// -*- mode: C; -*- // Licence: GPL v2 // Author: Frederic Bouvier. // Adapted from the paper by F. Policarpo et al. : Real-time Relief Mapping on Arbitrary Polygonal Surfaces // Adapted from the paper and sources by M. Drobot in GPU Pro : Quadtree Displacement Mapping with Height Blending #version 120 #extension GL_ATI_shader_texture_lod : enable #extension GL_ARB_shader_texture_lod : enable #define TEXTURE_MIP_LEVELS 10 #define TEXTURE_PIX_COUNT 1024 //pow(2,TEXTURE_MIP_LEVELS) #define BINARY_SEARCH_COUNT 10 #define BILINEAR_SMOOTH_FACTOR 2.0 varying vec4 rawpos; varying vec4 ecPosition; varying vec3 VNormal; varying vec3 VTangent; varying vec3 VBinormal; varying vec3 Normal; varying vec4 constantColor; varying vec4 specular; uniform sampler3D NoiseTex; uniform sampler2D BaseTex; uniform sampler2D NormalTex; uniform sampler2D QDMTex; uniform float depth_factor; uniform float tile_size; uniform float quality_level; uniform float snowlevel; uniform bool random_buildings; const float scale = 1.0; int linear_search_steps = 10; int GlobalIterationCount = 0; int gIterationCap = 64; void encode_gbuffer(vec3 normal, vec3 color, int mId, float specular, float shininess, float emission, float depth); void QDM(inout vec3 p, inout vec3 v) { const int MAX_LEVEL = TEXTURE_MIP_LEVELS; const float NODE_COUNT = TEXTURE_PIX_COUNT; const float TEXEL_SPAN_HALF = 1.0 / NODE_COUNT / 2.0; float fDeltaNC = TEXEL_SPAN_HALF * depth_factor; vec3 p2 = p; float level = MAX_LEVEL; vec2 dirSign = (sign(v.xy) + 1.0) * 0.5; GlobalIterationCount = 0; float d = 0.0; while (level >= 0.0 && GlobalIterationCount < gIterationCap) { vec4 uv = vec4(p2.xyz, level); d = texture2DLod(QDMTex, uv.xy, uv.w).w; if (d > p2.z) { //predictive point of ray traversal vec3 tmpP2 = p + v * d; //current node count float nodeCount = pow(2.0, (MAX_LEVEL - level)); //current and predictive node ID vec4 nodeID = floor(vec4(p2.xy, tmpP2.xy)*nodeCount); //check if we are crossing the current cell if (nodeID.x != nodeID.z || nodeID.y != nodeID.w) { //calculate distance to nearest bound vec2 a = p2.xy - p.xy; vec2 p3 = (nodeID.xy + dirSign) / nodeCount; vec2 b = p3.xy - p.xy; vec2 dNC = (b.xy * p2.z) / a.xy; //take the nearest cell d = min(d,min(dNC.x, dNC.y))+fDeltaNC; level++; } p2 = p + v * d; } level--; GlobalIterationCount++; } // // Manual Bilinear filtering // float rayLength = length(p2.xy - p.xy) + fDeltaNC; float dA = p2.z * (rayLength - BILINEAR_SMOOTH_FACTOR * TEXEL_SPAN_HALF) / rayLength; float dB = p2.z * (rayLength + BILINEAR_SMOOTH_FACTOR * TEXEL_SPAN_HALF) / rayLength; vec4 p2a = vec4(p + v * dA, 0.0); vec4 p2b = vec4(p + v * dB, 0.0); dA = texture2DLod(NormalTex, p2a.xy, p2a.w).w; dB = texture2DLod(NormalTex, p2b.xy, p2b.w).w; dA = abs(p2a.z - dA); dB = abs(p2b.z - dB); p2 = mix(p2a.xyz, p2b.xyz, dA / (dA + dB)); p = p2; } float ray_intersect_QDM(vec2 dp, vec2 ds) { vec3 p = vec3( dp, 0.0 ); vec3 v = vec3( ds, 1.0 ); QDM( p, v ); return p.z; } float ray_intersect_relief(vec2 dp, vec2 ds) { float size = 1.0 / float(linear_search_steps); float depth = 0.0; float best_depth = 1.0; for(int i = 0; i < linear_search_steps - 1; ++i) { depth += size; float t = step(0.95, texture2D(NormalTex, dp + ds * depth).a); if(best_depth > 0.996) if(depth >= t) best_depth = depth; } depth = best_depth; const int binary_search_steps = 5; for(int i = 0; i < binary_search_steps; ++i) { size *= 0.5; float t = step(0.95, texture2D(NormalTex, dp + ds * depth).a); if(depth >= t) { best_depth = depth; depth -= 2.0 * size; } depth += size; } return(best_depth); } float ray_intersect(vec2 dp, vec2 ds) { if ( random_buildings ) return 0.0; else if ( quality_level >= 4.0 ) return ray_intersect_QDM( dp, ds ); else return ray_intersect_relief( dp, ds ); } void main (void) { if ( quality_level >= 3.0 ) { linear_search_steps = 20; } float depthfactor = depth_factor; if ( random_buildings ) depthfactor = 0.0; vec3 normal = normalize(VNormal); vec3 tangent = normalize(VTangent); vec3 binormal = normalize(VBinormal); vec3 ecPos3 = ecPosition.xyz / ecPosition.w; vec3 V = normalize(ecPos3); vec3 s = vec3(dot(V, tangent), dot(V, binormal), dot(normal, -V)); vec2 ds = s.xy * depthfactor / s.z; vec2 dp = gl_TexCoord[0].st - ds; float d = ray_intersect(dp, ds); vec2 uv = dp + ds * d; vec3 N = texture2D(NormalTex, uv).xyz; float emis = N.z; N = N * 2.0 - 1.0; N.z = sqrt(1.0 - min(1.0,dot(N.xy, N.xy))); float Nz = N.z; N = normalize(N.x * tangent + N.y * binormal + N.z * normal); vec4 ambient_light = constantColor + vec4(gl_Color.rgb, 1.0); // vec4 noisevec = texture3D(NoiseTex, (rawpos.xyz)*0.01*scale); // vec4 nvL = texture3D(NoiseTex, (rawpos.xyz)*0.00066*scale); // float n=0.06; // n += nvL[0]*0.4; // n += nvL[1]*0.6; // n += nvL[2]*2.0; // n += nvL[3]*4.0; // n += noisevec[0]*0.1; // n += noisevec[1]*0.4; // n += noisevec[2]*0.8; // n += noisevec[3]*2.1; // n = mix(0.6, n, length(ecPosition.xyz) ); vec4 finalColor = texture2D(BaseTex, uv); // finalColor = mix(finalColor, clamp(n+nvL[2]*4.1+vec4(0.1, 0.1, nvL[2]*2.2, 1.0), 0.7, 1.0), // step(0.8,Nz)*(1.0-emis)*smoothstep(snowlevel+300.0, snowlevel+360.0, (rawpos.z)+nvL[1]*3000.0)); // finalColor *= ambient_light; vec4 p = vec4( ecPos3 + tile_size * V * (d-1.0) * depthfactor / s.z, 1.0 ); if (dot(normal,-V) > 0.1) { vec4 iproj = gl_ProjectionMatrix * p; iproj /= iproj.w; gl_FragDepth = (iproj.z+1.0)/2.0; } else { gl_FragDepth = gl_FragCoord.z; } encode_gbuffer(N, finalColor.rgb, 1, dot(specular.xyz,vec3(0.3, 0.59, 0.11 )), specular.w, 0.0, gl_FragDepth); }