// -*-C++-*- #version 120 // written by Thorsten Renk, Oct 2011, based on default.frag // Ambient term comes in gl_Color.rgb. varying vec4 diffuse_term; varying vec3 normal; varying vec3 relPos; varying vec4 ecPosition; uniform sampler2D texture; varying float yprime_alt; varying float mie_angle; uniform float visibility; uniform float avisibility; uniform float scattering; uniform float terminator; uniform float terrain_alt; uniform float hazeLayerAltitude; uniform float overcast; uniform float eye_alt; uniform float cloud_self_shading; uniform float air_pollution; uniform float landing_light1_offset; uniform float landing_light2_offset; uniform float landing_light3_offset; uniform int quality_level; uniform int tquality_level; uniform int use_searchlight; uniform int use_landing_light; uniform int use_alt_landing_light; const float EarthRadius = 5800000.0; const float terminator_width = 200000.0; float alt; float eShade; float fog_func (in float targ, in float alt); float rayleigh_in_func(in float dist, in float air_pollution, in float avisibility, in float eye_alt, in float vertex_alt); float alt_factor(in float eye_alt, in float vertex_alt); float light_distance_fading(in float dist); float fog_backscatter(in float avisibility); vec3 rayleigh_out_shift(in vec3 color, in float outscatter); vec3 get_hazeColor(in float light_arg); vec3 searchlight(); vec3 landing_light(in float offset, in float offsetv); vec3 filter_combined (in vec3 color) ; float getShadowing(); vec3 getClusteredLightsContribution(vec3 p, vec3 n, vec3 texel); float luminance(vec3 color) { return dot(vec3(0.212671, 0.715160, 0.072169), color); } float light_func (in float x, in float a, in float b, in float c, in float d, in float e) { x = x - 0.5; // use the asymptotics to shorten computations if (x > 30.0) {return e;} if (x < -15.0) {return 0.0;} return e / pow((1.0 + a * exp(-b * (x-c)) ),(1.0/d)); } // this determines how light is attenuated in the distance // physically this should be exp(-arg) but for technical reasons we use a sharper cutoff // for distance > visibility void main() { vec3 shadedFogColor = vec3(0.55, 0.67, 0.88); // this is taken from default.frag vec3 n; float NdotL, NdotHV, fogFactor; vec4 color = gl_Color; vec3 lightDir = gl_LightSource[0].position.xyz; vec3 halfVector = gl_LightSource[0].halfVector.xyz; vec4 texel; vec4 fragColor; vec4 specular = vec4(0.0); float intensity; float effective_scattering = min(scattering, cloud_self_shading); eShade = 1.0 - 0.9 * smoothstep(-terminator_width+ terminator, terminator_width + terminator, yprime_alt); vec4 light_specular = gl_LightSource[0].specular * (eShade - 0.1); // If gl_Color.a == 0, this is a back-facing polygon and the // normal should be reversed. n = (2.0 * gl_Color.a - 1.0) * normal; n = normalize(n); NdotL = dot(n, lightDir); if (NdotL > 0.0) { float shadowmap = getShadowing(); color += diffuse_term * NdotL * shadowmap; NdotHV = max(dot(n, halfVector), 0.0); if (gl_FrontMaterial.shininess > 0.0) specular.rgb = (gl_FrontMaterial.specular.rgb * light_specular.rgb * pow(NdotHV, gl_FrontMaterial.shininess) * shadowmap); } color.a = diffuse_term.a; // This shouldn't be necessary, but our lighting becomes very // saturated. Clamping the color before modulating by the texture // is closer to what the OpenGL fixed function pipeline does. color = clamp(color, 0.0, 1.0); float dist = length(relPos); vec3 secondary_light = vec3 (0.0,0.0,0.0); if ((quality_level > 5) && (tquality_level > 5)) { if (use_searchlight == 1) { secondary_light += searchlight(); } if (use_landing_light == 1) { secondary_light += landing_light(landing_light1_offset, landing_light3_offset); } if (use_alt_landing_light == 1) { secondary_light += landing_light(landing_light2_offset, landing_light3_offset); } if (dist > 2.0) // we don't want to light the cockpit... {color.rgb +=secondary_light * light_distance_fading(dist);} } texel = texture2D(texture, gl_TexCoord[0].st); fragColor = color * texel + specular; fragColor.rgb += getClusteredLightsContribution(ecPosition.xyz, n, texel.rgb); float lightArg = (terminator-yprime_alt)/100000.0; vec3 hazeColor = get_hazeColor(lightArg); // Rayleigh color shift due to in-scattering if ((quality_level > 5) && (tquality_level > 5)) { float rayleigh_length = 0.5 * avisibility * (2.5 - 1.9 * air_pollution)/alt_factor(eye_alt, eye_alt+relPos.z); float outscatter = 1.0-exp(-dist/rayleigh_length); fragColor.rgb = rayleigh_out_shift(fragColor.rgb,outscatter); float rShade = 1.0 - 0.9 * smoothstep(-terminator_width+ terminator, terminator_width + terminator, yprime_alt + 420000.0); float lightIntensity = length(hazeColor * effective_scattering) * rShade; vec3 rayleighColor = vec3 (0.17, 0.52, 0.87) * lightIntensity; float rayleighStrength = rayleigh_in_func(dist, air_pollution, avisibility/max(lightIntensity,0.05), eye_alt, eye_alt + relPos.z); fragColor.rgb = mix(fragColor.rgb, rayleighColor,rayleighStrength); } // here comes the terrain haze model float delta_z = hazeLayerAltitude - eye_alt; float mvisibility = min(visibility, avisibility); if (dist > 0.04 * mvisibility) { alt = eye_alt; float transmission; float vAltitude; float delta_zv; float H; float distance_in_layer; float transmission_arg; // angle with horizon float ct = dot(vec3(0.0, 0.0, 1.0), relPos)/dist; // we solve the geometry what part of the light path is attenuated normally and what is through the haze layer if (delta_z > 0.0) // we're inside the layer { if (ct < 0.0) // we look down { distance_in_layer = dist; vAltitude = min(distance_in_layer,mvisibility) * ct; delta_zv = delta_z - vAltitude; } else // we may look through upper layer edge { H = dist * ct; if (H > delta_z) {distance_in_layer = dist/H * delta_z;} else {distance_in_layer = dist;} vAltitude = min(distance_in_layer,visibility) * ct; delta_zv = delta_z - vAltitude; } } else // we see the layer from above, delta_z < 0.0 { H = dist * -ct; if (H < (-delta_z)) // we don't see into the layer at all, aloft visibility is the only fading { distance_in_layer = 0.0; delta_zv = 0.0; } else { vAltitude = H + delta_z; distance_in_layer = vAltitude/H * dist; vAltitude = min(distance_in_layer,visibility) * (-ct); delta_zv = vAltitude; } } // ground haze cannot be thinner than aloft visibility in the model, // so we need to use aloft visibility otherwise transmission_arg = (dist-distance_in_layer)/avisibility; float eqColorFactor; //float scattering = ground_scattering + (1.0 - ground_scattering) * smoothstep(hazeLayerAltitude -100.0, hazeLayerAltitude + 100.0, relPos.z + eye_alt); if (visibility < avisibility) { transmission_arg = transmission_arg + (distance_in_layer/visibility); // this combines the Weber-Fechner intensity eqColorFactor = 1.0 - 0.1 * delta_zv/visibility - (1.0 -effective_scattering); } else { transmission_arg = transmission_arg + (distance_in_layer/avisibility); // this combines the Weber-Fechner intensity eqColorFactor = 1.0 - 0.1 * delta_zv/avisibility - (1.0 -effective_scattering); } transmission = fog_func(transmission_arg, alt); // there's always residual intensity, we should never be driven to zero if (eqColorFactor < 0.2) eqColorFactor = 0.2; // Mie-like factor if (lightArg < 10.0) {intensity = length(hazeColor); float mie_magnitude = 0.5 * smoothstep(350000.0, 150000.0, terminator-sqrt(2.0 * EarthRadius * terrain_alt)); hazeColor = intensity * ((1.0 - mie_magnitude) + mie_magnitude * mie_angle) * normalize(mix(hazeColor, vec3 (0.5, 0.58, 0.65), mie_magnitude * (0.5 - 0.5 * mie_angle)) ); } // high altitude desaturation of the haze color intensity = length(hazeColor); hazeColor = intensity * normalize (mix(hazeColor, intensity * vec3 (1.0,1.0,1.0), 0.7* smoothstep(5000.0, 50000.0, alt))); // blue hue of haze hazeColor.x = hazeColor.x * 0.83; hazeColor.y = hazeColor.y * 0.9; // additional blue in indirect light float fade_out = max(0.65 - 0.3 *overcast, 0.45); intensity = length(hazeColor); hazeColor = intensity * normalize(mix(hazeColor, 1.5* shadedFogColor, 1.0 -smoothstep(0.25, fade_out,eShade) )); // change haze color to blue hue for strong fogging //intensity = length(hazeColor); hazeColor = intensity * normalize(mix(hazeColor, shadedFogColor, (1.0-smoothstep(0.5,0.9,eqColorFactor)))); // reduce haze intensity when looking at shaded surfaces, only in terminator region float shadow = mix( min(1.0 + dot(normal,lightDir),1.0), 1.0, 1.0-smoothstep(0.1, 0.4, transmission)); hazeColor = mix(shadow * hazeColor, hazeColor, 0.3 + 0.7* smoothstep(250000.0, 400000.0, terminator)); // don't let the light fade out too rapidly lightArg = (terminator + 200000.0)/100000.0; float minLightIntensity = min(0.2,0.16 * lightArg + 0.5); vec3 minLight = minLightIntensity * vec3 (0.2, 0.3, 0.4); hazeColor *= eqColorFactor * eShade; hazeColor.rgb = max(hazeColor.rgb, minLight.rgb); // determine the right mix of transmission and haze fragColor.rgb = mix(hazeColor + secondary_light * fog_backscatter(mvisibility), fragColor.rgb,transmission); } fragColor.rgb = filter_combined(fragColor.rgb); gl_FragColor = fragColor; }