOYSTICK SUPPORT 53

the line

<name>SAITEK CYBORG 3D USB</name >

and change it to

<name>QUICK STICK 3D USB</name >.

This line illustrates a key feature of xml statements. They begin with a<tag> and
end with a</tag>.

You can now compare your table to the comment table at the top of your file
copy. Note that the comments tell us that the Saitek elevator was assigned to axis
1. Search for the string

<axis n="1" >

and change this to

<axis n="0" >.

Next, note that the Saitek rudder was assigned to axis 2. Search for the string

<axis n="2" >
<axis n="1" >.

Continue comparing your table with the comment table for the Saitek and changing
the axis numbers and button numbers accordingly. Since QUICKSTICK USB and
the Saitek have the same number of axes but different number of buttons, you must
delete the buttons left over. Just remember to double check that you have a closing
tag for each opening tag or you will get an error using the file.

Finally, be good to yourself (and others when you submit your new binding file
to aFlightGear developers or users archive!), take the time to change the comment
table in the edited file to match your changed axis and button assignments. The new
comments should match the table you made from the jsdemo output. Save your
edits.

Telling FlightGear about your new bindings xml file

BeforeFlightGear can use your new xml file, you need to edit the file
/FlightGear/joysticks.xml ,
adding a line that will include your new file if the ”name” you entered between
the name tags matches the name supplied to the driver by your joystick. Add the
following line to joysticks.xml .

<js-named include="Input/Joysticks/QS/QuickStick.xml"/>

54 4. TAKEOFF

Some hints for Windows users

Basically, the procedures described above should work for Windows as well. If
your joystick/yoke/pedals work out of the box or if you get it to work using the
methods above, fine. Unfortunately there may be a few problems.

The first one concerns users of non-US Windows versions. As stated above,
you can get the name of the joystick from the program jsdemo. If you have a non-
US version of Windows and the joystick .xml files named above do not contain that
special name, just add it on top of the appropriate file in the style of

<name>Microsoft-PC-Joysticktreiber </name>

No new entry in the basejoysticks.xml file is required.
Unfortunately, there is one more loophole with Windows joystick support. In

case you have two USB devices attached (for instance a yoke plus pedals), there
may be cases, where the same driver name is reported twice. In this case, you can
get at least the yoke to work by assigning it number 0 (out of 0 and 1). For this
purpose, rotate the yoke (aileron control) and observe the output of jsdemo. If
figures in the first group of colons (for device 0) change, assignment is correct. If
figures in the second group of colons (for device 1) change, you have to make the
yoke the preferred device first. For doing so, enter the Windows ”Control panel”,
open ”Game controllers” and select the ”Advanced” button. Here you can select
the yoke as the ”Preferred” device. Afterward you can check that assignment by
running jsdemo again. The yoke should now control the first group of figures.

Unfortunately, we did not find a way to get the pedals to work, too, that way.
Thus, in cases like this one (and others) you may want to try an alternative method
of assigning joystick controls.

4.5.2 Joystick support via .fgfsrc entries

Fortunately, there is a tool available now, which takes most of the burden from the
average user who, maybe, is not that experienced with XML, the language which
these files are written in.

For configuring your joystick using this approach, open a command shell (com-
mand prompt under windows, to be found under Start—All programs—Accessories).
Change to the directory/FlightGear/bin via e.g. (modify to your path)
cd c: \FlightGear \bin

and invoke the tool fgjs via
./fgjs

on a UNIX/Linux machine, or via
fgjs

4.5. JOYSTICK SUPPORT 55

on a Windows machine. The program will tell you which joysticks, if any, were
detected. Now follow the commands given on screen, i.e. move the axis and press
the buttons as required. Be careful, a minor touch already ”counts” as a movement.
Check the reports on screen. If you feel something went wrong, just re-start the
program.

After you are done with all the axis and switches, the directory above will hold
a file calledfgfsrc.js . If the FlightGear base directoryFlightGear does
not already contain an options file.fgfsrc (under UNIX)/system.fgfsrc
(under Windows) mentioned above, just copy

fgfsrc.js into .fgfsrc (UNIX)/system.fgfsrc (Windows)

and place it into the directoryFlightGear base directoryFlightGear . In case
you already wrote an options file, just open it as well asfgfsrc.js with an
editor and copy the entries fromfgfsrc.js into .fgfsrc /system.fgfsrc .
One hint: The output offgjs is UNIX formatted. As a result, Windows Editor
may not display it the proper way. I suggest getting an editor being able to handle
UNIX files as well (and oldie but goldie in this respect is PFE, just make a web
search for it). My favorite freeware file editor for that purpose, although somewhat
dated, is still PFE, to be obtained from

http://www.lancs.ac.uk/people/cpaap/pfe/.
The the axis/button assignment offgjs should, at least, get the axis assign-

ments right, its output may need some tweaking. There may be axes moving the
opposite way they should, the dead zones may be too small etc. For instance, I had
to change

--prop:/input/joysticks/js[1]/axis[1]/binding/factor=-1.0
into
--prop:/input/joysticks/js[1]/axis[1]/binding/factor=1.0
(USB CH Flightsim Yoke under Windows XP). Thus, here is a short introduc-

tion into the assignments of joystick properties.
Basically, all axes settings are specified via lines having the following structure:

--prop:/input/joysticks/js[n]/axis[m]/binding
/command=property-scale (one line)
--prop:/input/joysticks/js[n]/axis[m]/binding
/property=/controls/ steering option(one line)
--prop:/input/joysticks/js[n]/axis[m]/binding
/dead-band= db (one line)
--prop:/input/joysticks/js[n]/axis[m]/binding
/offset= os(one line)

http://www.lancs.ac.uk/people/cpaap/pfe/

56 4. TAKEOFF

--prop:/input/joysticks/js[n]/axis[m]/binding
/factor= fa (one line)

where

n = number of device (usually starting with 0)
m = number of axis (usually starting with 0)

steering option = elevator, aileron, rudder, throttle, mixture, pitch
dead-band = range, within which signals are discarded;

useful to avoid jittering for minor yoke movements
offset = specifies, if device not centered in its neutral position
factor = controls sensitivity of that axis; defaults to +1,

with a value of -1 reversing the behavior

You should be able to at least get your joystick working along these lines.
Concerning all the finer points, for instance, getting the joystick buttons working,
John Check has written a very useful README being included in the base package
to be found underFlightGear/Docs/Readme/Joystick.html . In case
of any trouble with your input device, it is highly recommended to have a look into
this document.

4.6 A glance over our hangar

The following is a Table 1 of all the aircraft presently available for use withFlight-
Gear. In the first column, you will find the name of the aircraft, the second one
tells the start option, the third one names the FDM (flight dynamics management
model, see Sec. 1.4), and the last column includes some remarks. Here, ”no exte-
rior model” means, that there is no aircraft specific external model provided with
the base package. As a result, you will see the default blue-yellow glider, when
you change to the external view. However, you can download external views for
these models from Wolfram Kuss’ site at

http://home.t-online.de/home/Wolfram.Kuss/.

Moreover, this list is complete insofar as it covers all aircraft available via the
--aircraft= option.

http://home.t-online.de/home/Wolfram.Kuss/

4.6. A GLANCE OVER OUR HANGAR 57

Tab. 1:Presently available aircraft inFlightGear.

Aircraft type Start option FDM Remarks
Boeing 747 --aircraft=747-yasim YASim
BA A4 Hawk --aircraft=a4-yasim YASim
North American X-15 --aircraft=X15 JSBSim experimental supersonic plane
Airwave Xtreme 150 --aircraft=airwaveXtreme150-

v1-nl-uiuc UIUC hang glider!
Beech 99 --aircraft=beech99-v1-uiuc UIUC no exterior model
Cessna 172 --aircraft=c172-3d JSBSim sports a 3D cockpit
Cessna 172 --aircraft=c172-3d-yasim YASim sports a 3D cockpit
Cessna 172 --aircraft=c172-ifr JSBSim with IFR panel
Cessna 172 --aircraft=c172-larcsim LaRCsim
Cessna 172 --aircraft=c172 JSBSim default
Cessna 172 --aircraft=c172-yasim YASim
Cessna 172p --aircraft=c172p-3d JSBSim sports a 3D cockpit
Cessna 172p --aircraft=c172p JSBSim
Cessna 172 --aircraft=c172x JSBSim flight dynamics testbed
Cessna 182 --aircraft=c182 JSBSim
Cessna 310 --aircraft=c310 JSBSim
Cessna 310 --aircraft=c310-yasim YASim twin-prop machine
Cessna 310U3A --aircraft=c310u3a-3d JSBSim twin-prop machine, 3D cockpit
Cessna 310U3A --aircraft=c310u3a JSBSim twin-prop machine
Douglas DC-3 --aircraft=dc3-yasim YASim
BA Harrier --aircraft=harrier-yasim YASim no exterior model
Piper Cub J3 Trainer --aircraft=j3cub-yasim YASim
Siai Marchetti S.211 --aircraft=marchetti-v1-uiuc UIUC no exterior model
Space Shuttle --aircraft=shuttle JSBSim no exterior model
UFO --aircraft=ufo JSBSim ’White Project’ (UNESCO)
1903 Wright Flyer --aircraft=wrightFlyer1903-

v1-nl-uiuc UIUC historical model
X-24B --aircraft=x24b JSBSim USAF/NACA reentry testbed
Cessna 172 --aircraft=c172-610x JSBSim full screen, hi-res panel (IFR)
UFO --aircraft=ufo Magic Carpet UFO

58 4. TAKEOFF

Chapter 5

In-flight: All about instruments,
keystrokes and menus

The following is a description of the main systems for controlling the program
and piloting the plane: Historically, keyboard controls were developed first, and
you can still control most of the simulator via the keyboard alone. Later on, they
were supplemented by several menu entries, making the interface more accessible,
particularly for beginners, and providing additional functionality.

For getting a real feeling of flight, you should definitely consider getting a
joystick or – preferred – a yoke plus rudder pedals. In any case, you can specify
your device of choice for control via the--control-mode option, i.e. select
joystick, keyboard, mouse. The default setting is joystick. Concerning instruments,
there are again two alternatives: You can use the panel or the HUD.

A short leaflet based on this chapter can be found at

http://www.flightgear.org/Docs/InstallGuide/FGShortRef.html.

A version of this leaflet can also be opened viaFlightGear’s help menu.

5.1 Starting the engine

Depending on your situation, when you start the simulator the engines may be on
or off. When they are on you just can go on with the start. When they are off, you
have to start them first. The ignition switch for starting the engine is situated in the
lower left corner of the panel. It is shown in Fig. 4.

59

http://www.flightgear.org/Docs/InstallGuide/FGShortRef.html

60 5. FLIGHT

Fig. 4: The ignition switch.

It has five positions: ”OFF”, ”L”, ”R”, ”BOTH”, and ”START”. The extreme
right position is for starting the engine. For starting the engine, put it onto the
position ”BOTH” using the mouse first.

Keep in mind that the mixture lever has to be at 100 % (all the way in) for
starting the engine – otherwise you will fail. In addition, advance the throttle to
about 25 %.

Operate the starter using the SPACE key now. When pressing the SPACE key
you will observe the ignition switch to change to the position ”START” and the
engine to start after a few seconds. Afterwards you can bring the throttle back to
idle (all the way out).

In addition, have a look if the parking brakes are on (red field lit). If so, press
the ”B” button to release them.

5.2 Keyboard controls

While joysticks or yokes are supported as are rudder pedals, you can flyFlightGear
using the keyboard alone. For proper control of the plane during flight via the
keyboard (i) theNumLock key must be switched on (ii) theFlightGear window
must have focus (if not, click with the mouse onto the graphics window). Several
of the keyboard controls might be helpful even in case you use a joystick or yoke.

After activatingNumLock the following main keyboard controls for driving
the plane should work:

5.2. KEYBOARD CONTROLS 61

Tab. 2: Main keyboard controls forFlightGear on the numeric keypad with acti-
vatedNumLock key:.

Key Action
9/3 Throttle
4/6 Aileron
8/2 Elevator
0/, Rudder
5 Center aileron/elevator/rudder
7/1 Elevator trim

For changing views you have to de-activateNumLock. NowShift + <Numeric
Keypad Key > changes the view as follows:

Tab. 3: View directions accessible after de-activatingNumLock on the numeric
keypad.

Numeric Key View direction
Shift-8 Forward
Shift-7 Left/forward
Shift-4 Left
Shift-1 Left/back
Shift-2 Back
Shift-3 Right/back
Shift-6 Right
Shift-9 Right/forward

Besides, there are several more options for adapting display on screen:

62 5. FLIGHT

Tab. 4:Display options

Key Action
P Toggle instrument panel on/off
c Toggle3D/2D cockpit (if both are available)
s Cycle panel style full/mini
Shift-F5/F6 Shift the panel in y direction
Shift-F7/F8 Shift the panel in x direction
Shift-F3 Read a panel from a property list
i/I Minimize/maximize HUD
h/H Change color of HUD/toggle HUD off

forward/backward
x/X Zoom in/out
v Cycle view modes (pilot, chase, tower)
W Toggle full screen mode on/off (3dfx only)
z/Z Change visibility (fog) forward/backward
F8 Toggle fog on/off
F2 Refresh Scenery tile cache
F4 Force Lighting update
F9 Toggle texturing on/off
F10 Toggle menu on/off

The autopilot is controlled via the following keys:

Tab. 5:Autopilot and related controls.

Key Action
Ctrl + A Altitude hold toggle on/off
Ctrl + G Follow glide slope 1 toggle on/off
Ctrl + H Heading hold toggle on/off
Ctrl + N Follow NAV 1 radial toggle on/off
Ctrl + S Autothrottle toggle on/off
Ctrl + T Terrain follow toggle on/off
Ctrl + U Add 1000 ft. to your altitude (emergency)
Enter Increase autopilot heading
F6 Toggle autopilot target:

current heading/waypoint
F11 Autopilot altitude dialog
F12 Autopilot heading dialog

Ctrl + T is especially interesting as it makes your little Cessna behave like a cruise
missile. Ctrl + U might be handy in case you feel you’re just about to crash.

5.2. KEYBOARD CONTROLS 63

(Shouldn’t real planes sport such a key, too?)
In case the autopilot is enabled, some of the numeric keypad keys get a special

meaning:
Tab. 6:Special action of keys, if autopilot is enabled.

Key Action
8 / 2 Altitude adjust
0 / , Heading adjust
9 / 3 Autothrottle adjust

There are several keys for starting and controlling the engine :
Tab. 7:Engine control keys

Key Action
SPACE Fire starter on selected engine(s)
! Select 1st engine
@ Select 2nd engine
Select 3rd engine
$ Select 4th engine
{ Decrease Magneto on Selected Engine
} Increase Magneto on Selected Engine
∼ Select all Engines

Beside these basic keys there are miscellaneous keys for special actions; some
of these you’ll probably not want to try during your first flight:

64 5. FLIGHT

Tab. 8:Miscellaneous keyboard controls.

Key Action
B Toggle parking brake on/off
b Apply/release all brakes
g Toggle landing gear down
, Left gear brake (useful for differential braking)
. Right gear brake (useful for differential braking)
l Toggle tail-wheel lock)
]/[Extend/Retract flaps
p Toggle pause on/off
a/A Speed up/slow down (time acceleration)
t/T Time speed up/slow down
m/M Change time offset (warp) used by t/T forward/backward
Shift-F2 Save current flight tofgfs.sav
Shift-F1 Restore flight fromfgfs.sav
F3 Save screen shot underfgfs-screen.ppm
Shift-F4 Re-read global preferences frompreferences.xml
Shift-F10 Toggle data logging of FDM on/off
ESC Exit program

Note: If you have difficulty processing the screenshotfgfs-screen.ppm on a
windows machine, just recall that simply pressing the ”Print” key copies the screen
to the clipboard, from which you can paste it into any graphics program.

Finally: Starting fromFlightGear 0.7.7 these key bindings are no longer hard
coded, but user-adjustable. You can check and change these setting via the file
keyboard.xml to be found in the mainFlightGear directory. This is a human
readable plain ASCII file. Although it’s perhaps not the best idea for beginners to
start just with modifying this file, more advanced users will find it useful to change
key bindings according to what they like (or, perhaps, know from other simulators).

5.3 Menu entries

By default, the menu is disabled after starting the simulator (you don’t see a menu
in a real plane, do you?). You can turn it on either using the toggle F10 or just by
moving the mouse pointer to the top left corner of the display. In case you want
the menu to disappear just hit F10 again or move the mouse to the bottom of the
screen.

At present, the menu provides the following functions.

• File

5.3. MENU ENTRIES 65

– Load flight Loads the current flight, by default fromfgfs.sav .

– Save flightSaves the current flight, by default tofgfs.sav .

– ResetResets you to the selected starting position. Comes handy in case
you got lost or something went wrong.

– Hires Snap ShotSaves a high resolution Screen Shot under
fgfs-screen-XXX.ppm .

– Snap ShotSaves a normal resolution Screen Shot under
fgfs-screen-XXX.ppm .

– Print Prints screen shot (Linux only).

– Exit Exits the program.

• View

– PropertiesProvides access to numerous properties managed viaFlight-
Gear’s property manager. This is actually a quite powerful tool allow-
ing to set all the values in the property tree. Obviously, this is a good
place to crash the program by entering a ”bad” value.

– HUD Alpha Toggles antialiasing of HUD lines on/off.

– Pilot Offset Allows setting a different viewpoint (useful for R/C fly-
ing).

– Toggle PanelToggles instrument panel on/off.

• Environment

– Goto Airport Enter the airport ID. For details on how to get the IDs
see Section 4.4.5.

• Autopilot

– Set HeadingSets heading manually.

– Set Altitude Sets altitude manually.

– Add Waypoint Adds waypoint to waypoint list.

– Skip Current Waypoint Self explaining.

– Clear RouteClears current route.

– Adjust AP SettingsAllows input of several autopilot parameters.

– Toggle HUD format Toggles figures of latitude/longitude in HUD.

• Network (supposes compile option--with-network-olk)

66 5. FLIGHT

– Unregister for FGD Unregister fromFlightGear Daemon.

– Register for FGDRegister forFlightGear Daemon.

– Scan for DaemonsScan for daemons on the net.

– Enter Callsign Enter your call sign.

– Toggle DisplayToggle call sign etc. on/off.

• Help

– Help Opens your browser and displays an overview on several help
options (including links to this Guide as well as to the FAQ).

5.4 The Instrument Panel

The Cessna instrument panel is activated by default when you startFlightGear, but
can be de-activated by pressing the ”P” key. While a complete description of all
the functions of the instrument panel of a Cessna is beyond the scope of this guide,
we will at least try to outline the main flight instruments or gauges.

All panel levers and knobs can be operated with the mouse To change a control,
just click with the left/middle mouse button on the corresponding knob/lever.

Let us start with the most important instruments any simulator pilot must know.
In the center of the instrument panel (Fig. 5), in the upper row, you will find the
artificial horizon (attitude indicator) displaying pitch and bank of your plane. It has
pitch marks as well as bank marks at 10, 20, 30, 60, and 90 degrees.

Left to the artificial horizon, you’ll see the airspeed indicator. Not only does it
provide a speed indication in knots but also several arcs showing characteristic ve-
locity rages you have to consider. At first, there is a green arc indicating the normal
operating range of speed with the flaps fully retracted. The white arc indicates the
range of speed with flaps in action. The yellow arc shows a range, which should
only be used in smooth air. The upper end of it has a red radial indicating the speed
you must never exceeded - at least as long as you won’t brake your plane.

Below the airspeed indicator you can find the turn indicator. The airplane in
the middle indicates the roll of your plane. If the left or right wing of the plane is
aligned with one of the marks, this would indicate a standard turn, i.e. a turn of
360 degrees in exactly two minutes.

Below the plane, still in the turn indicator, is the inclinometer. It indicates
if rudder and ailerons are coordinated. During turns, you always have to operate
aileron and rudder in such a way that the ball in the tube remains centered; other-
wise the plane is skidding. A simple rule says: ”Step onto the ball”, i.e. step onto
the left rudder pedal in case the ball is on the l.h.s.

5.4. THE INSTRUMENT PANEL 67

Fig. 5: The panel.

If you don’t have pedals or lack the experience to handle the proper ratio
between aileron/rudder automatically, you can startFlightGear with the option
--enable-auto-coordination .

To the r.h.s of the artificial horizon you will find the altimeter showing the
height above sea level (not ground!) in hundreds of feet. Below the altimeter is the
vertical speed indicator indicating the rate of climbing or sinking of your plane in
hundreds of feet per minute. While you may find it more convenient to use then the
altimeter in cases, keep in mind that its display usually has a certain lag in time.

Further below the vertical speed indicator is the RPM (rotations per minute)
indicator, which displays the rotations per minute in 100 RPMs. The green arc
marks the optimum region for long-time flight.

The group of the main instruments further includes the gyro compass being
situated below the artificial horizon. Besides this one, there is a magnetic compass
sitting on top of the panel.

Four of these gauges being arranged in the from of a ”T” are of special impor-
tance: The air speed indicator, the artificial horizon, the altimeter, and the compass
should be scanned regularly during flight.

68 5. FLIGHT

Besides these, there are several supplementary instruments. To the very left you
will find the clock, obviously being an important tool for instance for determining
turn rates.Below the clock there are several smaller gauges displaying the technical
state of your engine. Certainly the most important of them is the fuel indicator - as
any pilot should know.

The ignition switch is situated in the lower left corner of the panel (cf. Fig. 4).
It has five positions: ”OFF”, ”L”, ”R”, ”BOTH”, and ”START”. The first one is
obvious. ”L” and ”R” do not refer to two engines (actually the Cessna does only
have one) but to two magnetos being present for safety purposes. The two switch
positions can be used for test puposes during preflight. During normal flight the
switch should point on ”BOTH”. The extreme right position is for using a battery-
powered starter (to be operated with the SPACE key in flight gear).

Like in most flight simulators, you actually get a bit more than in a real plane.
The red field directly below the gyro compass displays the state of the brakes, i.e.,
it is lit in case of the brakes being engaged. The instruments below indicate the
position of youryoke. This serves as kind of a compensation for the missing forces
you feel while pushing a real yoke. Three of the arrows correspond to the three axes
of your yoke/pedal controlling nose up/down, bank left/right, rudder left/right, and
throttle. (Keep in mind: They donot reflect the actual position of the plane!) The
left vertical arrow indicates elevator trim.

The right hand side of the panel is occupied by the radio stack. Here you find
two VOR receivers (NAV), an NDB receiver (ADF) and two communication radios
(COMM1/2) as well as the autopilot.

The communication radio is used for communication with air traffic facil-
ities; it is just a usual radio transceiver working in a special frequency range.
The frequency is displayed in the ”COMM” field. Usually there are two COM
transceivers; this way you can dial in the frequency of the next controller to con-
tact while still being in contact with the previous one.

The COM radio can be used to display ATIS messages as well. For this pur-
pose, just to dial in the ATIS frequency of the relevant airport.

The VOR (Very High Frequency Omni-Directional Range) receiver is used
for course guidance during flight. The frequency of the sender is displayed in
the ”NAV” field. In a sense, a VOR acts similarly to a light house permitting to
display the position of the aircraft on a radial around the sender. It transmits one
omni-directional ray of radio waves plus a second ray, the phase of which differs
from the first one depending on its direction (which may be envisaged as kind of a
”rotating” signal). The phase difference between the two signals allows evaluating
the angle of the aircraft on a 360 degrees circle around the VOR sender, the so-
called radial. This radial is then displayed on the gauges NAV1 and NAV2, resp.,
left to frequency field. This way it should be clear that the VOR display, while

5.4. THE INSTRUMENT PANEL 69

indicating the position of the aircraft relative to the VOR sender, does not say
anything about the orientation of the plane.

Below the two COM/NAV devices is an NDB receiver called ADF (automatic
direction finder). Again there is a field displaying the frequency of the facility. The
ADF can be used for navigation, too, but contrary to the VOR does not show the
position of the plane in a radial relative to the sender but the direct heading from the
aircraft to the sender. This is displayed on the gauge below the two NAV gauges.

Above the COMM1 display you will see three LEDs in the colors blue, amber,
and white indicating the outer, middle, and, inner, resp. marker beacon. These
show the distance to the runway threshold during landing. They to not require the
input of a frequency.

Below the radios you will find the autopilot. It has five keys for WL = ”Wing-
Leveler”, ”HDG” = ”Heading”, NAV, APR = ”Glide-Slope”, and ALT = ”Altitude”.
These keys when engaged hold the corresponding property.

You can change the numbers for the radios using the mouse. For this pur-
pose, click left/right to the circular knob below the corresponding number. The
corresponding switch left to this knob can be used for toggling between the ac-
tive/standby frequency.

A detailed description of the workings of these instruments and their use for
navigation lies beyond this Guide; if you are interested in this exciting topic, we
suggest consulting a book on instrument flight (simulation). Besides, this would
be material for a yet to be writtenFlightGear Flight School.

It should be noted, that you can neglect these radio instruments as long as
you are strictly flying according to VFR (visual flight rules). For those wanting
to do IFR (instrument flight rules) flights, it should be mentioned thatFlightGear
includes a huge database of navaids worldwide.

Finally, you find the throttle, mixture, and flap control in the lower right of the
panel (recall, flaps can be set via[and] or just using the mouse).

As with the keyboard, the panel can be re-configured using configuration files.
As these have to be plane specific, they can be found under the directory of the
corresponding plane. As an example, the configuration file for the default Cessna
C172 can be found atFlightGear/Aircraft/c172/Panels asc172-panel.xml .
The accompanying documentation for customizing it (i.e. shifting, replacing etc.
gauges and more) is contained in the fileREADME.xmlpanel written by John
Check, to be found in the source code in the directorydocs-mini .

Since version 0.8.0,FlightGear has a 3D cockpit including a 3D cockpit as an
alternative to the 2D panel mentioned above (see Fig. 6). This one can be activated
using the option--aircraft=c172-3d . Its functionality is the same as that
of the 2D panel mentioned above, but it gives a much more realistic view, while
instruments may be better readable in the 2D cockpit.

70 5. FLIGHT

Fig. 6: The 3D cockpit of the Cessna 172.

5.5 The Head Up Display

At current, there are two options for reading off the main flight parameters of the
plane: One is the instrument panel already mentioned, while the other one is the
HUD (HeadUp Display) . Neither are HUDs used in usual general aviation planes
nor in civilian ones. Rather they belong to the equipment of modern military jets.
However, some might find it easier to fly using the HUD even with general aviation
aircraft. Several Cessna pilots might actually love to have one, but technology is
simply too expensive for implementing HUDs in general aviation aircraft. Besides,
the HUD displays several useful figures characterizing simulator performance, not
to be read off from the panel.

The HUD shown in Fig. 7 displays all main flight parameters of the plane. In
the center you find the pitch indicator (in degrees) with the aileron indicator above
and the rudder indicator below. A corresponding scale for the elevation can be
found to the left of the pitch scale. On the bottom there is a simple turn indicator.

There are two scales at the extreme left: The inner one displays the speed (in
kts) while the outer one indicates position of the throttle. The Cessna 172 takes off

5.6. MOUSE CONTROLLED ACTIONS 71

at around 55 kts. The two scales on the extreme r.h.s display your height, i. e. the
left one shows the height above ground while the right of it gives that above zero,
both being displayed in feet.

Besides this, the HUD delivers some additions information. On the upper left
you will find date and time. Besides, latitude and longitude, resp., of your current
position are shown on top.

You can change color of theHUD using the ”H” or ”h” key. Pressing the toggle
”i/I” minimizes/maximizes the HUD.

Fig. 7: The HUD, or Head Up Display.

5.6 Mouse controlled actions

Besides just clicking the menues, your mouse has got certain valuable functions in
FlightGear.

There are three mouse modes. In the normal mode (pointer cursor) panel’s
controls can be operated with the mouse. To change a control, click with the
left/middle mouse button on the corresponding knob/lever. While the left mouse
button leads to small increments/decrements, the middle one makes greater ones.

72 5. FLIGHT

Clicking on the left hand side of the knob/lever decreases the value, while clicking
on the right hand side increases it.

Right clicking the mouse activates the simulator control mode (cross hair cur-
sor). This allows control of aileron/elevator via the mouse in absence of a joy-
stick/yoke (enable--enable-auto-coordination in this case). If you have
a joystick you certainly will not make use of this mode

Right clicking the mouse another time activates the view control mode (arrow
cursor). This allows changing direction of view, i.e. pan and tilt the view, via the
mouse.

Right clicking the mouse once more resets it into the initial state.
If you are looking for some interesting places to discover withFlightGear

(which may or may not require downloading additional scenery) you may want to
check

http://www.flightgear.org/Places/.

There is now a menu entry for entering directly the airport code of the airport you
want to start from.

Finally, if you’re done and are about to leave the plane, just hit the ESC key or
use the corresponding menu entry to exit the program. It is not suggested to simply
”kill” the simulator by clicking the text window.

5.7 Some further reading for student pilots

In view of that fact that there is not yet aFlightGear specific flight course, here are
some useful hints to texts for those who want to learn piloting a plane.

First, there is an excellent tutorial written by David Megginson – being one of
the main developers ofFlightGear – on flying a basic airport circuit specifically
usingFlightGear. This document includes a lot of screen shots, numerical material
etc., and is available from

http://www.flightgear.org/Docs/Tutorials/circuit.

Anyone new (and not so new) toFlightGear is highly recommended to try this as
a start!

Moreover, there are several more tutorials being notFlightGear specific, but
nonetheless helpful as well. First, a quite comprehensive manual of this type is
the Aeronautical Information Manual, published by the FAA, and being online
available at

http://www.faa.gov/ATPubs/AIM/.

http://www.flightgear.org/Places/
http://www.flightgear.org/Docs/Tutorials/circuit
http://www.faa.gov/ATPubs/AIM/

5.7. SOME FURTHER READING FOR STUDENT PILOTS 73

This is the Official Guide to Basic Flight Information and ATC Procedures by the
FAA. It contains a lot of information on flight rules, flight safety, navigation, and
more. If you find this a bit too hard reading, you may prefer the FAA Training
Book,

http://avstop.com/AC/FlightTraingHandbook/,

which covers all aspects of flight, beginning with the theory of flight and the work-
ing of airplanes, via procedures like takeoff and landing up to emergency situations.
This is an ideal reading for those who want to learn some basics on flight but don’t
(yet) want to spend bucks on getting a costly paper pilot’s handbook.

While the handbook mentioned above is an excellent introduction on VFR (vi-
sual flight rules), it does not include flying according to IFR (instrument flight
rules). However, an excellent introduction into navigation and flight according to
Instrument Flight Rules written by Charles Wood can be found at

http://www.navfltsm.addr.com/.
Another comprehensive but yet readable text is John Denker’s ”See how it

flies”, available at

http://www.monmouth.com/ jsd/how/htm/title.html.

This is a real online text book, beginning with Bernoulli’s principle, drag and
power, and the like, with the later chapters covering even advanced aspects of VFR
as well as IFR flying

http://avstop.com/AC/FlightTraingHandbook/
http://www.navfltsm.addr.com/
http://www.monmouth.com/~jsd/how/htm/title.html

Part III

Appendices

74

Appendix A

Missed approach: If anything
refuses to work

In the following section, we tried to sort some problems according to operating
system, but if you encounter a problem, it may be a wise idea to look beyond
”your” operating system – just in case. If you are experiencing problems, we would
strongly advise you to first check the FAQ maintained by Cameron Moore at

http://www.flightgear.org/Docs/FlightGear-FAQ.html.

Moreover, the source code contains a directorydocs-mini containing nu-
merous ideas on and solutions to special problems. This is also a good place to go
for further reading.

A.1 FlightGear Problem Reports

The best place to look for help is generally the mailing lists, specifically the[Flightgear-
User] mailing list. If you happen to be running a CVS version ofFlightGear, you
may want to subscribe to the[Flightgear-Devel] list. Instructions for subscription
can be found at

http://www.flightgear.org/mail.html.

It’s often the case that someone has already dealt with the issue you’re dealing
with, so it may be worth your time to search the mailing list archives at

http://www.mail-archive.com/flightgear-users%40flightgear.org/
http://www.mail-archive.com/flightgear-devel%40flightgear.org/.

There are numerous developers and users reading the lists, so questions are gener-
ally answered. However, messages of the type

75

http://www.flightgear.org/Docs/FlightGear-FAQ.html
http://www.flightgear.org/mail.html

76 A. MISSED APPROACH

FlightGear does not compile on my system. What shall I do?
are hard to answer without any further detail given, aren’t they? Here are some
things to consider including in your message when you report a problem:

• Operating system:(Linux Redhat 7.0. . . /Windows 98SE. . .)

• Computer: (Pentium III, 1GHz. . .)

• Graphics board/chip: (Diamond Viper 770/NVIDIA RIVA TNT2. . .)

• Compiler/version: (Cygnus version 1.0. . .)

• Versions of relevant libraries: (PLIB 1.2.0, Mesa 3.0. . .)

• Type of problem: (Linker dies with message. . .)

• Steps to recreate the problem:Start at KSFO, turn off brakes . . .

For getting a trace of the output whichFlightGear produces, then following
command may come in handy (may need to be modified on some OSs or may not
work on others at all, though):

%FG ROOT/BIN/fgfs >log.txt 2>&1

One final remark: Please avoid posting binaries to these lists! List subscribers
are widely distributed, and some users have low bandwidth and/or metered connec-
tions. Large messages may be rejected by the mailing list administrator. Thanks.

A.2 General problems

• FlightGear runs SOOO slow.
If FlightGear says it’s running with something like 1 fps (frame per second)
or below you typically don’t have working hardware OpenGL support. There
may be several reasons for this. First, there may be no OpenGL hardware
drivers available for older cards. In this case it is highly recommended to get
a new board.

Second, check if your drivers are properly installed. Several cards need addi-
tional OpenGL support drivers besides the ”native” windows ones. For more
detail check Appendix B.

• Eitherconfigure or make dies with not foundPLIB headers or libraries.
Make sure you have the latest version ofPLIB (> version 1.2) compiled and

A.3. POTENTIAL PROBLEMS UNDER LINUX 77

installed. Its headers likepu.h have to be under/usr/include/plib
and its libraries, likelibplibpu.a should be under/lib . Double check
there are no strayPLIB headers/libraries sitting elsewhere!

Besides check careful the error messages ofconfigure . In several cases
it says what is missing.

A.3 Potential problems under Linux

Since we don’t have access to all possible flavors of Linux distributions, here are
some thoughts on possible causes of problems. (This Section includes contribu-
tions by Kai Troester.)

• Wrong library versions
This is a rather common cause of grief especially when you prefer to install
the libraries needed byFlightGear by hand. Be sure that especially the
Mesa library contains support for the 3DFX board and that GLIDE libraries
are installed and can be found. If aldd ‘which fgfs‘ complains about
missing libraries you are in trouble.

You should also be sure toalways keep thelatest version ofPLIB on your
system. Lots of people have failed miserably to compileFlightGear just
because of an outdated plib.

• Missing permissions
In case you are using XFree86 before release 4.0 theFlightGear binary may
need to be setuid root in order to be capable of accessing some accelerator
boards (or a special kernel module as described earlier in this document)
based on 3DFX chips. So you can either issue a

chown root.root /usr/local/bin/fgfs ;
chmod 4755 /usr/local/bin/fgfs

to give theFlightGear binary the proper rights or install the 3DFX module.
The latter is the ”clean” solution and strongly recommended!

• Non-default install options
FlightGear will display a lot of diagnostics while starting up. If it com-
plains about bad looking or missing files, check that you installed them in
the way they are supposed to be installed (i.e. with the latest version and in
the proper location). The canonical locationFlightGear wants its data files
under/usr/local/lib . Be sure to grab the latest versions of everything
that might be needed!

78 A. MISSED APPROACH

• Compile problems in general
Make sure you have the latest (official) version of gcc. Old versions of gcc
are a frequent source of trouble! On the other hand, some versions of the
RedHat 7.0 reportedly have certain problems compilingFlightGear as they
include a preliminary version of GCC.

• Problems with linking
There may be several reasons; however in case you get a message like

libmk4.so.0 : cannot open shared object file

the reason is a missing library package called Metakit. This is provided with
SimGearin packed form. On its installation, see Sec. 2.3.2.

A.4 Potential problems under Windows

• The executable refuses to run.
You may have tried to start the executable directly either by double-clicking
fgfs.exe in Windows Explorer or by invoking it within a MS-DOS shell.
Double-clicking via Explorer does never work (unless you set the environ-
ment variableFG ROOTin autoexec.bat or otherwise). Rather double-
click runfgfs.bat . For more details, check Chapter 4.

Another cause of grief might be that you did not download the most recent
versions of the base package files required byFlightGear, or you did not
download any of them at all. Have a close look at this, as the scenery/texture
format is still under development and may change frequently. For more de-
tails, check Chapter 3.

Next, if you run into trouble at runtime, do not use windows utilities for
unpacking the.tar.gz . If you did, try it in the Cygnus shell withtar
xvfz instead.

• FlightGear ignores the command line parameters.
There is a problem with passing command line options containing a ”=” to
windows batch files. Instead, include the options intorunfgfs.bat .

• I am unable to buildFlightGear under MSVC/MS DevStudio.
By default,FlightGear is build with GNU GCC. The Win32 port of GNU
GCC is known as Cygwin. For hints on Makefiles required for MSVC for
MSC DevStudio have a look into

ftp://www.flightgear.org/pub/flightgear/Source/.

ftp://www.flightgear.org/pub/flightgear/Source/

A.4. POTENTIAL PROBLEMS UNDER WINDOWS 79

In principle, it should be possible to compileFlightGear with the project
files provided with the source code.

• Compilation ofFlightGear dies.
There may be several reasons for this, including true bugs. However, before
trying to do anything else or report a problem, make sure you have the latest
version of theCygwincompiler, as described in Section 2. In case of doubt,
startsetup.exe anew and download and install the most recent versions
of bundles as they possibly may have changed.

Appendix B

Some words on OpenGL graphics
drivers

FlightGear’s graphics engine is based on a graphics library called OpenGL. Its pri-
mary advantage is its platform independence, i. e., programs written with OpenGL
support can be compiled and executed on several platforms, given the proper drivers
having been installed in advance. Thus, independent of if you want to run the bina-
ries only or if you want to compile the program yourself you must have some sort
of OpenGL support installed for your video card.

A good review on OpenGL drivers can be found at

http://www.flightgear.org/Hardware.

Specific information is collected for windows at

http://www.x-plane.com/SYSREQ/v5ibm.html

and for Macintosh at

http://www.x-plane.com/SYSREQ/v5mac.html.

An excellent place to look for documentation about Linux and 3-D accelerators is
theLinux Quake HOWTOat

http://www.linuxquake.com.

This should be your first aid in case something goes wrong with your Linux 3-D
setup.

Unfortunately, there are so many graphics boards, chips and drivers out there
that we are unable to provide a complete description for all systems. Given the
present market dominance of NVIDIA combined with the fact that their chips
have indeed been proven powerful for runningFlightGear, we will concentrate
on NVIDIA drivers in what follows.

80

http://www.flightgear.org/Hardware
http://www.x-plane.com/SYSREQ/v5ibm.html
http://www.x-plane.com/SYSREQ/v5mac.html
http://www.linuxquake.com

B.1. NVIDIA CHIP BASED CARDS UNDER LINUX 81

B.1 NVIDIA chip based cards under Linux

Recent Linux distributions include and install anything needed to run OpenGL
programs under Linux. Usually there is no need to install anything else.

If for whatever reason this does not work, you may try to download the most
recent drivers from the NVIDIA site at

http://www.nvidia.com/Products/Drivers.nsf/Linux.html

At present, this page has drivers for all NVIDIA chips for the following Linux dis-
tributions: RedHat 7.1, Redhat 7.0, Redhat 6.2, Redhat 6.1, Mandrake 7.1, Man-
drake 7.2, SuSE 7.1, SuSE 7.0 in several formats (.rpm, .tar.gz). These drivers
support OpenGL natively and do not need any additional stuff.

The page named above contains a detailedREADME and Installation
Guide giving a step-by-step description, making it unnecessary to copy the mate-
rial here.

B.2 NVIDIA chip based cards under Windows

Again, you may first try the drivers coming with your graphics card. Usually they
should include OpenGL support. If for whatever reason the maker of your board
did not include this feature into the driver, you should install the Detonator refer-
ence drivers made by NVIDIA (which might be a good idea anyway). These are
available in three different versions (Windows 95/98/ME, Windows 2000, Win-
dows NT) from

http://www.nvidia.com/products.nsf/htmlmedia/detonator3.html

Just read carefully the Release notes to be found on that page. Notably do not
forget to uninstall your present driver and install a standard VGA graphics adapter
before switching to the new NVIDIA drivers first.

B.3 3DFX chip based cards under Windows

With the Glide drivers no longer provided by 3DFX there seems to be little chance
to get it running (except to find older OpenGL drivers somewhere on the net or
privately). All pages which formerly provided official support or instructions for
3DFX are gone now. For an alternative, you may want to check the next section,
though.

http://www.nvidia.com/Products/Drivers.nsf/Linux.html
http://www.nvidia.com/products.nsf/htmlmedia/detonator3.html

82 B. GETTING THE ENGINE

B.4 An alternative approach for Windows users

There is now an attempt to build a program which detects the graphics chip on your
board and automatically installs the appropriate OpenGL drivers. This is called
OpenGL Setup and is presently in beta stage. It’s home page can be found at

http://www.glsetup.com/.

We did not try this ourselves, but would suggest it for those completely lost.

B.5 3DFX chip based cards under Linux

Notably, with 3DFX now having been taken over by NVIDIA, manufacturer’s sup-
port already has disappeared. However with XFree86-4.x (with x at least being
greater than 1) Voodoo3 cards are known to be pretty usable in 16 bit color mode.
Newer cards should work fine as well. If you are still running a version of Xfree86
3.X and run into problems, consider an upgrade. The recent distributions by De-
bian or SuSE have been reported to work well.

B.6 ATI chip based cards under Linux

There is support for ATI chips in XFree86-4.1 and greater. Lots of AGP boards
based on the Rage128 chip - from simple Rage128 board to ATI Xpert2000 - are
mostly usable for FlightGear. Since XFree86-4.1 you can use early Radeon chips
- up to Radeon7500 with XFree86-4.2.

B.7 Building your own OpenGL support under Linux

Setting up proper OpenGL support with a recent Linux distribution should be pretty
simple. As an example SuSE ships everything you need plus some small shell
scripts to adjust the missing bits automagically. If you just want to execute pre-
built binaries of FlightGear, then you’re done by using the suppliedFlightGear
package plus the mandantory runtime libraries (and kernel modules). The package
manager will tell you which ones to choose.

In case you want to run a self-made kernel, you want to compileFlightGear
yourself, you’re tweaking your X server configuration file yourself or you even run
a homebrewed Linux ”distribution” (this means, you want to compile everything
yourself), this chapter might be useful for you.

Now let’s have a look at the parts that build OpenGL support on Linux. First
there’s a Linux kernel with support for your graphics adapter.

http://www.glsetup.com/

B.7. BUILDING YOUR OWN OPENGL SUPPORT UNDER LINUX 83

Examples on which graphics hardware is supported natively by Open Source
drivers are provided on

http://dri.sourceforge.net/status.phtml.

There are a few graphics chip families that are not directly or no more than
partly supported by XFree86, the X window implementation on Linux, because
vendors don’t like to provide programming information on their chips. In these
cases - notably IBM/DIAMOND/now: ATI FireGL graphics boards and NVIDIA
GeForce based cards - you depend on the manufacturers will to follow the on-
going development of the XFree86 graphics display infrastructure. These boards
might prove to deliver impressing performance but in many cases - considering the
CPU’s speed you find in today’s PC’s - you have many choices which all lead to
respectable performance ofFlightGear.

As long as you use a distribution provided kernel, you can expect to find all
necessary kernel modules at the appropriate location. If you compile the kernel
yourself, then you have to take care of two sub-menus in the kernel configuration
menu. You’ll find them in the ”Character devices” menu. Please notice that AGP
support is not compulsory for hardware accelerated OpenGL support on Linux.
This also works quite fine with some PCI cards (3dfx Voodoo3 PCI for example,
in case you still own one). Although every modern PC graphics card utilizes the
AGP ’bus’ for fast data transfer.

Besides ”AGP Support” for your chipset - you might want to ask your main-
board manual which one is on - you definitely want to activate ”Direct Rendering
Manager” for your graphics board. Please note that recent releases of XFree86 -
namely 4.1.0 and higher might not be supported by the DRI included in older Linux
kernels. Also newer 2.4.x kernels from 2.4.8 up to 2.4.17 do not support DRI in
XFree86-4.0.x.

After building and installing your kernel modules and the kernel itself this task
might be completed by loading the ’agpgart’ module manually or, in case you
linked it into the kernel, by a reboot in purpose to get the new kernel up and run-
ning. While booting your kernel on an AGP capable mainboard you may expect
boot messages like this one:

> Linux agpgart interface v0.99 (c) Jeff Hartmann
> gpgart: Maximum main memory to use for agp memory: 439M
> agpgart: Detected Via Apollo Pro chipset
> agpgart: AGP aperture is 64M @ 0xe4000000

If you don’t encounter such messages on Linux kernel boot, then you might
have missed the right chip set. Part one of activation hardware accelerated OpenGL
support on your Linux system is now completed.

http://dri.sourceforge.net/status.phtml

84 B. GETTING THE ENGINE

The second part consists of configuring your X server for OpenGL. This is not
a big deal as it simply consists of to instructions to load the appropriate mod-
ules on startup of the X server. This is done by editing the configuration file
/etc/X11/XF86Config . Today’s Linux distributions are supposed to provide
a tool that does this job for you on your demand. Please make sure there are these
two instructions:

Load ’’glx’’
Load ’’dri’’

in the ”Module” section your X server configuration file. If everything is right the
X server will take care of loading the appropriate Linux kernel module for DRI
support of your graphics card. The right Linux kernel module name is determined
by the ’Driver’ statement in the ”Device” section of the XF86Config. Please see
three samples on how such a ”Device” section should look like:

Section ’’Device’’
BoardName ’’3dfx Voodoo3 PCI’’
BusID ’’0:8:0’’
Driver ’’tdfx’’
Identifier ’’Device[0]’’
Screen 0
VendorName ’’3Dfx’’

EndSection

Section ’’Device’’
BoardName ’’ATI Xpert2000 AGP’’
BusID ’’1:0:0’’
Driver ’’ati’’
Option ’’AGPMode’’ ’’1’’
Identifier ’’Device[0]’’
Screen 0
VendorName ’’ATI’’

EndSection

Section ’’Device’’
BoardName ’’ATI Radeon 32 MB DDR AGP’’
BusID ’’1:0:0’’
Driver ’’radeon’’
Option ’’AGPMode’’ ’’4’’
Identifier ’’Device[0]’’
Screen 0
VendorName ’’ATI’’

B.7. BUILDING YOUR OWN OPENGL SUPPORT UNDER LINUX 85

EndSection

By using the Option ”AGPMode” you can tune AGP performance as long as
the mainboard and the graphics card permit. The BusID on AGP systems should
always be set to ”1:0:0” - because you only have one AGP slot on your board -
whereas the PCI BusID differs with the slot your graphics card has been applied
to. ’lspci’ might be your friend in desperate situations. Also a look at the end of
/var/log/XFree86.0.log, which should be written on X server startup, should point
to the PCI slot where your card resides.

This has been the second part of installing hardware accelerated OpenGL sup-
port on your Linux box.

The third part carries two subparts: First there are the OpenGL runtime li-
braries, sufficient to run existing appliactions. For compiling FlightGear you also
need the suiting developmental headers. As compiling the whole X window system
is not subject to this abstract we expect that your distribution ships the necessary
libraries and headers. In case you told your package manager to install some sort
of OpenGL support you are supposed to find some OpenGL test utilities, at least
there should be ’glxinfo’ or ’gl-info’.

These command-line utilities are useful to say if the previous steps where suc-
cessfull. If they refuse to start, then your package manager missed something
because he should have known that these utilities usually depend on the existence
of OpenGL runtime libraries. If they start, then you’re one step ahead. Now watch
the output of this tool and and have a look at the line that starts with

OpenGL renderer string:
If you find something like

OpenGL renderer string: FireGL2 / FireGL3 (Pentium3)

or

OpenGL renderer string: Mesa DRI Voodoo3 20000224

or

OpenGL renderer string: Mesa DRI Radeon 20010402
AGP 4x x86

OpenGL renderer string: Mesa GLX Indirect

mind the word ’Indirect’, then it’s you who missed something, because OpenGL
gets dealt with in a software library running solely on your CPU. In this case you
might want to have a closer look at the preceding paragraphs of this chapter. Now
please make sure all necessary libraries are at their proper location. You will need

86 B. GETTING THE ENGINE

three OpenGL libraries for runningFlightGear. In most cases you will find them
in /usr/lib/:

/usr/lib/libGL.so.1
/usr/lib/libGLU.so.1
/usr/lib/libglut.so.3
These may be the libraries itself or symlinks to appropriate libraries located

in some other directories. Depending on the distribution you use these libraries
might be shipped in different packages. SuSE for example ships libGL in pack-
age ’xf86glx’, libGLU in ’xf86glu’ and libglut in ’mesaglut’. Additionally for
FlightGear you need libplib which is part of the ’plib’ package.

For compilingFlightGear yourself - as already mentioned - you need the ap-
propriate header files which often reside in /usr/include/GL/. Two are necessary
for libGL and they come in - no, not ’xf86glx-devel’ (o.k., they do but they do not
work correctly) but in ’mesa-devel’:

/usr/include/GL/gl.h
/usr/include/GL/glx.h

One comes with libGLU in ’xf86glu-devel’:

/usr/include/GL/glu.h

and one with libglut in ’mesaglut-devel’

/usr/include/GL/glut.h

The ’plib’ package comes with some more libraries and headers that are too
many to be mentioned here. If all this is present and you have a comfortable com-
piler environment, then you are ready to compileFlightGear and enjoy the result.

Further information on OpenGL issues of specific XFree86 releases is available
here:

http://www.xfree86.org/<RELEASE NUMBER>/DRI.html

Additional reading on DRI:

http://www.precisioninsight.com/piinsights.html

In case you are missing some ’spare parts’:

http://dri.sourceforge.net/res.phtml

B.8 OpenGL on Macintosh

OpenGL is pre-installed on Mac OS 9.x and later. You may find a newer version
than the one installed for Mac OS 9.x at

http://www.precisioninsight.com/piinsights.html
http://dri.sourceforge.net/res.phtml

B.8. OPENGL ON MACINTOSH 87

http://www.apple.com/opengl

You should receive the updates automatically for Mac OSX.
One final word: We would recommend that you test your OpenGL support with
one of the programs that accompany the drivers, to be absolutely confident that it
is functioning well. There are also many little programs, often available as screen
savers, that can be used for testing. It is important that you are confident in your
graphics acceleration becauseFlightGearwill try to run the card as fast as possible.
If your drivers aren’t working well, or are unstable, you will have difficulty tracking
down the source of any problems and have a frustrating time.

http://www.apple.com/opengl

Appendix C

Landing: Some further thoughts
before leaving the plane

C.1 A Sketch on the History ofFlightGear

History may be a boring subject. However, from time to time there are people
asking for the history ofFlightGear. As a result, we’ll give a short outline.

TheFlightGear project goes back to a discussion among a group of net citizens
in 1996 resulting in a proposal written by David Murr who, unfortunately, dropped
out of the project (as well as the net) later. The original proposal is still available
from theFlightGear web site and can be found under

http://www.flightgear.org/proposal-3.0.1.

Although the names of the people and several of the details have changed over
time, the spirit of that proposal has clearly been retained up to the present time.

Actual coding started in the summer of 1996 and by the end of that year es-
sential graphics routines were completed. At that time, programming was mainly
performed and coordinated by Eric Korpela from Berkeley University. Early code
ran under Linux as well as under DOS, OS/2, Windows 95/NT, and Sun-OS. This
was found to be quite an ambitious project as it involved, among other things, writ-
ing all the graphics routines in a system-independent way entirely from scratch.

Development slowed and finally stopped in the beginning of 1997 when Eric
was completing his thesis. At this point, the project seemed to be dead and traffic
on the mailing list went down to nearly nothing.

It was Curt Olson from the University of Minnesota who re-launched the project
in the middle of 1997. His idea was as simple as it was powerful: Why invent the
wheel a second time? There have been several free flight simulators available run-

88

http://www.flightgear.org/proposal-3.0.1

C.1. A SKETCH ON THE HISTORY OF FLIGHTGEAR 89

ning on workstations under different flavors of UNIX. One of these, LaRCsim (de-
veloped by Bruce Jackson from NASA), seemed to be well suited to the approach.
Curt took this one apart and re-wrote several of the routines such as to make them
build as well as run on the intended target platforms. The key idea in doing so was
to exploit a system-independent graphics platform: OpenGL.

In addition, a clever decision on the selection of the basic scenery data was
made in the very first version.FlightGear scenery is created based on satellite data
published by the U. S. Geological Survey. These terrain data are available from

http://edc.usgs.gov/geodata/

for the U.S., and

http://edcdaac.usgs.gov/gtopo30/gtopo30.html,

resp., for other countries. Those freely accessible scenery data, in conjunction with
scenery building tools included withFlightGear, are an important feature enabling
anyone to create his or her own scenery.

This newFlightGear code - still largely being based on the original LaRCsim
code - was released in July 1997. From that moment the project gained momentum
again. Here are some milestones in the more recent development history.

C.1.1 Scenery

• Texture support was added by Curt Olson in spring 1998. This marked a
significant improvement in terms of reality. Some high-quality textures were
submitted by Eric Mitchell for theFlightGear project. Another set of high-
quality textures was added by Erik Hofman in summer 2002.

• After improving the scenery and texture support frame rate dropped down to
a point whereFlightGear became unflyable in spring 1998. This issue was
resolved by exploiting hardware OpenGL support, which became available
at that time, and implementing view frustrum culling (a rendering technique
that ignores the part of the scenery not visible in a scene), done by Curt
Olson. With respect to frame rate one should keep in mind that the code,
at present, is in no way optimized, which leaves room for further improve-
ments.

• In September 1998 Curt Olson succeeded in creating a complete terrain
model for the U.S. The scenery is available worldwide now, via a clickable
map at:

http://www.flightgear.org/Downloads/world-scenery.html.

http://edc.usgs.gov/geodata/
http://edcdaac.usgs.gov/gtopo30/gtopo30.html
http://www.flightgear.org/Downloads/world-scenery.html

90 C. LANDING

• Scenery was further improved by adding geographic features including lakes,
rivers,and coastlines later, an effort still going on. Textured runways were
added by Dave Cornish in spring 2001. Light textures add to the visual im-
pression at night. To cope with the constant growth of scenery data, a binary
scenery format was introduced in spring 2001. Runway lighting was intro-
duced by Curt Olson in spring 2001. Finally, a completely new set of scenery
files for the whole world was created by William Riley based on preparatory
documentation by David Megginson in summer 2002. This is based on a
data set called VMap0 as an alternative to the GSHHS data used so far. This
scenery is a big improvement as it has world wide coverage of main streets,
rivers, etc., while it’s downside are much less accurate coast lines.Flight-
Gear’s base scenery is based on these new scenery files since summer 2002.
The complete set is available via a clickable map, too, from

http://www.randdtechnologies.com/fgfs/newScenery/world-scenery.html.

• There was support added for static objects to the scenery in 2001, which per-
mits placing buildings, static planes, trees and so on in the scenery. However,
despite a few proofs of concept systematic inclusion of these landmarks is
still missing.

• The world is populated with random ground objects with appropriate type
and density for the local ground cover type since summer 2002. This marks
a mayor improvement of reality and is mainly thanks to work by D. Meggin-
son.

C.1.2 Aircraft

• A HUD (head up display) was added based on code provided by Michele
America and Charlie Hotchkiss in the fall of 1997 and was improved later
by Norman Vine. While not generally available for real Cessna 172, the
HUD conveniently reports the actual flight performance of the simulation
and may be of further use in military jets later.

• A rudimentary autopilot implementing heading hold was contributed by Jeff
Goeke-Smith in April 1998. It was improved by the addition of an altitude
hold and a terrain following switch in October 1998 and further developed
by Norman Vine later.

• Friedemann Reinhard developed early instrument panel code, which was
added in June 1998. Unfortunately, development of that panel slowed down

http://www.randdtechnologies.com/fgfs/newScenery/world-scenery.html

C.1. A SKETCH ON THE HISTORY OF FLIGHTGEAR 91

later. Finally, David Megginson decided to rebuild the panel code from
scratch in January 2000. This led to a rapid addition of new instruments and
features to the panel, resulting in nearly all main instruments being included
until spring 2001. A handy minipanel was added in summer 2001.

• Finally, LaRCsims Navion was replaced as the default aircraft when the
Cessna 172 was stable enough in February 2000 - as move most users will
welcome. There are now several flight model and airplane options to choose
from at runtime. Jon Berndt has invested a lot of time in a more realistic and
versatile flight model with a more powerful aircraft configuration method.
JSBSim, as it has come to be called, did replace LaRCsim as the default
flight dynamics model (FDM), and it is planned to include such features as
fuel slosh effects, turbulence, complete flight control systems, and other fea-
tures not often found all together in a flight simulator. As an alternative,
Andy Ross added another flight dynamics model calledYASim(Yet Another
Flight Dynamics Simulator) which aims at simplicity of use and is based on
fluid dynamics, by the end of 2001. This one bought us flight models for a
747, an A4, and a DC-3. Alternatively, a group around Michael Selig from
the UIUC group provided another flight model along with several planes
since around 2000.

• A fully operational radio stack and working radios were added to the panel
by Curt Olson in spring 2000. A huge database of Navaids contributed by
Robin Peel allows IFR navigation since then. There was basic ATC support
added in fall 2001 by David Luff. This is not yet fully implemented, but dis-
playing ATIS messages is already possible. A magneto switch with proper
functions was added at the end of 2001 by John Check and David Meggin-
son.. Moreover, several panels were continually improved during 2001 and
2002 by John and others.FlightGear now allows flying ILS approaches and
features a Bendix transponder.

• In 2002 functional multi-engine support found it’s way intoFlightGear. JS-
BSim is now the default FDM inFlightGear.

• Support of ”true” 3D panels became stable via contributions from John Check
and others in spring 2002. In addition, we got movable control surfaces like
propellers etc., thanks to David Megginson.

C.1.3 Environment

• The display of sun, moon and stars have been a weak point for PC flight
simulators for a long time. It is one of the great achievements ofFlightGear

92 C. LANDING

to include accurate modeling and display of sun, moon, and planets very
early. The corresponding astronomy code was implemented in fall 1997 by
Durk Talsma.

• Christian Mayer, together with Durk Talsma, contributed weather code in the
winter of 1999. This included clouds, winds, and even thunderstorms.

C.1.4 User Interface

• The foundation for a menu system was laid based on another library, the
Portable LibraryPLIB , in June 1998. After having been idle for a time, the
first working menu entries came to life in spring 1999.

PLIB underwent rapid development later. It has been distributed as a sep-
arate package by Steve Baker with a much broader range of applications in
mind, since spring 1999. It has provided the basic graphics rendering engine
for FlightGear since fall 1999.

• In 1998 there was basic audio support, i. e. an audio library and some
basic background engine sound. This was later integrated into the above-
mentioned portable library,PLIB . This same library was extended to sup-
port joystick/yoke/rudder in October 1999, again marking a huge step in
terms of realism. To adapt on different joystick, configuration options were
introduced in fall 2000. Joystick support was further improved by adding
a self detection feature based on xml joystick files, by David Megginson in
summer 2002.

• Networking/multiplayer code has been integrated by Oliver Delise and Curt
Olson starting fall 1999. This effort is aimed at enablingFlightGear to run
concurrently on several machines over a network, either an Intranet or the
Internet, coupling it to a flight planner running on a second machine, and
more. There emerged several approaches for remotely controllingFlight-
Gearover a Network during 2001. Notably there was added support for the
”Atlas” moving map program. Besides, an embedded HTTP server devel-
oped by Curt Olson late in 2001 can now act a property manager for external
programs.

• Manually changing views in a flight simulator is in a sense always ”unreal”
but nonetheless required in certain situations. A possible solution was sup-
plied by Norman Vine in the winter of 1999 by implementing code for chang-
ing views using the mouse. Alternatively, you can use a hat switch for this
purpose, today.

C.2. THOSE, WHO DID THE WORK 93

• A property manager was implemented by David Megginson in fall 2000. It
allows parsing a file called.fgfsrc under UNIX/Linux andsystem.fgfsrc
under Windows for input options. This plain ASCII file has proven useful
in submitting the growing number of input options, and notably the joystick
settings. This has shown to be a useful concept, and joystick, keyboard, and
panel settings are no longer hard coded but set using *.xml files since spring
2001 thanks to work mainly by David Megginson and John Check.

During development there were several code reorganization efforts. Various
code subsystems were moved into packages. As a result, code is organized as
follows at present:

The base of the graphics engine isOpenGL, a platform independent graphics
library. Based on OpenGL, the Portable LibraryPLIB provides basic rendering,
audio, joystick etc. routines. Based onPLIB is SimGear, which includes all of the
basic routines required for the flight simulator as well as for building scenery. On
top of SimGearthere are (i)FlightGear (the simulator itself), and (ii)TerraGear,
which comprises the scenery building tools.

This is by no means an exhaustive history and most likely some people who
have made important contributions have been left out. Besides the above-named
contributions there was a lot of work done concerning the internal structure by:
Jon S. Berndt, Oliver Delise, Christian Mayer, Curt Olson, Tony Peden, Gary R.
Van Sickle, Norman Vine, and others. A more comprehensive list of contributors
can be found in Chapter C as well as in theThanks file provided with the code.
Also, theFlightGear Website contains a detailed history worth reading of all of
the notable development milestones at

http://www.flightgear.org/News/

C.2 Those, who did the work

Did you enjoy the flight? In case you did, don’t forget those who devoted hundreds
of hours to that project. All of this work is done on a voluntary basis within spare
time, thus bare with the programmers in case something does not work the way
you want it to. Instead, sit down and write them a kind (!) mail proposing what
to change. Alternatively, you can subscribe to theFlightGear mailing lists and
contribute your thoughts there. Instructions to do so can be found at

http://www.flightgear.org/mail.html.

Essentially there are two lists, one of which being mainly for the developers and the
other one for end users. Besides, there is a very low-traffic list for announcements.

http://www.flightgear.org/News/
http://www.flightgear.org/mail.html

94 C. LANDING

The following names the people who did the job (this information was essentially
taken from the fileThanks accompanying the code).

A1 Free Sounds(techie@mail.ev1.net)
Granted permission for theFlightGear project to use some of the sound effects
from their site. Homepage under

http://www.a1freesoundeffects.com/

Raul Alonzo (amil@las.es)
Mr. Alonzo is the author of Ssystem and provided his kind permission for using the
moon texture. Parts of his code were used as a template when adding the texture.
Ssystem Homepage can be found at:

http://www1.las.es/̃amil/ssystem/.

Michele America (nomimarketing@mail.telepac.pt)
Contributed to the HUD code.

Michael Basler (pmb@epost.de)
Author of Installation and Getting Started. Flight Simulation Page at

http://www.geocities.com/pmb.geo/flusi.htm

Jon S. Berndt (jsb@hal-pc.org)
Working on a complete C++ rewrite/reimplimentation of the core FDM. Initially he
is using X15 data to test his code, but once things are all in place we should be able
to simulate arbitrary aircraft. Jon maintains a page dealing with Flight Dynamics
at:

http://jsbsim.sourceforge.net/

Special attention to X15 is paid in separate pages on this site. Besides, Jon con-
tributed via a lot of suggestions/corrections to this Guide.

Paul Bleisch(pbleisch@acm.org)
Redid the debug system so that it would be much more flexible, so it could be
easily disabled for production system, and so that messages for certain subsystems
could be selectively enabled. Also contributed a first stab at a config file/command
line parsing system.

Jim Brennan (jjb@kingmont.com)
Provided a big chunk of online space to store USA scenery forFlightGear.

Bernie Bright (bbright@bigpond.net.au)
Many C++ style, usage, and implementation improvements, STL portability and
much, much more. Added threading support and a threaded tile pager.

mailto:techie@mail.ev1.net
http://www.a1freesoundeffects.com/
mailto:amil@las.es
http://www1.las.es/~amil/ssystem/
mailto:nomimarketing@mail.telepac.pt
mailto:pmb@epost.de
http://www.geocities.com/pmb.geo/flusi.htm
mailto:jsb@hal-pc.org
http://jsbsim.sourceforge.net/
mailto:pbleisch@acm.org
mailto:jjb@kingmont.com
mailto:bbright@bigpond.net.au

C.2. THOSE, WHO DID THE WORK 95

Bernhard H. Buckel (buckel@mail.uni-wuerzburg.de)
Contributed the README.Linux. Contributed several sections to earlier versions
of Installation and Getting Started.

Gene Buckle(geneb@deltasoft.com)
A lot of work gettingFlightGear to compile with the MSVC++ compiler. Numer-
ous hints on detailed improvements.

Ralph Carmichael (ralph@pdas.com)
Support of the project. The Public Domain Aeronautical Software web site at

http://www.pdas.com/

has the PDAS CD-ROM for sale containing great programs for astronautical engi-
neers.
Didier Chauveau (chauveau@math.univ-mlv.fr)
Provided some initial code to parse the 30 arcsec DEM files found at:

http://edcwww.cr.usgs.gov/landdaac/gtopo30/gtopo30.html.

John Check(j4strngs@rockfish.net)
John maintains the base package CVS repository. He contributed cloud textures,
wrote an excellent Joystick Howto as well as a panel Howto. Moreover, he con-
tributed new instrument panel configurations.FlightGear page at

http://www.rockfish.net/fg/.

Dave Cornish(dmc@halcyon.com)
Dave created new cool runway textures plus some of our cloud textures.

Oliver Delise (delise@mail.isis.de)
Started a FAQ, Documentation, Public relations. Working on adding some networking/multi-
user code. Founder of the FlightGear MultiPilot Project at

http://www.isis.de/members/˜odelise/progs/flightgear/.

Jean-Francois Doue
Vector 2D, 3D, 4D and Matrix 3D and 4D inlined C++ classes. (Based on Graphics
Gems IV, Ed. Paul S. Heckbert)

http://www.animats.com/simpleppp/ftp/publichtml/topics/developers.html.

Dave Eberly (eberly@magic-software.com)
Contributed some sphere interpolation code used by Christian Mayer’s weather
data base system. On Dave’s web site there are tons of really useful looking code
at

http://www.magic-software.com/.

mailto:buckel@mail.uni-wuerzburg.de
mailto:geneb@deltasoft.com
mailto:ralph@pdas.com
http://www.pdas.com/
mailto:chauveau@math.univ-mlv.fr
http://edcwww.cr.usgs.gov/landdaac/gtopo30/gtopo30.html
mailto:j4strngs@rockfish.net
http://www.rockfish.net/fg/
mailto:dmc@halcyon.com
mailto:delise@mail.isis.de
http://www.isis.de/members/~odelise/progs/flightgear/
http://www.animats.com/simpleppp/ftp/public_html/topics/developers.html
mailto:eberly@magic-software.com
http://www.magic-software.com/

96 C. LANDING

Francine Evans(evans@cs.sunysb.edu) Wrote the GPL’d tri-striper we use.

http://www.cs.sunysb.edu/˜stripe/

Oscar Everitt (bigoc@premier.net)
Created single engine piston engine sounds as part of an F4U package for FS98.
They are pretty cool and Oscar was happy to contribute them to our little project.

Bruce Finney (bfinney@gte.net)
Contributed patches for MSVC5 compatibility.

Melchior Franz (a8603365@unet.univie.ac.at)
Contributed joystick hat support, a LED font, improvements of the telnet and the
http interface. Notable effort in hunting memory leaks inFlightGear, SimGear,
andJSBSim.

Jean-loup Gailly andMark Adler (zlib@gzip.org)
Authors of the zlib library. Used for on-the-fly compression and decompression
routines,

http://www.gzip.org/zlib/.

Mohit Garg (theprotean1@hotmail.com)
Contributed to the manual.

Thomas Gellekum(tg@ihf.rwth-aachen.de)
Changes and updates for compiling on FreeBSD.

Neetha Girish (neethagirish@usa.net)
Contributed the changes for the xml configurable HUD.

Jeff Goeke-Smith(jgoeke@voyager.net)
Contributed our first autopilot (Heading Hold). Better autoconf check for external
timezone/daylight variables.

Michael I. Gold (gold@puck.asd.sgi.com)
Patiently answered questions on OpenGL.

Habibe (habibie@MailandNews.com)
Made RedHat package building changes for SimGear.

Mike Hill (mikehill@flightsim.com)
For allowing us to concert and use his wonderful planes, available form

http://www.flightsimnetwork.com/mikehill/home.htm,
for FlightGear.

Erik Hofman (erik.hofman@a1.nl)
Major overhaul and parameterization of the sound module to allow aircraft-specific
sound configuration at runtime. Contributed SGI IRIX support and binaries.

mailto:evans@cs.sunysb.edu
http://www.cs.sunysb.edu/~stripe/
mailto:bigoc@premier.net
mailto:bfinney@gte.net
mailto:a8603365@unet.univie.ac.at
mailto:zlib@gzip.org
http://www.gzip.org/zlib/
mailto:theprotean_1@hotmail.com
mailto:tg@ihf.rwth-aachen.de
mailto:neethagirish@usa.net
mailto:jgoeke@voyager.net
mailto:gold@puck.asd.sgi.com
mailto:habibie@MailandNews.com
mailto:mikehill@flightsim.com
http://www.flightsimnetwork.com/mikehill/home.htm
mailto:erik.hofman@a1.nl

C.2. THOSE, WHO DID THE WORK 97

Charlie Hotchkiss (clhotch@pacbell.net)
Worked on improving and enhancing the HUD code. Lots of code style tips and
code tweaks.

Bruce Jackson(NASA) (e.b.jackson@larc.nasa.gov)

Developed the LaRCsim code under funding by NASA which we use to pro-
vide the flight model. Bruce has patiently answered many, many questions.

http://dcb.larc.nasa.gov/www/DCBStaff/ebj/ebj.html

Ove Kaaven(ovek@arcticnet.no)
Contributed the Debian binary.

Richard Kaszeta(bofh@me.umn.edu)
Contributed screen buffer to ppm screen shot routine. Also helped in the early
development of the ”altitude hold autopilot module” by teaching Curt Olson the
basics of Control Theory and helping him code and debug early versions. Curt’s
”Boss” Bob Hain (bob@me.umn.edu) also contributed to that. Further details
available at:

http://www.menet.umn.edu/˜curt/fgfs/Docs/Autopilot/AltitudeHold/AltitudeHold.html.

Rich’s Homepage is at

http://www.kaszeta.org/rich/.

Tom Knienieder (tom@knienieder.com)
Ported the audio library first to OpenBSD and IRIX and after that to Win32.

Reto Koradi (kor@mol.biol.ethz.ch)

Helped with setting up fog effects.

http://www.mol.biol.ethz.ch/wuthrich/people/kor/

Bob Kuehne(rpk@who.net)
Redid the Makefile system so it is simpler and more robust.

Kyler B Laird (laird@ecn.purdue.edu)
Contributed corrections to the manual.

David Luff (david.luff@nottingham.ac.uk)
Contributed heavily to the IO360 piston engine model.

Christian Mayer (flightgear@christianmayer.de)
Working on multi-lingual conversion tools for fgfs as a demonstration of technol-
ogy. Contributed code to read Microsoft Flight Simulator scenery textures. Chris-
tian is working on a completely new weather subsystem. Donated a hot air balloon
to the project.

mailto:clhotch@pacbell.net
mailto:e.b.jackson@larc.nasa.gov
http://dcb.larc.nasa.gov/www/DCBStaff/ebj/ebj.html
mailto:ovek@arcticnet.no
mailto:bofh@me.umn.edu
mailto:bob@me.umn.edu
http://www.menet.umn.edu/~curt/fgfs/Docs/Autopilot/AltitudeHold/AltitudeHold.html
http://www.kaszeta.org/rich/
mailto:tom@knienieder.com
mailto:kor@mol.biol.ethz.ch
http://www.mol.biol.ethz.ch/wuthrich/people/kor/
mailto:rpk@who.net
mailto:laird@ecn.purdue.edu
mailto:david.luff@nottingham.ac.uk
mailto:flightgear@christianmayer.de

98 C. LANDING

David Megginson(david@megginson.com)
Contributed patches to allow mouse input to control view direction yoke. Con-
tributed financially towards hard drive space for use by the flight gear project.
Updates to README.running. Working on getting fgfs and ssg to work with-
out textures. Also added the new 2-D panel and the save/load support. Further, he
developed new panel code, playing better with OpenGL, with new features. De-
veloped the property manager and contributed to joystick support. Random ground
cover objects

Cameron Moore (cameron@unbeatenpath.net)
FAQ maintainer. Reigning list administrator. Provided man pages.

Eric Mitchell (mitchell@mars.ark.com)
Contributed some topnotch scenery textures being all original creations by him.

Anders Morken (amrken@online.no)
Former maintainer of European web pages.

Alan Murta (amurta@cs.man.ac.uk)

Created the Generic Polygon Clipping library.

http://www.cs.man.ac.uk/aig/staff/alan/software/

Phil Nelson(phil@cs.wwu.edu)
Author of GNU dbm, a set of database routines that use extendible hashing and
work similar to the standard UNIX dbm routines.

Alexei Novikov (anovikov@heron.itep.ru)
Created European Scenery. Contributed a script to turn fgfs scenery into beautifully
rendered 2-D maps. Wrote a first draft of a Scenery Creation Howto.

Curt Olson (curt@flightgear.org)
Primary organization of the project.
First implementation and modifications based on LaRCsim.
Besides putting together all the pieces provided by others mainly concentrating on
the scenery subsystem as well as the graphics stuff. Homepage at

http://www.menet.umn.edu/˜curt/

Brian Paul
We made use of his TR library and of course of Mesa:

http://www.mesa3d.org/brianp/TR.html, http://www.mesa3d.org

Tony Peden(apeden@earthlink.net)
Contributions on flight model development, including a LaRCsim based Cessna
172. Contributed toJSBSimthe initial conditions code, a more complete standard

mailto:david@megginson.com
mailto:cameron@unbeatenpath.net
mailto:mitchell@mars.ark.com
mailto:amrken@online.no
mailto:amurta@cs.man.ac.uk
http://www.cs.man.ac.uk/aig/staff/alan/software/
mailto:phil@cs.wwu.edu
mailto:anovikov@heron.itep.ru
mailto:curt@flightgear.org
http://www.menet.umn.edu/~curt/
http://www.mesa3d.org/brianp/TR.html
http://www.mesa3d.org
mailto:apeden@earthlink.net

C.2. THOSE, WHO DID THE WORK 99

atmosphere model, and other bugfixes/additions. His Flight Dynamics page can be
found at:

http://www.nwlink.com/̃ apeden/.

Robin Peel(robin@cpwd.com)
Maintains worldwide airport and runway database forFlightGear as well as X-
Plane.

Alex Perry (alex.perry@ieee.org)
Contributed code to more accurately model VSI, DG, Altitude. Suggestions for
improvements of the layout of the simulator on the mailing list and help on docu-
mentation.

Friedemann Reinhard (mpt218@faupt212.physik.uni-erlangen.de)
Development of an early textured instrument panel.

Petter Reinholdtsen(pere@games.no)
Incorporated the GNU automake/autoconf system (with libtool). This should stream-
line and standardize the build process for all UNIX-like platforms. It should have
little effect on IDE type environments since they don’t use the UNIX make system.

William Riley (riley@technologist.com)
Contributed code to add ”brakes”. Also wrote a patch to support a first joystick
with more than 2 axis. Did the job to create scenery based on VMap0 data.

Andy Ross(andy@plausible.org)
Contributed a new configurable FDM calledYASim(Yet Another Flight Dynamics
Simulator, based on geometry information rather than aerodynamic coefficients.

Paul Schlyter (pausch@saaf.se)
Provided Durk Talsma with all the information he needed to write the astro code.
Mr. Schlyter is also willing to answer astro-related questions whenever one needs
to.

http://www.welcome.to/pausch/

Chris Schoeneman(crs@millpond.engr.sgi.com)
Contributed ideas on audio support.

Phil Schubert (philip@zedley.com)
Contributed various textures and engine modeling.

http://www.zedley.com/Philip/.

http://www.nwlink.com/~apeden
mailto:robin@cpwd.com
mailto:alex.perry@ieee.org
mailto:mpt218@faupt212.physik.uni-erlangen.de
mailto:pere@games.no
mailto:riley@technologist.com
mailto:andy@plausible.org
mailto:pausch@saaf.se
http://www.welcome.to/pausch/
mailto:crs@millpond.engr.sgi.com
mailto:philip@zedley.com
http://www.zedley.com/Philip/

100 C. LANDING

Jonathan R. Shewchuk(JonathanR Shewchuk@ux4.sp.cs.cmu.edu)
Author of the Triangle program. Triangle is used to calculate the Delauney trian-
gulation of our irregular terrain.

Gordan Sikic (gsikic@public.srce.hr)
Contributed a Cherokee flight model for LaRCsim. Currently is not working and
needs to be debugged. Use configure--with-flight-model=cherokee to
build the cherokee instead of the Cessna.

Michael Smith (msmith99@flash.net)
Contributed cockpit graphics, 3-D models, logos, and other images. Project Bo-
nanza

Martin Spott (Martin.Spott@uni-duisburg.de)
Co-Author of the ”Getting Started”.

Durk Talsma (d.talsma@chello.nl)
Accurate Sun, Moon, and Planets. Sun changes color based on position in sky.
Moon has correct phase and blends well into the sky. Planets are correctly po-
sitioned and have proper magnitude. Help with time functions, GUI, and other
things. Contributed 2-D cloud layer. Website at

http://people.a2000.nl/dtals/.

UIUC - Department of Aeronautical and Astronautical Engineering
Contributed modifications to LaRCsim to allow loading of aircraft parameters from
a file. These modifications were made as part of an icing research project.

Those did the coding and made it all work:
Jeff Scott jscott@students.uiuc.edu
Bipin Sehgal bsehgal@uiuc.edu
Michael Selig m-selig@uiuc.edu

Moreover, those helped to support the effort:
Jay Thomas jthomas2@uiuc.edu
Eunice Lee ey-lee@students.uiuc.edu
Elizabeth Rendon mdfhoyos@md.impsat.net.co
Sudhi Uppuluri suppulur@students.uiuc.edu

U. S. Geological Survey

Provided geographic data used by this project.

http://edc.usgs.gov/geodata/

Mark Vallevand (Mark.Vallevand@UNISYS.com)
Contributed some METAR parsing code and some win32 screen printing routines.

mailto:Jonathanprotect unhbox voidb@x kern .06emvbox {hrule width.3em}Rprotect unhbox voidb@x kern .06emvbox {hrule width.3em}Shewchuk@ux4.sp.cs.cmu.edu
mailto:gsikic@public.srce.hr
mailto:msmith99@flash.net
mailto:Martin.Spott@uni-duisburg.de
mailto:d.talsma@chello.nl
http://people.a2000.nl/dtals/
mailto:jscott@students.uiuc.edu
mailto:bsehgal@uiuc.edu
mailto:m-selig@uiuc.edu
mailto:jthomas2@uiuc.edu
mailto:ey-lee@students.uiuc.edu
mailto:mdfhoyos@md.impsat.net.co
mailto:suppulur@students.uiuc.edu
http://edc.usgs.gov/geodata/
mailto:Mark.Vallevand@UNISYS.com

C.2. THOSE, WHO DID THE WORK 101

Gary R. Van Sickle (tiberius@braemarinc.com)
Contributed some initial GameGLUT support and other fixes. Has done prelimi-
nary work on a binary file format. Check

http://www.woodsoup.org/projs/ORKiD/fgfs.htm.

His ’Cygwin Tips’ page might be helpful for you at

http://www.woodsoup.org/projs/ORKiD/cygwin.htm.

Norman Vine (nhv@yahoo.com)
Provided more numerous URL’s to the ”FlightGear Community”. Many perfor-
mance optimizations throughout the code. Many contributions and much advice
for the scenery generation section. Lots of Windows related contributions. Con-
tributed wgs84 distance and course routines. Contributed a great circle route au-
topilot mode based on wgs84 routines. Many other GUI, HUD and autopilot con-
tributions. Patch to allow mouse input to control view direction. Ultra hires tiled
screen dumps. Contributed the initial ’goto airport’ and ’reset’ functions and the
initial http image server code

Roland Voegtli (webmaster@sanw.unibe.ch)
Contributed great photorealistic textures. Founder of European Scenery Project for
X-Plane:

http://www.g-point.com/xpcity/esp/

Carmelo Volpe (carmelo.volpe@mednut.ki.se)
PortingFlightGear to the Metro Works development environment (PC/Mac).

Darrell Walisser (walisser@mac.com)
Contributed a large number of changes to portingFlightGear to the Metro Works
development environment (PC/Mac). Finally produced the first Macintosh port.
Contributed to the Mac part of Getting Started, too.

Ed Williams (Ed Williams@compuserve.com).
Contributed magnetic variation code (impliments Nima WMM 2000). We’ve also
borrowed from Ed’s wonderful aviation formulary at various times as well. Website
at http://williams.best.vwh.net/.

Jim Wilson (jimw@kelcomaine.com).
Wrote a major overhaul of the viewer code to make it more flexible and modular.
Contributed many small fixes and bug reports. Contributed to the PUI property
browser and to the autopilot.

Jean-Claude Wippler (jcw@equi4.com)
Author of MetaKit - a portable, embeddible database with a portable data file for-
mat used inFlightGear. Please see the following URL for more info:

mailto:tiberius@braemarinc.com
http://www.woodsoup.org/projs/ORKiD/fgfs.htm
http://www.woodsoup.org/projs/ORKiD/cygwin.htm
mailto:nhv@yahoo.com
mailto:webmaster@sanw.unibe.ch
http://www.g-point.com/xpcity/esp/
mailto:carmelo.volpe@mednut.ki.se
mailto:walisser@mac.com
file:Ed_Williams@compuserve.com
http://williams.best.vwh.net/
file:jimw@kelcomaine.com
mailto:jcw@equi4.com

102 C. LANDING

http://www.equi4.com/metakit/

Woodsoup Project

While FlightGear no longer uses Woodsoup servies we appreciate the sup-
port provided to our project during the time they hosted us. Once they provided
computing resources and services so that theFlightGear project could have a real
home.

http://www.woodsoup.org/

Robert Allan Zeh (raz@cmg.FCNBD.COM)
Helped tremendously in figuring out the Cygnus Win32 compiler and how to link
with .dll’s. Without him the first run-able Win32 version ofFlightGear would have
been impossible.

C.3 What remains to be done

If you read (and, maybe, followed) this guide up to this point you may probably
agree:FlightGear, even in its present state, is not at all for the birds. It is already a
flight simulator which sports even several selectable flight models, several planes
with panels and even a HUD, terrain scenery, texturing, all the basic controls and
weather.

Despite,FlightGear needs – and gets – further development. Except internal
tweaks, there are several fields whereFlightGear needs basics improvement and
development. A first direction is adding airports, buildings, and more of those
things bringing scenery to real life and belonging to realistic airports and cities.
Another task is further implementation of the menu system, which should not be
too hard with the basics being working now. A lot of options at present set via
command line or even during compile time should finally make it into menu entries.
Finally, FlightGear lacks any ATC until now.

There are already people working in all of these directions. If you’re a pro-
grammer and think you can contribute, you are invited to do so.

Achnowledgements

Obviously this document could not have been written without all those contributors
mentioned above makingFlightGear a reality.

First, I was very glad to see Martin Spott entering the documentation effort.
Martin provided not only several updates and contributions (notably in the OpenGL
section) on the Linux side of the project but also several general ideas on the doc-
umentation in general

http://www.equi4.com/metakit/
http://www.woodsoup.org/
mailto:raz@cmg.FCNBD.COM

C.3. WHAT REMAINS TO BE DONE 103

Besides, I would like to say special thanks to Curt Olson, whose numerous
scattered Readmes, Thanks, Webpages, and personal eMails were of special help
to me and were freely exploited in the making of this booklet.

Next, Bernhard Buckel wrote several sections of early versions of that Guide
and contributed at lot of ideas to it.

Jon S. Berndt supported me by critical proofreading of several versions of the
document, pointing out inconsistences and suggesting improvements.

Moreover, I gained a lot of help and support from Norman Vine. Maybe, with-
out Norman’s answers I would have never been able to tame different versions of
theCygwin– FlightGear couple.

We were glad, our Mac expert Darrell Walisser contributed the section on com-
piling under Mac OS X. In addition he submitted several Mac related hints and
fixes.

Further contributions and donations on special points came from John Check,
(general layout), Oliver Delise (several suggestions including notes on that chap-
ter), Mohit Garg (OpenGL), Kyler B. Laird (corrections), Alex Perry (OpenGL),
Kai Troester (compile problems), Dave Perry (joystick support), and Michael Selig
(UIUC models).

Besides those whose names got lost withing the last-minute-trouble we’d like to
express our gratitude to the following people for contributing valuable ’bug fixes’
to this version of Getting Started (in random order): Cameron Moore, Melchior
Franz, David Megginson, Jon Berndt, Alex Perry,, Dave Perry,, Andy Ross, Erik
Hofman, and Julian Foad.

Index

.fgfsrc, 40, 93
2D cockpit, 62
3D cockpit, 62
3D panels, 91
3DFX, 77, 82
3dfx, 83

A1 Free Sounds, 94
A4, 16
add-on scenery, 35
ADF, 68
Adler, Mark, 96
Aeronautical Information Manual, 72
AGP, 85
AGP Support, 83
aileron, 61, 66
aileron indicator, 70
air traffic facilities, 68
aircraft

selection, 43
survey, 56

aircraft model, 43
airport, 44, 102
airport code, 44, 72
airport ID, 65
airspeed indicator, 66
Airwave Xtreme 150, 16
Alonzo, Raul, 94
altimeter, 67
altitude, 65
altitude hold, 62
America, Michele, 90, 94
anonymous cvs, 15
anti-aliaseded HUD lines, 42
antialiasing, 65
artificial horizon, 66
astronomy code, 92
ATC, 91, 102
ATI, 82, 83

ATIS, 68
ATIS messages, 91
Atlas, 92
attitude indicator, 66
audio library, 97
audio support, 92
auto coordination, 42, 67
autopilot, 62, 63, 65, 69, 90, 96, 97
autopilot controls, 62, 63
autothrottle, 62

Baker, Steve, 92
bank, 66
base package, 6, 36

installation, 31
Basler, Michael, 94
Beech 99, 17
Bendix transponder, 91
Berndt, Jon, 103
Berndt, Jon, S., 91, 93, 94, 103
binaries, 19, 33

Debian, 34
directory, 26
Macintosh, 34
pre-compiled, 8
SGI Irix, 35
Windows, 33

binaries, pre-compiled, 19
binary directory, 22
binary distribution, 6
bleeding edge snapshots, 31
Bleisch, Paul, 94
Boeing 747, 16
brakes, 64, 68, 99
branch, developmental, 15
branch, stable, 15
Brennan, Jim, 94
Bright, Bernie, 94
BSD UNIX, 12

104

INDEX 105

Buckel, Bernhard, 95, 103
Buckle, Gene, 95

call sign, 66
callsign, 47
Carmichael, Ralph, 95
CD-ROM, 35
Cessna, 70, 100
Cessna 172, 16, 90, 91
Cessna 182, 16
Cessna 310, 16
Chauveau, Didier, 95
Check, John, 56, 69, 91, 93, 95, 103
Cherokee flight model, 100
clock, 68
cloud layer, 45
clouds, 92, 100
cockpit, 62
CodeWarrior, 30
COM transceiver, 68
COMM1, 68
COMM2, 68
command line options, 40
communication radio, 68
compiler, 14
compiling, 19

IRIX, 30
Linux, 24
Macintosh, 27
other systems, 30
Solaris, 30
Windows, 24

configure, 26
contributors, 93
control device, 42
control surface, movable, 91
Cornish, Dave, 90, 95
CVS snapshots, 15
cvs, anonymous, 15
Cygnus, 14, 102

development tools, 20
Cygwin, 14, 78

packages to install, 21
setup, 20
XFree86, 22

DC-3, 16
Debian, 20, 34
default settings, 40

Delise, Oliver, 92, 93, 95, 103
Denker, John, 73
Detonator reference drivers, 81
development environment, 20, 22
differential braking, 64
Direct3D, 14
directory structure, 31
disk space, 14, 20
display options, 62
distribution

binary, 15, 19
documentation, 12

installation, 36
DOS, 88
Doue, Jean-Francois, 95
DRI, 86

Eberly, Dave, 95
elevation indicator, 70
elevator trim, 61
engine, 59

starting, 59
engine controls, 63
environment variable, 39
environment variables, 38
Evans, Francine, 96
Everitt, Oscar, 96
exit, 65, 72

FAA, 72
FAA Training Book, 73
FAQ, 7, 8, 75
FDM, 91, 94

external, 17
field of view, 45
Finney, Bruce, 96
flaps, 64, 66, 69
flight dynamics model, 16, 43, 91
flight instrument, 66
flight model, 16, 43, 91
flight models, 16
flight planner, 92
flight schools, 72
Flight simulator

civilian, 11
free, 88
multi-platform, 11
open, 11, 12
user-extensible, 11, 12

106 INDEX

user-sported, 11
user-supported, 12

FlightGear, 93
directory structure, 31
versions, 15

FlightGear documentation, 17
FlightGear Flight School, 17
FlightGear Programmer’s Guide, 17
FlightGear Scenery Design Guide, 17
FlightGear Website, 17, 93
Foad, Julian, 103
fog, 45
fog effects, 97
frame rate, 14, 45, 89
Franz, Melchior, 96, 103
FreeBSD, 96
FreeGLUT, 30
frozen state, 41
FS98, 96
fuel indicator, 68
full screen display, 41
full screen mode, 45, 62

Gailly, Jean-loup, 96
GameGLUT, 101
Garg, Mohit, 96, 103
gauge, 66
gear, 64
Geforce, 8
Gellekum, Thomas, 96
geographic features, 90
Girish, Neetha, 96
GLIDE, 77
GNU C++, 14
GNU General Public License, 12
Goeke-Smith, Jeff, 90, 96
Gold, Michael, I., 96
GPL, 12
graphics card, 13
graphics library, 80
graphics routines, 88
GSHHS data, 90
gyro compass, 67

Habibe, 96
hang glider, 16
hangar, 56
Harrier, 16
haze, 45

head up display, 70, 90
heading, 65
heading hold, 62
height, 71
help, 66
Hill, Mike, 96
History, 88
history

aircraft, 90
environment, 91
scenery, 89
user interface, 92

Hofman, Eric, 30
Hofman, Erik, 35, 89, 96, 103
hot air balloon, 97
Hotchkiss, Charlie, 90, 97
HTTP server, 92
http server, 46
HUD, 42, 46, 65, 70, 71, 90, 94, 97

icing
modelling, 16

IFR, 69, 73
ignition switch, 59, 68
inclinometer, 66
initial heading, 44
install directory, 24
instrument flight rules, 69
instrument panel, 42, 62, 66, 90
Internet, 92
IRIX, 30

Jackson, Bruce, 89, 97
joystick, 42, 48, 59, 60, 92

.fgfsrc, 54
joystick settings, 93
joystick/self detection, 92
joysticks, 14
JSBSim, 43

Kaaven, Ove, 34, 97
Kaszeta, Richard, 97
key bindings

configuration, 64
keyboard, 59
keyboard controls, 59–61

miscellaneous, 64
keyboard.xml, 64
Knienieder, Tom, 97

INDEX 107

Koradi, Reto, 97
Korpela, Eric, 88
Kuehne, Bob, 97

Laird, Kyler B., 97, 103
landing gear, 64
LaRCsim, 89, 91, 97, 98, 100
latitude, 71
Launching Flightgear

Linux, 38
Mac OS X, 40
Windows, 39

leaflet, 7
Lee, Eunice, 100
light textures, 90
Linux, 8, 11, 13, 14, 19, 81, 82, 88
Linux distributions, 20
load flight, 65
longitude, 71
Luff, David, 91, 97

Mac OS 9, 34
Mac OS 9.x, 86
Mac OS X, 34
Mac OSX, 87
Macintosh, 8, 30, 34
magnetic compass, 67
magneto switch, 91
mailing lists, 75, 93
map, clickable, 35, 89, 90
Marchetti S-211, 17
marker, inner, 69
marker, middle, 69
marker, outer, 69
Mayer, Christian, 92, 93, 97
Megginson, David, 72, 90–93, 98, 103
menu, 92
menu entries, 64
menu system, 102
MetaKit, 101
Metakit

installation, 24
Metro Works, 101
Microsoft, 10
Mitchell, Eric, 89, 98
mixture, 69
mixture lever, 60
Moore Cameron, 75
Moore, Cameron, 98, 103

Morken, Anders, 98
mouse, 59, 71
mouse modes, 71
mouse pointer, 41
mouse, actions, 71
MS DevStudio, 78
MSVC, 78, 95
multi-engine support, 91
multi-lingual conversion tools, 97
multiplayer code, 92
Murr, David, 88
Murta, Alan, 98

NAV, 68
navaids, 69
Navion, 91
NDB, 68, 69
Nelson, Phil, 98
network, 65, 92
network options, 46
networking code, 92, 95
networking support, 26
nightly snapshots, 15
Novikov, Alexei, 98
NumLock, 60
NVIDIA, 8, 81–83

drivers, 80
Linux drivers, 81
Windows drivers, 81

offset, 46
Olson, Curt, 35, 88–93, 98, 103
OpenGL, 7, 8, 13, 14, 17, 76, 80–82, 86, 87,

89, 93, 96
drivers, 14
libraries, 30
Linux, 82
Macintosh, 86
runtime libraries, 85

OpenGL drivers, 80
OpenGL renderer string, 85
OpenGL Setup, 82
Operating Systems, 11
options

aircraft, 43
debugging, 48
features, 42
flight model, 43
general, 40

108 INDEX

HUD, 46
initial position, 44
IO, 47
joystick, 48
network, 46
orientation, 44
rendering, 45
route, 47
time, 46
waypoint, 47

options, configure, 26
OS/2, 88

panel, 65, 66, 98, 99
reconfiguration, 69

parking brake, 60, 64
Paul, Brian, 98
pause, 64
PCI, 85
pedal, 48
Peden, Tony, 93, 98
Peel, Robin, 91, 99
permissions, 77
Perry, Alex, 99, 103
Perry, Dave, 103
PFE, 55
pitch, 66
pitch indicator, 70
places to discover, 72
PLIB, 24, 25, 92, 93

header files, 25
preferences, 40
problem report, 75
problems, 75

general, 76
Linux, 77
Windows, 78

programmers, 93
property manager, 65, 92, 93
proposal, 88

Quake, 80

radio stack, 68, 91
random ground objects, 90
README.xmlpanel, 69
Reinhard, Friedemann, 90, 99
Reinholdtsen, Petter, 99
Rendon, Elizabeth, 100

reset flight, 65
Riley, William, 35, 90, 99
Ross, Andy, 91, 99, 103
RPM indicator, 67
rudder, 60, 61, 66
rudder indicator, 70
rudder pedals, 14, 59
runway lighting, 90

save flight, 65
scenery, 89, 90

add-on, 35
scenery directory

path, 41
scenery subsystem, 98
Schlyter, Paul, 99
Schoenemann, Chris, 99
Schubert, Phil, 99
Scott, Jeff, 100
screenshot, 64, 65
See how it flies, 73
Sehgal, Bipin, 100
Selig, Michael, 91, 100, 103
SGI IRIX, 12
SGI Irix, 8
Shewchuk, Jonathan, 100
Sikic, Gordan, 100
SimGear, 23, 25, 93
Smith, Michael, 100
snapshots, 31
Solaris, 30
sound card, 14
sound effects, 14
source code, 12
speed, 70
Spott, Martin, 100, 102
starter, 60, 68
Starting Flightgear

Linux, 38
Mac OS X, 40
Windows, 39

starting the engine, 68
starting time, 46
startup latitude, 44
startup longitude, 44
startup pitch angle, 44
startup roll angle, 44
static objects, 90
Stuffit Expander, 34

INDEX 109

Sun-OS, 12, 88
SuSE, 20, 82, 86
system requirements, 13
system.fgfsrc, 40, 93

tail-wheel lock, 64
Talsma, Durk, 92, 100
telnet server, 46
TerraGear, 93
terrain, 45
text books, 72
texture, 89
textures, 89, 98
Thomas, Jay, 100
throttle, 60, 61, 69, 70
thunderstorms, 92
time, 46
time offset, 64
time options, 46
TNT, 8
Torvalds, Linus, 13
triangle program, 100
triangles, 46
trim, 61
Troester, Kai, 77, 103
Turbo 310, 16
turn indicator, 66, 70
tutorial, 72

U. S. Geological Survey, 89, 100
UIUC, 91, 100
UIUC airplanes

3D models, 17
UIUC flight model, 16, 43
UNIX, 13, 19, 30, 89
USGS, 35

Vallevand, Mark, 100
van Sickle, Gary, R., 93, 101
velocity rages, 66
vertical speed indicator, 67
VFR, 69, 73
video card, 80
view, 65
view directions, 61
view frustrum culling, 89
view modes, 62
viewpoint, 65
views, 92

Vine, Norman, 90, 92, 93, 101, 103
visibility, 62
Visual C++, 30
visual flight rules, 69
VMap0, 35
VMap0 data, 90
Voegtli, Roland, 101
Volpe, Carmelo, 101
VOR, 68

Walisser, Darrell, 34, 101, 103
waypoint, 65
weather, 26, 97
Williams, Ed, 101
Wilson, Jim, 101
window size, 46
Windows, 8, 14, 19, 33, 40, 81
Windows 95/98/ME, 12
Windows 95/NT, 88
Windows NT/2000/XP, 12
winds, 92
Wippler, Jean-Claude, 101
wireframe, 45
Wood, Charles, 73
Woodsoup, 102
workstation, 13, 89
Wright Flyer, 16

X server, 84
X15, 16
XFree86, 77, 83, 86

YASim, 16
yoke, 42, 48, 59, 60, 68
yokes, 14

Zeh, Allan, 102
ZLIB

installation, 23
zlib library, 96

	I Installation
	Want to have a free flight? Take FlightGear!
	Yet Another Flight Simulator?
	System Requirements
	Choosing A Version
	Flight Dynamics Models
	About This Guide

	Building the plane: Compiling the program
	Preparing the development environment under Windows
	Preparing the development environment under Windows
	One-time preparations for Linux and Windows users
	Installation of ZLIB
	Installation of Metakit

	Compiling FlightGear under Linux/Windows
	Compiling FlightGear under Mac OS X
	Compiling on other systems
	Installing the base package
	For test pilots only: Building the CVS snapshots

	Preflight: Installing FlightGear
	Installing the binary distribution on a Windows system
	Installing the binary distribution on a Macintosh system
	Installing the binary distribution on a Debian Linux system
	Installing the binary distribution on a SGI IRIX system
	Installing add-on scenery
	Installing documentation

	II Flying with FlightGear
	Takeoff: How to start the program
	Launching the simulator under Unix/Linux
	Launching the simulator under Windows
	Launching the simulator under Mac OS X
	Command line parameters
	General Options
	Features
	Aircraft
	Flight model
	Initial Position and Orientation
	Rendering Options
	HUD Options
	Time Options
	Network Options
	Route/Waypoint Options
	IO Options
	Debugging options

	Joystick support
	Built-in joystick support
	Joystick support via .fgfsrc entries

	A glance over our hangar

	In-flight: All about instruments, keystrokes and menus
	Starting the engine
	Keyboard controls
	Menu entries
	The Instrument Panel
	The Head Up Display
	Mouse controlled actions
	Some further reading for student pilots

	III Appendices
	Missed approach: If anything refuses to work
	FlightGear Problem Reports
	General problems
	Potential problems under Linux
	Potential problems under Windows

	Some words on OpenGL graphics drivers
	NVIDIA chip based cards under Linux
	NVIDIA chip based cards under Windows
	3DFX chip based cards under Windows
	An alternative approach for Windows users
	3DFX chip based cards under Linux
	ATI chip based cards under Linux
	Building your own OpenGL support under Linux
	OpenGL on Macintosh

	Landing: Some further thoughts before leaving the plane
	A Sketch on the History of FlightGear
	Scenery
	Aircraft
	Environment
	User Interface

	Those, who did the work
	What remains to be done

