

2

FlightGear Flight Simulator – Installation and
Getting Started

Michael Basler and Martin Spott

including contributions by
Jon Berndt, Stuart Buchanan,

Bernhard Buckel, Cameron Moore,
Curt Olson, Dave Perry,

Michael Selig, Darrell Walisser,
and others

Getting Started Version 0.7
November 17, 2005

Manual was written for FlightGear version 0.9.3 with updates for version
0.9.9.

Contents

I Installation 9

1 Want to have a free flight? Take FlightGear! 11
1.1 Yet Another Flight Simulator? 11
1.2 System Requirements . 14
1.3 Choosing A Version . 15
1.4 Flight Dynamics Models . 16
1.5 About This Guide . 17

2 Preflight: Installing FlightGear 19
2.1 Installing scenery . 19
2.2 Installing aircraft . 20
2.3 Installing documentation . 21

II Flying with FlightGear 23

3 Takeoff: How to start the program 25
3.1 Launching the simulator under Unix/Linux 25
3.2 Launching the simulator under Windows 26
3.3 Launching the simulator under Mac OS X 28
3.4 Command line parameters . 28

3.4.1 General Options . 28
3.4.2 Features . 30
3.4.3 Aircraft . 30
3.4.4 Flight model . 31
3.4.5 Initial Position and Orientation 31
3.4.6 Rendering Options . 32
3.4.7 HUD Options . 33
3.4.8 Time Options . 34
3.4.9 Network Options . 34
3.4.10 Route/Waypoint Options 34
3.4.11 IO Options . 35
3.4.12 Debugging options . 35

3

4 CONTENTS

3.5 Joystick support . 35
3.5.1 Built-in joystick support 36
3.5.2 Joystick support via .fgfsrc entries 41

3.6 A glance over our hangar . 43

4 In-flight: All about instruments, keystrokes and menus 47
4.1 Starting the engine . 47
4.2 Keyboard controls . 48
4.3 Menu entries . 52
4.4 The Instrument Panel . 54
4.5 The Head Up Display . 58
4.6 Mouse controlled actions . 59

III Tutorials 61

5 Tutorials 63
5.1 FlightGear Tutorials . 63
5.2 Other Tutorials . 63

6 A Cross Country Flight Tutorial 65
6.1 Introduction . 65

6.1.1 Disclaimer and Thanks 65
6.2 Flight Planning . 66
6.3 Getting Up . 68

6.3.1 Pre-Flight . 68
6.3.2 ATIS . 68
6.3.3 Radios . 69
6.3.4 Altimeter and Compass 71
6.3.5 Take-Off . 72

6.4 Cruising . 72
6.4.1 The Autopilot . 72
6.4.2 Navigation . 73
6.4.3 Mixture . 73

6.5 Getting Down . 76
6.5.1 Air Traffic Control . 76
6.5.2 The Traffic Pattern . 77
6.5.3 Approach . 78
6.5.4 VASI . 79
6.5.5 Go Around . 80
6.5.6 Clearing the Runway . 81

CONTENTS 5

IV Appendices 83

A Missed approach: If anything refuses to work 85
A.1 FlightGear Problem Reports . 85
A.2 General problems . 86
A.3 Potential problems under Linux 87
A.4 Potential problems under Windows 87

B Building the plane: Compiling the program 89
B.1 Preparing the development environment under Windows 90
B.2 Preparing the development environment under Linux 92
B.3 One-time preparations for Linux and Windows users 92

B.3.1 Installation of ZLIB . 93
B.4 Compiling FlightGear under Linux/Windows 93
B.5 Compiling FlightGear under Mac OS X 96
B.6 Compiling on other systems . 98
B.7 Installing the base package . 99
B.8 For test pilots only: Building the CVS snapshots 99

C Some words on OpenGL graphics drivers 101
C.1 NVIDIA chip based cards under Linux 102
C.2 NVIDIA chip based cards under Windows 102
C.3 3DFX chip based cards under Windows 102
C.4 An alternative approach for Windows users 103
C.5 3DFX chip based cards under Linux 103
C.6 ATI chip based cards under Linux 103
C.7 Building your own OpenGL support under Linux 103
C.8 OpenGL on Macintosh . 107

D Landing: Some further thoughts before leaving the plane 109
D.1 A Sketch on the History of FlightGear 109

D.1.1 Scenery . 110
D.1.2 Aircraft . 111
D.1.3 Environment . 112
D.1.4 User Interface . 112

D.2 Those, who did the work . 114
D.3 What remains to be done . 122

6 CONTENTS

Preface

FlightGear is a free Flight Simulator developed cooperatively over the Internet by
a group of flight simulation and programming enthusiasts. This “Installation and
Getting Started Guide” is meant to give beginners a guide in getting FlightGear
up and running, and themselves into the air. It is not intended to provide complete
documentation of all the features and add-ons of FlightGear but, instead, aims to
give a new user the best start to exploring what FlightGear has to offer.

This guide is split into three parts and is structured as follows.

Part I: Installation

Chapter 1, Want to have a free flight? Take FlightGear, introduces FlightGear,
provides background on the philosophy behind it and describes the system require-
ments.

In Chapter 2, Preflight: Installing FlightGear, you will find instructions for in-
stalling the binaries and additional scenery and aircraft.

Part II: Flying with FlightGear

The following Chapter 3, Takeoff: How to start the program, describes how to actu-
ally start the installed program. It includes an overview on the numerous command
line options as well as configuration files.

Chapter 4, In-flight: All about instruments, keystrokes and menus, describes how
to operate the program, i. eḣow to actually fly with FlightGear. This includes a
(hopefully) complete list of pre-defined keyboard commands, an overview on the
menu entries, detailed descriptions on the instrument panel and HUD (head up
display), as well as hints on using the mouse functions.

Part III: Tutorials

Chapter 5, Tutorials, provides information on the many tutorials available for new
pilots.

Chapter 6, A Cross Country Flight Tutorial, describes a simple cross-country flight
in the San Fransisco area that can be run with the default installation.

Appendices

In Appendix A, Missed approach: If anything refuses to work, we try to help you
work through some common problems faced when using FlightGear.

7

8 CONTENTS

Appendix C, OpenGL graphics drivers, describes some special problems you may
encounter in case your system lacks support for the OpenGL graphics API OpenGL
which FlightGear is based on.

Appendix B, Building the plane: Compiling the program, explains how to build
(compile and link) the simulator. Depending on your platform this may or may not
be required.

In the final Appendix D, Landing: Some further thoughts before leaving the plane,
we would like to give credit to those who deserve it, sketch an overview on the
development of FlightGearand point out what remains to be done.

Accordingly, we suggest reading the Chapters as follows:

Installation
Users of binary distributions (notably under Windows): 2
Installation under Linux/UNIX: B, 2
Installation under Macintosh: 2
Operation
Program start (all users): 3
Keycodes, Panel, Mouse. . . (all users): 4
Troubleshooting
General issues: A
Graphics problems: C
Optionally 1, D

While this introductory guide is meant to be self contained, we strongly suggest
having a look into further documentation, especially in case of trouble:

• For additional hints on troubleshooting and more, please read the FAQ

http://www.flightgear.org/Docs/FlightGear-FAQ.html,

The FAQ contains a host of valuable information, especially on rapidly chang-
ing flaws and additional reading, thus we strongly suggest consulting it in
conjunction with our guide.

• A handy leaflet on operation for printout is available at

http://www.flightgear.org/Docs/InstallGuide/FGShortRef.html,

• Additional user documentation on special aspects is available within the base
package under the directory /FlightGear/Docs.

Finally:

We know most people hate reading manuals. If you are sure the graphics driver
for your card supports OpenGL (check documentation; for instance all NVIDIA
Windows and Linux drivers for TNT/TNT2/Geforce/Geforce2/Geforce3 do) and if
you are using one of the following operating systems:

http://www.flightgear.org/Docs/FlightGear-FAQ.html
http://www.flightgear.org/Docs/InstallGuide/FGShortRef.html

CONTENTS 9

• Windows 95/98/ME/NT/2000/XP,

• Macintosh Mac OSX

• Linux

• SGI Irix

you can possibly skip at least Part I of this manual and exploit the pre-compiled
binaries. These as well as instructions on how to set them up, can be found at

http://www.flightgear.org/Downloads/.

In case you are running FlightGear on Linux, you may also be able to get bina-
ries bundled with your distribution. Several vendors already include FlightGear
binaries into their distributions.

Just download them, install them according to the description and run them via
the installed FlightGear icon (on Windows), or textttfgfs having set the environ-
mental variables described in Chapter 3 (on Linux).

There is no guarantee for this approach to work, though. If it doesn’t, don’t
give up! Have a closer look through this guide notably Section 2 and be sure to
check out the FAQ.

http://www.flightgear.org/Downloads/

10 CONTENTS

Part I

Installation

11

Chapter 1

Want to have a free flight? Take
FlightGear!

1.1 Yet Another Flight Simulator?

Did you ever want to fly a plane yourself, but lacked the money or ability to do so?
Are you a real pilot looking to improve your skills without having to take off? Do
you want to try some dangerous maneuvers without risking your life? Or do you
just want to have fun with a more serious game without any violence? If any of
these questions apply to you, PC flight simulators are just for you.

You may already have some experience using Microsoft’s c© Flight Simulator
or any other of the commercially available PC flight simulators. As the price tag of
those is usually within the $50 range, buying one of them should not be a serious
problem given that running any serious PC flight simulator requires PC hardware
within the $1500 range, despite dropping prices.

With so many commercially available flight simulators, why would we spend
thousands of hours of programming and design work to build a free flight simula-
tor? Well, there are many reasons, but here are the major ones:

• All of the commercial simulators have a serious drawback: they are made
by a small group of developers defining their properties according to what
is important to them and providing limited interfaces to end users. Anyone
who has ever tried to contact a commercial developer would agree that get-
ting your voice heard in that environment is a major challenge. In contrast,
FlightGear is designed by the people and for the people with everything out
in the open.

• Commercial simulators are usually a compromise of features and usability.
Most commercial developers want to be able to serve a broad segment of
the population, including serious pilots, beginners, and even casual gamers.
In reality the result is always a compromise due to deadlines and funding.
As FlightGear is free and open, there is no need for such a compromise.

13

14 1. WANT TO HAVE A FREE FLIGHT?

We have no publisher breathing down our necks, and we’re all volunteers
that make our own deadlines. We are also at liberty to support markets that
no commercial developer would consider viable, like the scientific research
community.

• Due to their closed-source nature, commercial simulators keep developers
with excellent ideas and skills from contributing to the products. With Flight-
Gear, developers of all skill levels and ideas have the potential to make a
huge impact on the project. Contributing to a project as large and complex
as FlightGear is very rewarding and provides the developers with a great
deal of pride in knowing that we are shaping the future of a great simulator.

• Beyond everything else, it’s just plain fun! I suppose you could compare us
to real pilots that build kit-planes or scratch-builts. Sure, we can go out a
buy a pre-built aircraft, but there’s just something special about building one
yourself.

The points mentioned above form the basis of why we created FlightGear.
With those motivations in mind, we have set out to create a high-quality flight
simulator that aims to be a civilian, multi-platform, open, user-supported, and user-
extensible platform. Let us take a closer look at each of these characteristics:

• Civilian: The project is primarily aimed at civilian flight simulation. It
should be appropriate for simulating general aviation as well as civilian air-
craft. Our long-term goal is to have FlightGear FAA-approved as a flight
training device. To the disappointment of some users, it is currently not a
combat simulator; however, these features are not explicitly excluded. We
just have not had a developer that was seriously interested in systems neces-
sary for combat simulation.

• Multi-platform: The developers are attempting to keep the code as platform-
independent as possible. This is based on their observation that people in-
terested in flight simulations run quite a variety of computer hardware and
operating systems. The present code supports the following Operating Sys-
tems:

– Linux (any distribution and platform),

– Windows NT/2000/XP (Intel/AMD platform),

– Windows 95/98/ME,

– BSD UNIX,

– SGI IRIX,

– Sun-OS,

– Macintosh.

1.1 YET ANOTHER FLIGHT SIMULATOR? 15

At present, there is no known flight simulator – commercial or free – sup-
porting such a broad range of platforms.

• Open: The project is not restricted to a static or elite cadre of developers.
Anyone who feels they are able to contribute is most welcome. The code (in-
cluding documentation) is copyrighted under the terms of the GNU General
Public License (GPL).

The GPL is often misunderstood. In simple terms it states that you can copy
and freely distribute the program(s) so licensed. You can modify them if
you like and even charge as much money as want to for the distribution of
the modified or original program. However, you must freely provide the
entire source code to anyone who wants it, and it must retain the original
copyrights. In short:

”You can do anything with the software except make it non-free”.

The full text of the GPL can be obtained from the FlightGear source code
or from

http://www.gnu.org/copyleft/gpl.html.

• User-supported and user-extensible: Unlike most commercial simulators,
FlightGear’s scenery and aircraft formats, internal variables, APIs, and ev-
erything else are user accessible and documented from the beginning. Even
without any explicit development documentation (which naturally has to be
written at some point), one can always go to the source code to see how
something works. It is the goal of the developers to build a basic engine
to which scenery designers, panel engineers, maybe adventure or ATC rou-
tine writers, sound artists, and others can build upon. It is our hope that the
project, including the developers and end users, will benefit from the creativ-
ity and ideas of the hundreds of talented “simmers” around the world.

Without doubt, the success of the Linux project, initiated by Linus Torvalds,
inspired several of the developers. Not only has Linux shown that distributed de-
velopment of highly sophisticated software projects over the Internet is possible,
it has also proven that such an effort can surpass the level of quality of competing
commercial products.

http://www.gnu.org/copyleft/gpl.html

16 1. WANT TO HAVE A FREE FLIGHT?

Fig. 1: FlightGear under UNIX: Bad approach to San Francisco International - by
one of the authors of this manual. . .

1.2 System Requirements

In comparison to other recent flight simulators, the system requirements for Flight-
Gear are not extravagant. A decent PIII/800, or something in that range, should
be sufficient given you have a proper 3-D graphics card. Additionally, any modern
UNIX-type workstation with a 3-D graphics card will handle FlightGear as well.

One important prerequisite for running FlightGear is a graphics card whose
driver supports OpenGL. If you don’t know what OpenGL is, the overview given
at the OpenGL website

http://www.opengl.org

says it best: “Since its introduction in 1992, OpenGL has become the industry’s
most widely used and supported 2-D and 3-D graphics application programming
interface (API)...”.

FlightGear does not run (and will never run) on a graphics board which only
supports Direct3D. Contrary to OpenGL, Direct3D is a proprietary interface, being
restricted to the Windows operating system.

You may be able to run FlightGear on a computer that features a 3-D video
card not supporting hardware accelerated OpenGL – and even on systems with-
out 3-D graphics hardware at all. However, the absence of hardware accelerated

http://www.opengl.org

1.3. CHOOSING A VERSION 17

OpenGL support can bring even the fastest machine to its knees. The typical signal
for missing hardware acceleration are frame rates below 1 frame per second.

Any modern 3-D graphics featuring OpenGL support will do. For Windows
video card drivers that support OpenGL, visit the home page of your video card
manufacturer. You should note that sometimes OpenGL drivers are provided by
the manufacturers of the graphics chip instead of by the makers of the board. If you
are going to buy a graphics card for running FlightGear, one based on a NVIDIA
chip (TNT X/Geforce X) might be a good choice.

To install the executable and basic scenery, you will need around 50 MB of free
disk space. In case you want/have to compile the program yourself you will need
about an additional 500 MB for the source code and for temporary files created dur-
ing compilation. This does not include the development environment, which will
vary in size depending on the operating system and environment being used. Win-
dows users can expect to need approximately 300 MB of additional disk space for
the development environment. Linux and other UNIX machines should have most
of the development tools already installed, so there is likely to be little additional
space needed on those platforms.

For the sound effects, any capable sound card should suffice. Due to its flexible
design, FlightGear supports a wide range of joysticks and yokes as well as rudder
pedals under Linux and Windows. FlightGear can also provide interfaces to full-
motion flight chairs.

FlightGear is being developed primarily under Linux, a free UNIX clone (to-
gether with lots of GNU utilities) developed cooperatively over the Internet in
much the same spirit as FlightGear itself. FlightGear also runs and is partly de-
veloped under several flavors of Windows. Building FlightGear is also possible on
a Macintosh OSX and several different UNIX/X11 workstations. Given you have
a proper compiler installed, FlightGear can be built under all of these platforms.
The primary compiler for all platforms is the free GNU C++ compiler (the Cygnus
Cygwin compiler under Win32).

If you want to run FlightGear under Mac OSX we suggest a Power PC G3 300
MHz or better. As a graphics card we would suggest an ATI Rage 128 based card
as a minimum. Joysticks are supported under Mac OS 9.x only; there is no joystick
support under Max OSX at this time.

1.3 Choosing A Version

Previously the FlightGear source code existed in two branches, a stable branch
and a developmental branch. Even version numbers like 0.6, 0.8, and (someday
hopefully) 1.0 refer to stable releases, while odd numbers like 0.7, 0.9, and so on
refer to developmental releases. This policy has been obsoleted by practical rea-
sons - mostly because stable releases got out-ouf-date and behind in features very
fast and the so called development releases had been proven to be of comparable
stability.

18 1. WANT TO HAVE A FREE FLIGHT?

You are invited to fetch the “latest official release” which the pre-compiled
binaries are based on. It is available from

http://www.flightgear.org/Downloads/

If you really want to get the very latest and greatest (and, at times, buggiest)
code, you can use a tool called anonymous cvs to get the recent code. A detailed
description of how to set this up for FlightGear can be found at

http://www.flightgear.org/cvsResources/.

Given that the recent developmental versions on the other hands may contain bugs
(. . . undocumented features), we recommend using the “latest official (unstable)
release” for the average user. This is the latest version named at

http://www.flightgear.org/News/.

1.4 Flight Dynamics Models

Historically, FlightGear has been based on a flight model it inherited (together
with the Navion airplane) from LaRCsim. As this had several limitations (most
important, many characteristics were hard wired in contrast to using configuration
files), there were several attempts to develop or include alternative flightmodels.
As a result, FlightGear supports several different flight models, to be chosen from
at runtime.

The most important one is the JSB flight model developed by Jon Berndt. Ac-
tually, the JSB flight model is part of a stand-alone project called JSBSim, having
its home at

http://jsbsim.sourceforge.net/.

Concerning airplanes, the JSB flight model at present provides support for a Cessna
172, a Cessna 182, a Cessna 310, and for an experimental plane called X15. Jon
and his group are gearing towards a very accurate flight model, and the JSB model
has become FlightGear’s default flight model.

As an interesting alternative, Christian Mayer developed a flight model of a hot
air balloon. Moreover, Curt Olson integrated a special “UFO” slew mode, which
helps you to quickly fly from point A to point B.

Recently, Andrew Ross contributed another flight model called YASim for Yet
Another Simulator. At present, it sports another Cessna 172, a Turbo 310, a fairly
good DC-3 model, along with a Boeing 747, Harrier, and A4. YASim takes a fun-
damentally different approach since it’s based on geometry information rather than
aerodynamic coefficients. Where JSBSim will be exact for every situation that is
known and flight tested, but may have odd and/or unrealistic behavior outside nor-
mal flight, YASim will be sensible and consistent in almost every flight situation,
but is likely to differ in performance numbers.

As a further alternative, there is the UIUC flight model, developed by a team
at the University of Illinois at Urbana-Champaign. This work was initially geared

http://www.flightgear.org/Downloads/
http://www.flightgear.org/cvsResources/
http://www.flightgear.org/News/
http://jsbsim.sourceforge.net/

1.5. ABOUT THIS GUIDE 19

toward modeling aircraft in icing conditions together with a smart icing system to
better enable pilots to fly safely in an icing encounter. While this research con-
tinues, the project has expanded to include modeling “nonlinear” aerodynamics,
which result in more realism in extreme attitudes, such as stall and high angle of
attack flight. Two good examples that illustrate this capability are the Airwave
Xtreme 150 hang glider and the 1903 Wright Flyer. For the hang glider, throttle
can be use to fly to gliding altitude or Ctrl-U can be used to jump up in 1000-ft
increments. Try your hand at the unstable Wright Flyer and don’t stall the canard!
Considerable up elevator trim will be required for level flight. In general, the aero-
dynamics are probably very close to the original Wright Flyer as they are partly
based on experimental data taken on a replica tested recently at the NASA Ames
Research Center. Also included are two more models, a Beech 99 and Marchetti
S-211 jet trainer, which are older generation UIUC/FGFS models and based on
simpler “linear” aerodynamics. More details of the UIUC flight model and a list of
aircraft soon to be upgraded can be found on their website at

http://amber.aae.uiuc.edu/˜m-selig/apasim.html

Note that the 3D models of the UIUC airplanes can be downloaded from a site
maintained by Wolfram Kuss

http://home.t-online.de/home/Wolfram.Kuss/

It is even possible to drive FlightGear’s scene display using an external FDM
running on a different computer or via named pipe on the local machine – although
this might not be a setup recommended to people just getting in touch with Flight-
Gear.

1.5 About This Guide

There is little, if any, material in this Guide that is presented here exclusively.
You could even say with Montaigne that we “merely gathered here a big bunch
of other men’s flowers, having furnished nothing of my own but the strip to hold
them together”. Most (but fortunately not all) of the information herein can also be
obtained from the FlightGear web site located at

http://www.flightgear.org/

Please, keep in mind that there are several mirrors of the FlightGear web sites,
all of which are linked to from the FlightGear homepage listed above. You may
prefer to download FlightGear from a mirror closer to you than from the main site.

This FlightGear Installation and Getting Started manual is intended to be a
first step towards a complete FlightGear documentation. The target audience is
the end-user who is not interested in the internal workings of OpenGL or in build-
ing his or her own scenery. It is our hope, that someday there will be an accom-
panying FlightGear Programmer’s Guide (which could be based on some of the
documentation found at

http://amber.aae.uiuc.edu/~m-selig/apasim.html
http://home.t-online.de/home/Wolfram.Kuss/
http://www.flightgear.org/

20 1. WANT TO HAVE A FREE FLIGHT?

http://www.flightgear.org/Docs;

a FlightGear Scenery Design Guide, describing the Scenery tools now packaged
as TerraGear; and a FlightGear Flight School package.

As a supplement, we recommend reading the FlightGear FAQ to be found at
http://www.flightgear.org/Docs/FlightGear-FAQ.html
which has a lot of supplementary information that may not be included in this

manual.
We kindly ask you to help us refine this document by submitting correc-

tions, improvements, and suggestions. All users are invited to contribute de-
scriptions of alternative setups (graphics cards, operating systems etc.). We
will be more than happy to include those into future versions of this Installa-
tion and Getting Started (of course not without giving credit to the authors).

While we intend to continuously update this document, we may not be able to
produce a new version for every single release of FlightGear. To do so would re-
quire more manpower that we have now, so please feel free to jump in and help out.
We hope to produce documentation that measures up to the quality of FlightGear
itself.

http://www.flightgear.org/Docs
http://www.flightgear.org/Docs/FlightGear-FAQ.html

Chapter 2

Preflight: Installing FlightGear

To run FlightGear you need to install the binaries. Once you’ve done this you may
install additional scenery and aircraft if you wish.

Pre-compiled binaries for the latest release are available for

• Windows - any flavor,

• Macintosh OSX,

• Linux,

• SGI Irix.

To download them go to

http://www.flightgear.org/Downloads/binary.shtml

and follow the instructions provided on the page.
If you are running on another OS, or wish to compile for yourself, see Ap-

pendix B, Building the plane: Compiling the program.

2.1 Installing scenery

The FlightGear base package contains scenery for a small area around San Fran-
sisco, but the entire world is available at a high level of detail, so you will almost
certainly wish to install extra scenery at some point.

The scenery is based on SRTM elevation data (accurate to 30m in the USA,
and 90m elsewhere and) VMap0 land use data. Additionally, various people have
created buildings, bridges and other features to enrich the environment.

You can download scenery in 10 degree by 10 degree chunks from a clickable
map at

http://www.flightgear.org/Downloads/scenery.html

21

http://www.flightgear.org/Downloads/binary.shtml
http://www.flightgear.org/Downloads/scenery.html

22 CHAPTER 2. PREFLIGHT: INSTALLING FLIGHTGEAR

Curt Olson also provides the USA or the entire world along with the latest
FlightGear release on DVD from here http://cdrom.flightgear.org/

If you are interested in generating your own scenerey, have a look at http://www.terragear.org/,
the tools that generate the scenery for FlightGear.

Finally, an alternative data set was produced by William Riley and is available
from http://www.randdtechnologies.com/fgfs/newScenery/world-scenery.html.

Whatever scenery you shoose to download, it should be kept in a separate di-
rectory from the scenery delivered with the binaries.

To do this, create a WorldScenery directory in the FlightGear data direc-
tory, usually

c:\Program Files\FlightGear\data
on Windows or

/usr/local/share/FlightGear/data
on *nix.

Underneath this directory create Terrain and Objects subdirectories. These
are used for terrain information and buildings/bridges/structures respectively.

Unpack the downloaded scenery into the WorldScenery/Terrain. Do
not de-compress the numbered scenery files like 958402.gz! This will be done by
FlightGear on the fly.

As an example, consider installation of the scenery package w120n30 contain-
ing the Grand Canyon Scenery into an installation located at

/usr/local/share/FlightGear.
Once your installation is complete, you’ll have the following directories

/usr/local/FlightGear/data/WorldScenery/Objects/
/usr/local/FlightGear/data/WorldScenery/Terrain/w120n30/w112n30
/usr/local/FlightGear/data/WorldScenery/Terrain/w120n30/w112n31
...
/usr/local/FlightGear/data/WorldScenery/Terrain/w120n30/w120n39

As well as the scenery itself, objects such as bridges, skyscrapers, radio masts
can be downloaded from http://fgfsdb.stockill.org. See the website for more infor-
mation. You can exploit FG_SCENERY environmental variable or the --fg-scenery=path

command line option if you want to install different scenery sets in parallel or want
to have scenery sitting in another place. These are more fully described in Chapter
3.

2.2 Installing aircraft

The base FlightGear package contains only a small subset of the aircraft that are
available for FlightGear. Developers have created a wide range of aircraft, from
WWII fighters like the Spitfire, to passenger planes like the Boeing 747.

http://cdrom.flightgear.org/
http://www.terragear.org/
http://www.randdtechnologies.com/fgfs/newScenery/world-scenery.html
http://fgfsdb.stockill.org

2.3. INSTALLING DOCUMENTATION 23

You can download aircraft from

http://www.flightgear.org/Downloads/aircraft/index.shtml

Simply download the file and unpack it into the FlightGear/data/Aircraft
subdirectory of your installation. Next time you run FlightGear, the new aircraft
will be available.

2.3 Installing documentation

Most of the packages named above include the complete FlightGear documenta-
tion including a ṗdf version of this Installation and Getting Started Guide intended
for pretty printing using Adobe’s Acrobat Reader being available from

http://www.adobe.com/acrobat

Moreover, if properly installed, the ḣtml version can be accessed via FlightGear’s
help menu entry.

Besides, the source code contains a directory docs-mini containing numer-
ous ideas on and solutions to special problems. This is also a good place for further
reading.

http://www.flightgear.org/Downloads/aircraft/index.shtml
http://www.adobe.com/acrobat

24 CHAPTER 2. PREFLIGHT: INSTALLING FLIGHTGEAR

Part II

Flying with FlightGear

25

Chapter 3

Takeoff: How to start the
program

3.1 Launching the simulator under Unix/Linux

Fig. 3: Ready for takeoff. Waiting at the default startup position at San Francisco
Itl., KSFO.

Before you can run FlightGear, you need to have a couple of environmental
variables set.

27

28 3. TAKEOFF

• You must add /usr/local/share/FlightGear/lib to your LD_LIBRARY_PATH

• FG_HOME must be set to the root of your FlightGear installation. e.g.
/usr/local/share/FlightGear.

• FG_ROOT must be set to the date directory of your FlightGear installation.
e.g. /usr/local/share/FlightGear/data.

• FG_SCENERY should be a list of scenery directories, separated by ”:”. This
works like PATH when searching for scenery.

e.g. $FG_ROOT/Scenery:$FG_ROOT/WorldScenery.

To add these in the Bourne shell (and compatibles):

LD_LIBRARY_PATH=/usr/local/share/FlightGear/lib:$LD_LIBRARY_PATH
export LD_LIBRARY_PATH
FG_HOME=/usr/local/share/FlightGear
export FG_HOME
FG_ROOT=/usr/local/share/FlightGear/data
export FG_ROOT
FG_SCENERY=$FG_ROOT/Scenery:$FG_ROOT/WorldScenery
export FG_SCENERY

or in C shell (and compatibles):

setenv LD_LIBRARY_PATH=\
/usr/local/share/FlightGear/lib:$LD_LIBRARY_PATH

setenv FG_HOME=/usr/local/share/FlightGear
setenv FG_ROOT=/usr/local/share/FlightGear/data
setenv FG_SCENERY=\
$FG_HOME/Scenery:$FG_ROOT/Scenery:$FG_ROOT/WorldScenery

Once you have these environmental variables set up, simply start FlightGear by
running fgfs --option1 --option2.... Command-line options are de-

scribed in Chapter 3.4.

3.2 Launching the simulator under Windows

The pre-built windows binaries come complete with a graphical wizard to start
FlightGear. Simply double-click on the FlightGear Launcher Start Menu
item, or the icon on the Desktop. The launcher allows you to select

• your aircraft

• the start airport and runway

• time of day

3.2. LAUNCHING THE SIMULATOR UNDER WINDOWS 29

• current weather

• . . . and whole lot of other environmental settings

Fig. 4: The FlightGear Launcher

The first time your run it, you will be asked to set your FG_ROOT variable (nor-
mally c:\Program Files\FlightGear\data) and FG_SCENERY. This should
be a list of the directories where you have installed scenery, typically c:\Program
Files\FlightGear\data\scenery and c:\Program Files\FlightGear\data\WorldScenery.

Alternatively, you can run FlightGear from the command line. Open a com-
mand shell, change to the directory where your binary resides (typically something
like c:\Program Files\FlightGear\Win32\bin), set the environment
variables by typing

SET FG_HOME="c:\Program Files\FlightGear"
SET FG_ROOT="c:\Program Files\FlightGear\data"
SET FG_SCENERY="c:\Program Files\FlightGear\data\Scenery";\
"c:\Program Files\FlightGear\data\WorldScenery"

and invoke FlightGear (within the same Command shell, as environment settings
are only valid locally within the same shell) via

fgfs --option1 --option2...

Of course, you can create a batch file with a Windows text editor (like notepad)
using the lines above.

For getting maximum performance it is recommended to minimize (iconize)
the text output window while running FlightGear.

30 3. TAKEOFF

3.3 Launching the simulator under Mac OS X

Say, you downloaded the base package and binary to your home directory. Then
you can open Terminal.app and execute the following sequence:

setenv FG_ROOT ~/fgfs-base-X.X.X
./fgfs-X.X.X.-date --option1 --option 2

or

./fgfs-X.X.X-version-date --fg-root=\~/fgfs-base-X.X.X --option1

3.4 Command line parameters

Following is a complete list and short description of the numerous command line
options available for FlightGearṀost of these options are exposed through the
FlightGear launcher delivered with the Windows binaries.

If you have options you re-use continually, you can include them in a prefer-
ences file. As it depends on your preferences, it is not delivered with FlightGear,
but can be created with any text editor (notepad, emacs, vi, if you like).

• On Unix systems, create a .fgfsrc file in your home directory.

• On Windows, create a system.fgfsrc, in the top FG_ROOT directory
(e.g. c:\Program Files\FlightGear).

3.4.1 General Options

• --help: Shows the most relevant command line options only.

• --help -verbose: Shows all command line options.

• --fg-root=path: Tells FlightGear where to look for its root data files if
you didn’t compile it with the default settings.

• --fg-scenery=path: Allows specification of a path to the base scenery
path , in case scenery is not at the default position under
$FG ROOT/Scenery; this might be especially useful in case you have
scenery on a CD-ROM.

• --disable-game-mode: Disables full screen display.

• --enable-game-mode: Enables full screen display.

• --disable-splash-screen: Turns off the rotating 3DFX logo when
the accelerator board gets initialized (3DFX only).

3.4. COMMAND LINE PARAMETERS 31

• --enable-splash-screen: If you like advertising, set this!

• --disable-intro-music: No audio sample is being played when Flight-
Gear starts up. Suggested in case of trouble with playing the intro.

• --enable-intro-music: If your machine is powerful enough, enjoy
this setting.

• --disable-mouse-pointer: Disables extra mouse pointer.

• --enable-mouse-pointer: Enables extra mouse pointer. Useful in
full screen mode for old Voodoo based cards.

• --enable-random-objects: Include random scenery objects (build-
ings/trees). This is the default.

• --disable-random-objects: Exclude random scenery objects (build-
ings/trees).

• --disable-freeze: This will put you into FlightGear with the engine
running, ready for Take-Off.

• --enable-freeze: Starts FlightGear in frozen state.

• --disable-fuel-freeze: Fuel is consumed normally.

• --enable-fuel-freeze: Fuel tank quantity is forced to remain con-
stant.

• --disable-clock-freeze: Time of day advances normally.

• --enable-clock-freeze: Do not advance time of day.

• --control-mode: Specify your control device (joystick, keyboard, mouse)
Defaults to joystick (yoke).

• --disable-auto-coordination: Switches auto coordination between
aileron/rudder off (default).

• --enable-auto-coordination: Switches auto coordination between
aileron/rudder on (recommended without pedals).

• --browser-app=/path/to/app: specify location of your web browser.
Example: --browser-app=
”C:\Program Files\Internet Explorer\iexplore.exe” (Note
the ” ” because of the spaces!).

32 3. TAKEOFF

• --prop:name=value: set property name to value
Example: --prop:/engines/engine0/running=true for starting
with running engines. Another example:
--aircraft=c172
--prop:/consumables/fuels/tank[0]/level-gal=10
--prop:/consumables/fuels/tank[1]/level-gal=10
filles the Cessna for a short flight.

• --config=path: Load additional properties from the given path. Exam-
ple: runfgfs --config=./Aircraft/X15-set.xml

• --units-feet: Use feet for distances.

• --units-meters: Use meters for distances.

3.4.2 Features

• --disable-hud: Switches off the HUD (Head Up Display).

• --enable-hud: Turns the HUD on.

• --enable-anti-aliased-hud: Turns on anti-aliaseded HUD lines
for better quality, if hardware supports this.

• --disable-anti-aliased-hud: Turns off anti-aliaseded HUD lines.

• --enable-panel: Turns the instrument panel on (default).

• --disable-panel: Turns the instrument panel off.

• --disable-sound: Self explaining.

• --enable-sound: See above.

3.4.3 Aircraft

• --aircraft=name of aircraft definition file Example: --aircraft=c310.
For possible choices check the directory /FlightGear/Aircraft. Do
not include the extension ”-set.xml” into the aircraft name but use the
remaining beginning of the respective file names for choosing an aircraft.
This way flight model, panel etcȧre all loaded in a consistent way. For a full
list, see Sec. 3.6 below.

• --show-aircraft: Print a sorted list of the currently available aircraft
types.

3.4. COMMAND LINE PARAMETERS 33

3.4.4 Flight model

• --fdm=abcd Select the core flight model. Options are jsb, larcsim,
yasim, magic, balloon, external, pipe, ada, null. De-
fault value is jsb (JSBSim). larcsim is the flight model which Flight-
Gear inherited from the LaRCSim simulatorẏasim is Any Ross’ Yet Another
Flight Dynamics Simulator. Magic is a slew mode (which drives the UFO
aircraft). Balloon is a hot air balloon. External refers to remote control of
the simulator via TCP socket, pipe is for local control via named pipe. Null
selects no flight dynamics model at all. The UIUC flight model is not chosen
this way but via the next option! For further information on flight models cf.
Section 1.4 and below.

• --aero=abcd Specifies the aircraft model to load. Default is a Cessna
c172. Alternatives available depend on the flight model chosen.

• --model-hz=n Run the Flight Dynamics Model with this rate (iterations
per second).

• --speed=n Run the Flight Dynamics Model this much faster than real
time.

• --notrim Do NOT attempt to trim the model when initializing JSBSim.

• --on-ground: Start up at ground level (default).

• --in-air: Start up in the air. Naturally, you have to specify an initial
altitude as below for this to make sense. This is a must for the X15.

• --wind=DIR@SPEED: Specify wind coming from the direction DIR (in
degrees) at speed SPEED (knots). Values may be specified as a range by
using a clon separator; e.g. 180:220@10:15

• --random-wind: Adds random wind to make flying more challenging

3.4.5 Initial Position and Orientation

• --airport-id=ABCD: If you want to start directly at an airport, enter its
international code, i.e. KJFK for JFK airport in New York etc. A long/short
list of the IDs of the airports being implemented can be found in /Flight
Gear/Airports. You only have to unpack one of the files with gunzip.
Keep in mind, you need the terrain data for the relevant region, though!

• --offset-distance=nm: Here you can specify the distance to thresh-
old in nm.

• --offset-azimuth=deg: Here you can specify the heading to threshold
in degrees.

34 3. TAKEOFF

• --lon=degrees: This is the startup longitude in degrees (west = -).

• --lat=degrees: This is the startup latitude in degrees (south = -).

• --altitude=feet: This is useful if you want to start in free flight in
connection with --in-air. Altitude specified in feet unless you choose
--units-meters.

• --heading=degrees: Sets the initial heading (yaw angle) in degrees.

• --roll=degrees: Sets the startup roll angle (roll angle) in degrees.

• --pitch=degrees: Sets the startup pitch angle (pitch angle) in degrees.

• --uBody=feet per second: Speed along the body X axis in feet per second,
unless you choose --units-meters.

• --vBody=feet per second: Speed along the body Y axis in feet per second,
unless you choose --units-meters.

• --wBody=feet per second: Speed along the body Z axis in feet per second,
unless you choose --units-meters.

• --vc=knots: Allows specifying the initial airspeed in knots (only in con-
nection with --fdm=jsb).

• --mach=num: Allows specifying the initial airspeed as Mach number (only
in connection with --fdm=jsb).

• --glideslope=degrees: Allows specifying the flight path angle (can be
positive).

• --roc=fpm: Allows specifying the initial climb rate (can be negative).

3.4.6 Rendering Options

• --bpp=depth: Specify the bits per pixel.

• --fog-disable: To cut down the rendering efforts, distant regions are
vanishing in fog by default. If you disable fogging, you’ll see farther but
your frame rates will drop.

• --fog-fastest: The scenery will not look very nice but frame rate will
increase.

• --fog-nicest: This option will give you a fairly realistic view of flying
on a hazy day.

• --enable-clouds: Enable cloud layer (default).

3.4. COMMAND LINE PARAMETERS 35

• --disable-clouds: Disable cloud layer.

• --fov=degrees: Sets the field of view in degrees. Default is 55.0.

• --disable-fullscreen: Disable full screen mode (default).

• --enable-fullscreen: Enable full screen mode.

• --shading-flat: This is the fastest mode but the terrain will look ugly!
This option might help if your video processor is really slow.

• --shading-smooth: This is the recommended (and default) setting -
things will look really nice.

• --disable-skyblend: No fogging or haze, sky will be displayed using
just one color. Fast but ugly!

• --enable-skyblend: Fogging/haze is enabled, sky and terrain look re-
alistic. This is the default and recommended setting.

• --disable-textures: Terrain details will be disabled. Looks ugly, but
might help if your video board is slow.

• --enable-textures: Default and recommended.

• --enable-wireframe: If you want to know how the world of Flight-
Gear looks like internally, try this!

• --disable-wireframe: No wireframe. Default.

• --geometry=WWWxHHH: Defines the size of the window used, i.e. WWWxHHH
can be 640x480, 800x600, or 1024x768.

• --view-offset=xxx: Allows setting the default forward view direction
as an offset from straight ahead. Possible values are LEFT, RIGHT, CENTER,
or a specific number of degrees. Useful for multi-window display.

• --visibility=meters: You can specify the initial visibility in meters
here.

• --visibility-miles=miles: You can specify the initial visibility in
miles here.

3.4.7 HUD Options

• --hud-tris: HUD displays the number of triangles rendered.

• --hud-culled: HUD displays percentage of triangles culled.

36 3. TAKEOFF

3.4.8 Time Options

• --time-offset=[+-]hh:mm:ss: Offset local time by this amount.

• --time-match-real: Synchronize real-world and FlightGear time.

• --time-match-local: Synchronize local real-world and FlightGear
time.

• --start-date-sys=yyyy:mm:dd:hh:mm:ss: Specify a starting time and
date. Uses your system time.

• --start-date-gmt=yyyy:mm:dd:hh:mm:ss: Specify a starting time and
date. Time is Greenwich Mean Time.

• --start-date-lat=yyyy:mm:dd:hh:mm:ss: Specify a starting time and
date. Uses local aircraft time.

3.4.9 Network Options

• --httpd=port: Enable http server on the specified port.

• --telnet=port: Enable telnet server on the specified port.

• --jpg-httpd=port: Enable screen shot http server on the specified port.

• --enable-network-olk: Enables Oliver Delises’s multi-pilot mode.

• --disable-network-olk: Disables Oliver Delises’s multi-pilot mode
(default).

• --net-hud: HUD displays network info.

• --net-id=name: Specify your own callsign

3.4.10 Route/Waypoint Options

• --wp=ID[@alt]: Allows specifying a waypoint for the GC autopilot; it is
possible to specify multiple waypoints (i.eȧ route) via multiple instances of
this command.

• --flight-plan=[file]: This is more comfortable if you have several
waypoints. You can specify a file to read them from.

Note: These options are rather geared to the advanced user who knows what
he is doing.

3.5. JOYSTICK SUPPORT 37

3.4.11 IO Options

• --garmin=params: Open connection using the Garmin GPS protocol.

• --joyclient=params: Open connection to an Agwagon joystick.

• --native-ctrls=params: Open connection using the FG native Con-
trols protocol.

• --native-fdm=params: Open connection using the FG Native FDM pro-
tocol.

• --native=params: Open connection using the FG Native protocol.

• --nmea=params: Open connection using the NMEA protocol.

• --opengc=params: Open connection using the OpenGC protocol.

• --props=params: Open connection using the interactive property man-
ager.

• --pve=params: Open connection using the PVE protocol.

• --ray=params: Open connection using the RayWoodworth motion chair
protocol.

• --rul=params: Open connection using the RUL protocol.

• --atc610x: Enable atc610x interface.

3.4.12 Debugging options

• --trace-read=params: Trace the reads for a property; multiple instances
are allowed.

• --trace-write=params: Trace the writes for a property; multiple in-
stances are allowed.

3.5 Joystick support

Could you imagine a pilot in his or her Cessna controlling the machine with a key-
board alone? For getting the proper feeling of flight you will need a joystick/yoke
plus rudder pedals, right? However, the combination of numerous types of joy-
sticks, flightsticks, yokes, pedals etcȯn the market with the several target operating
systems, makes joystick support a nontrivial task in FlightGear.

Beginning with version 0.8.0, FlightGear has a reworked integrated joystick
support, which automatically detects any joystick, yoke, or pedals attached. Just
try it! If this does work for you, lean back and be happy!

38 3. TAKEOFF

Unfortunately, given the several combinations of operating systems supported
by FlightGear (possibly in foreign languages) and joysticks available, chances are
your joystick does not work out of the box. Basically, there are two alternative
approaches to get it going, with the first one being preferred.

3.5.1 Built-in joystick support

General remarks

In order for joystick auto-detection to work, a joystick bindings xml file must exist
for each joystick. This file describes what axes and buttons are to be used to control
which functions in FlightGear. The associations between functions and axes or
buttons are called “bindings”. This bindings file can have any name as long as a
corresponding entry exists in the joysticks description file

/FlightGear/joysticks.xml

which tells FlightGear where to look for all the bindings files. We will look at
examples later.

FlightGear includes several such bindings files for several joystick manufac-
turers in folders named for each manufacturer. For example, if you have a CH
Products joystick, look in the folder

/FlightGear/Input/Joysticks/CH

for a file that might work for your joystick. If such a file exists and your joystick
is working with other applications, then it should work with FlightGear the first
time you run it. If such a file does not exist, then we will discuss in a later section
how to create such a file by cutting and pasting bindings from the examples that
are included with FlightGear.

Verifying your joystick is working

Does your computer see your joystick? One way to answer this question under
Linux is to reboot your system and immediately enter on the command line

dmesg | grep Joystick

which pipes the boot message to grep which then prints every line in the boot mes-
sage that contains the string “Joystick”. When you do this with a Saitek joystick
attached, you will see a line similar to this one:

input0: USB HID v1.00 Joystick [SAITEK CYBORG 3D USB] on
usb2:3.0

This line tells us that a joystick has identified itself as SAITEK CYBORG 3D USB
to the operating system. It does not tell us that the joystick driver sees your joystick.
If you are working under Windows, the method above does not work, but you can
still go on with the next paragraph.

3.5. JOYSTICK SUPPORT 39

Confirming that the driver recognizes your joystick

FlightGear ships with a utility called js demo. It will report the number of joysticks
attached to a system, their respective “names”, and their capabilities. Under Linux,
you can run js demo from the folder /FlightGear/bin as follows:

$ cd /usr/local/FlightGear/bin
$ /̇js demo

Under Windows, open a command shell (Start|All Programs|Accessories), go to
the FlightGear binary folder and start the program as follows (given FlightGear is
installed under c:\Flightgear)

cd \FlightGear\bin
js demo.exe

On our system, the first few lines of output are (stop the program with ˆ C if it
is quickly scrolling past your window!) as follows:

Joystick test program.

Joystick 0: “CH PRODUCTS CH FLIGHT SIM YOKE USB ”

Joystick 1: “CH PRODUCTS CH PRO PEDALS USB”

Joystick 2 not detected

Joystick 3 not detected

Joystick 4 not detected

Joystick 5 not detected

Joystick 6 not detected

Joystick 7 not detected

+-------------JS.0---------------+-------------JS.1---------------+

| Btns Ax:0 Ax:1 Ax:2 Ax:3 Ax:4 Ax:5 Ax:6 | Btns Ax:0 Ax:1 Ax:2 |

+-------------------------------+-------------------------------+

| 0000 +0.0 +0.0 +1.0 -1.0 -1.0 +0.0 +0.0 . | 0000 -1.0 -1.0 -1.0 |

First note that js demo reports which number is assigned to each joystick recog-
nized by the driver. Also, note that the “name” each joystick reports is also in-
cluded between quotes. We will need the names for each bindings file when we
begin writing the binding xml files for each joystick.

Identifying the numbering of axes and buttons

Axis and button numbers can be identified using js demo as follows. By observing
the output of js demo while working your joystick axes and buttons you can deter-
mine what axis and button numbers are assigned to each joystick axis and button.
It should be noted that numbering generally starts with zero.

The buttons are handled internally as a binary number in which bit 0 (the least
significant bit) represents button 0, bit 1 represents button 1, etc., but this number
is displayed on the screen in hexadecimal notation, so:

40 3. TAKEOFF

0001 ⇒ button 0 pressed
0002 ⇒ button 1 pressed
0004 ⇒ button 2 pressed
0008 ⇒ button 3 pressed
0010 ⇒ button 4 pressed
0020 ⇒ button 5 pressed
0040 ⇒ button 6 pressed
... etcu̇p to ...
8000 ⇒ button 15 pressed
... and ...
0014 ⇒ buttons 2 and 4 pressed simultaneously
... etc.

For Linux users, there is another option for identifying the “name” and the
numbers assigned to each axis and button. Most Linux distributions include a very
handy program, “jstest”. With a CH Product Yoke plugged into the system, the
following output lines are displayed by jstest:

jstest /dev/js3

Joystick (CH PRODUCTS CH FLIGHT SIM YOKE USB) has 7 axes and 12 buttons. Driver version is 2.1.0

Testing...(interrupt to exit)

Axes: 0: 0 1: 0 2: 0 3: 0 4: 0 5: 0 6: 0 Buttons: 0:off 1:off 2:off 3:on 4:off 5:off 6:off 7:off

8:off 9:off 10:off 11:off

Note the “name” between parentheses. This is the name the system associates with
your joystick.

When you move any control, the numbers change after the axis number corre-
sponding to that moving control and when you depress any button, the “off” after
the button number corresponding to the button pressed changes to “on”. In this
way, you can quickly write down the axes numbers and button numbers for each
function without messing with binary.

Writing or editing joystick binding xml files

At this point, you have confirmed that the operating system and the joystick driver
both recognize your joystick(s). You also know of several ways to identify the
joystick “name” your joystick reports to the driver and operating system. You will
need a written list of what control functions you wish to have assigned to which
axis and button and the corresponding numbers.

Make the following table from what you learned from js demo or jstest above
(pencil and paper is fine). Here we assume there are 5 axes including 2 axes asso-
ciated with the hat.

3.5. JOYSTICK SUPPORT 41

Axis Button
elevator = 0 view cycle = 0
rudder = 1 all brakes = 1
aileron = 2 up trim = 2
throttle = 3 down trim = 3

leftright hat = 4 extend flaps = 4
foreaft hat = 5 retract flaps = 5

decrease RPM = 6
increase RPM = 7

We will assume that our hypothetical joystick supplies the “name” QUICK
STICK 3D USB to the system and driver. With all the examples included with
FlightGear, the easiest way to get a so far unsupported joystick to be auto detected,
is to edit an existing binding xml file. Look at the xml files in the sub-folders
of /FlightGear/Input/Joysticks/. After evaluating several of the xml
binding files supplied with FlightGear, we decide to edit the file
/FlightGear/Input/Joysticks/Saitek/Cyborg-Gold-3d-USB.xml.
This file has all the axes functions above assigned to axes and all the button func-
tions above assigned to buttons. This makes our editing almost trivial.

Before we begin to edit, we need to choose a name for our bindings xml file,
create the folder for the QS joysticks, and copy the original xml file into this direc-
tory with this name.

$ cd /usr/local/FlightGear/Input/Joysticks
$ mkdir QS
$ cd QS
$ cp /usr/local/FlightGear/Input/Joysticks/Saitek/
Cyborg-Gold-3d-USB.xml QuickStick.xml

Here, we obviously have supposed a Linux/UNIX system with FlightGear be-
ing installed under /usr/local/FlightGear. For a similar procedure under
Windows with FlightGear being installed under c:FlightGear, open a com-
mand shell and type

c:
cd /FlightGear/Input/Joysticks
mkdir QS
cd QS
copy /FlightGear/Input/Joysticks/Saitek/
Cyborg-Gold-3d-USB.xml QuickStick.xml

Next, open QuickStick.xml with your favorite editor. Before we forget to
change the joystick name, search for the line containing <name>. You should find
the line

<name>SAITEK CYBORG 3D USB</name>

and change it to

42 3. TAKEOFF

<name>QUICK STICK 3D USB</name>.

This line illustrates a key feature of xml statements. They begin with a <tag> and
end with a </tag>.

You can now compare your table to the comment table at the top of your file
copy. Note that the comments tell us that the Saitek elevator was assigned to axis
1. Search for the string

<axis n="1">

and change this to

<axis n="0">.

Next, note that the Saitek rudder was assigned to axis 2. Search for the string

<axis n="2">

and change this to

<axis n="1">.

Continue comparing your table with the comment table for the Saitek and changing
the axis numbers and button numbers accordingly. Since QUICKSTICK USB and
the Saitek have the same number of axes but different number of buttons, you must
delete the buttons left over. Just remember to double check that you have a closing
tag for each opening tag or you will get an error using the file.

Finally, be good to yourself (and others when you submit your new binding file
to a FlightGear developers or users archive!), take the time to change the comment
table in the edited file to match your changed axis and button assignments. The new
comments should match the table you made from the js demo output. Save your
edits.

Several users have reported that the numbers of axes and buttons assigned to
functions may be different with the same joystick under Windows and Linux. The
above procedure should allow one to easily change a binding xml file created for a
different operating system for use by their operating system.

Telling FlightGear about your new bindings xml file

Before FlightGear can use your new xml file, you need to edit the file
/FlightGear/joysticks.xml,
adding a line that will include your new file if the “name” you entered between
the name tags matches the name supplied to the driver by your joystick. Add the
following line to joysticks.xml.

<js-named include="Input/Joysticks/QS/QuickStick.xml"/>

3.5. JOYSTICK SUPPORT 43

Some hints for Windows users

Basically, the procedures described above should work for Windows as well. If
your joystick/yoke/pedals work out of the box or if you get it to work using the
methods above, fine. Unfortunately there may be a few problems.

The first one concerns users of non-US Windows versions. As stated above,
you can get the name of the joystick from the program js demo. If you have a non-
US version of Windows and the joystick .xml files named above do not contain that
special name, just add it on top of the appropriate file in the style of

<name>Microsoft-PC-Joysticktreiber </name>

No new entry in the base joysticks.xml file is required.
Unfortunately, there is one more loophole with Windows joystick support. In

case you have two USB devices attached (for instance a yoke plus pedals), there
may be cases, where the same driver name is reported twice. In this case, you can
get at least the yoke to work by assigning it number 0 (out of 0 and 1). For this
purpose, rotate the yoke (aileron control) and observe the output of js demo. If
figures in the first group of colons (for device 0) change, assignment is correct. If
figures in the second group of colons (for device 1) change, you have to make the
yoke the preferred device first. For doing so, enter the Windows “Control panel”,
open “Game controllers” and select the “Advanced” button. Here you can select
the yoke as the “Preferred” device. Afterward you can check that assignment by
running js demo again. The yoke should now control the first group of figures.

Unfortunately, we did not find a way to get the pedals to work, too, that way.
Thus, in cases like this one (and others) you may want to try an alternative method
of assigning joystick controls.

3.5.2 Joystick support via .fgfsrc entries

Fortunately, there is a tool available now, which takes most of the burden from the
average user who, maybe, is not that experienced with XML, the language which
these files are written in.

For configuring your joystick using this approach, open a command shell (com-
mand prompt under windows, to be found under Start|All programs|Accessories).
Change to the directory /FlightGear/bin via e.g. (modify to your path)
cd c:\FlightGear\bin

and invoke the tool fgjs via
./fgjs

on a UNIX/Linux machine, or via
fgjs

on a Windows machine. The program will tell you which joysticks, if any, were
detected. Now follow the commands given on screen, i.eṁove the axis and press
the buttons as required. Be careful, a minor touch already “counts” as a movement.
Check the reports on screen. If you feel something went wrong, just re-start the
program.

44 3. TAKEOFF

After you are done with all the axis and switches, the directory above will hold
a file called fgfsrc.js. If the FlightGear base directory FlightGear does
not already contain an options file .fgfsrc (under UNIX)/system.fgfsrc
(under Windows) mentioned above, just copy

fgfsrc.js into .fgfsrc (UNIX)/system.fgfsrc (Windows)

and place it into the directory FlightGear base directory FlightGear. In case
you already wrote an options file, just open it as well as fgfsrc.js with an
editor and copy the entries from fgfsrc.js into .fgfsrc/system.fgfsrc.
One hint: The output of fgjs is UNIX formatted. As a result, Windows Editor
may not display it the proper way. I suggest getting an editor being able to handle
UNIX files as well (and oldie but goldie in this respect is PFE, just make a web
search for it). My favorite freeware file editor for that purpose, although somewhat
dated, is still PFE, to be obtained from

http://www.lancs.ac.uk/people/cpaap/pfe/.

The the axis/button assignment of fgjs should, at least, get the axis assign-
ments right, its output may need some tweaking. There may be axes moving the
opposite way they should, the dead zones may be too small etc. For instance, I had
to change

-prop:/input/joysticks/js[1]/axis[1]/binding/factor=-1.0

into

-prop:/input/joysticks/js[1]/axis[1]/binding/factor=1.0

(USB CH Flightsim Yoke under Windows XP). Thus, here is a short introduc-
tion into the assignments of joystick properties.

Basically, all axes settings are specified via lines having the following structure:

--prop:/input/joysticks/js[n]/axis[m]/binding
/command=property-scale (one line)
--prop:/input/joysticks/js[n]/axis[m]/binding
/property=/controls/steering option (one line)
--prop:/input/joysticks/js[n]/axis[m]/binding
/dead-band=db (one line)
--prop:/input/joysticks/js[n]/axis[m]/binding
/offset=os (one line)
--prop:/input/joysticks/js[n]/axis[m]/binding
/factor=fa (one line)

where

http://www.lancs.ac.uk/people/cpaap/pfe/

3.6. A GLANCE OVER OUR HANGAR 45

n = number of device (usually starting with 0)
m = number of axis (usually starting with 0)

steering option = elevator, aileron, rudder, throttle, mixture, pitch
dead-band = range, within which signals are discarded;

useful to avoid jittering for minor yoke movements
offset = specifies, if device not centered in its neutral position
factor = controls sensitivity of that axis; defaults to +1,

with a value of -1 reversing the behavior

You should be able to at least get your joystick working along these lines.
Concerning all the finer points, for instance, getting the joystick buttons working,
John Check has written a very useful README being included in the base package
to be found under FlightGear/Docs/Readme/Joystick.html. In case
of any trouble with your input device, it is highly recommended to have a look into
this document.

3.6 A glance over our hangar

The following is a Table 1 of all the aircraft presently available for use with Flight-
Gear. In the first column, you will find the name of the aircraft, the second one
tells the start option, the third one names the FDM (flight dynamics management
model, see Sec. 1.4), and the last column includes some remarks. Here, “no exte-
rior model” means, that there is no aircraft specific external model provided with
the base package. As a result, you will see the default blue-yellow glider, when
you change to the external view. However, you can download external views for
these models from Wolfram Kuss’ site at

http://home.t-online.de/home/Wolfram.Kuss/.

Moreover, this list is complete insofar as it covers all aircraft available via the
--aircraft= option.

http://home.t-online.de/home/Wolfram.Kuss/

46 3. TAKEOFF

Tab. 1: Presently available aircraft in FlightGear.
Aircraft type Start option FDM Remarks
Boeing 747 --aircraft=747-yasim YASim
BA A4 Hawk --aircraft=a4-yasim YASim
North American X-15 --aircraft=X15 JSBSim experimental supersonic plane
Airwave Xtreme 150 --aircraft=airwaveXtreme150-

v1-nl-uiuc UIUC hang glider!
Beech 99 --aircraft=beech99-v1-uiuc UIUC no exterior model
Cessna 172 --aircraft=c172-3d JSBSim sports a 3D cockpit
Cessna 172 --aircraft=c172-3d-yasim YASim sports a 3D cockpit
Cessna 172 --aircraft=c172-ifr JSBSim with IFR panel
Cessna 172 --aircraft=c172-larcsim LaRCsim
Cessna 172 --aircraft=c172 JSBSim default
Cessna 172 --aircraft=c172-yasim YASim
Cessna 172p --aircraft=c172p-3d JSBSim sports a 3D cockpit
Cessna 172p --aircraft=c172p JSBSim
Cessna 172 --aircraft=c172x JSBSim flight dynamics testbed
Cessna 182 --aircraft=c182 JSBSim
Cessna 310 --aircraft=c310 JSBSim
Cessna 310 --aircraft=c310-yasim YASim twin-prop machine
Cessna 310U3A --aircraft=c310u3a-3d JSBSim twin-prop machine, 3D cockpit
Cessna 310U3A --aircraft=c310u3a JSBSim twin-prop machine
Douglas DC-3 --aircraft=dc3-yasim YASim
BA Harrier --aircraft=harrier-yasim YASim no exterior model
Piper Cub J3 Trainer --aircraft=j3cub-yasim YASim
Siai Marchetti S.211 --aircraft=marchetti-v1-uiuc UIUC no exterior model
Space Shuttle --aircraft=shuttle JSBSim no exterior model
UFO --aircraft=ufo JSBSim ‘White Project’ (UNESCO)
1903 Wright Flyer --aircraft=wrightFlyer1903-

v1-nl-uiuc UIUC historical model
X-24B --aircraft=x24b JSBSim USAF/NACA reentry testbed
Cessna 172 --aircraft=c172-610x JSBSim full screen, hi-res panel (IFR)

3.6. A GLANCE OVER OUR HANGAR 47

48 3. TAKEOFF

Chapter 4

In-flight: All about instruments,
keystrokes and menus

The following is a description of the main systems for controlling the program
and piloting the plane: Historically, keyboard controls were developed first, and
you can still control most of the simulator via the keyboard alone. Later on, they
were supplemented by several menu entries, making the interface more accessible,
particularly for beginners, and providing additional functionality.

For getting a real feeling of flight, you should definitely consider getting a joy-
stick or – preferred – a yoke plus rudder pedals. In any case, you can specify your
device of choice for control via the --control-mode option, i.eṡelect joystick,
keyboard, mouse. The default setting is joystick. Concerning instruments, there
are again two alternatives: You can use the panel or the HUD.

A short leaflet based on this chapter can be found at

http://www.flightgear.org/Docs/InstallGuide/FGShortRef.html.

A version of this leaflet can also be opened via FlightGear’s help menu.

4.1 Starting the engine

Depending on your situation, when you start the simulator the engines may be on
or off. When they are on you just can go on with the start. When they are off, you
have to start them first. The ignition switch for starting the engine is situated in the
lower left corner of the panel. It is shown in Fig. 4.

49

http://www.flightgear.org/Docs/InstallGuide/FGShortRef.html

50 4. FLIGHT

Fig. 4: The ignition switch.

It has five positions: “OFF”, “L”, “R”, “BOTH”, and “START”. The extreme
right position is for starting the engine. For starting the engine, put it onto the
position “BOTH” using the mouse first.

Keep in mind that the mixture lever has to be at 100 % (all the way in) for
starting the engine – otherwise you will fail. In addition, advance the throttle to
about 25 %.

Operate the starter using the SPACE key now. When pressing the SPACE key
you will observe the ignition switch to change to the position “START” and the
engine to start after a few seconds. Afterwards you can bring the throttle back to
idle (all the way out).

In addition, have a look if the parking brakes are on (red field lit). If so, press
the “B” button to release them.

4.2 Keyboard controls

While joysticks or yokes are supported as are rudder pedals, you can fly FlightGear
using the keyboard alone. For proper control of the plane during flight via the
keyboard (i) the NumLock key must be switched on (ii) the FlightGear window
must have focus (if not, click with the mouse onto the graphics window). Several
of the keyboard controls might be helpful even in case you use a joystick or yoke.

After activating NumLock the following main keyboard controls for driving
the plane should work:

4.2. KEYBOARD CONTROLS 51

Tab.,2: Main keyboard controls for FlightGear on the numeric keypad with acti-
vated NumLock. [U.S. keyboard uses "." instead of ","]

Key Action
9/3 Throttle
4/6 Aileron
8/2 Elevator
0/, Rudder
5 Center aileron/elevator/rudder
7/1 Elevator trim

For changing views you have to de-activate NumLock. Now Shift + <Numeric
Keypad Key> changes the view as follows:

Tab. 3: View directions accessible after de-activating NumLock on the numeric
keypad.

Numeric Key View direction
Shift-8 Forward
Shift-7 Left/forward
Shift-4 Left
Shift-1 Left/back
Shift-2 Back
Shift-3 Right/back
Shift-6 Right
Shift-9 Right/forward

Besides, there are several more options for adapting display on screen:

52 4. FLIGHT

Tab. 4: Display options

Key Action
P Toggle instrument panel on/off
c Toggle3D/2D cockpit (if both are available)
s Cycle panel style full/mini
Shift-F5/F6 Shift the panel in y direction
Shift-F7/F8 Shift the panel in x direction
Shift-F3 Read a panel from a property list
i/I Minimize/maximize HUD
h/H Change color of HUD/toggle HUD off

forward/backward
x/X Zoom in/out
v/V Cycle view modes forth an back
Ctrl-c Set view modes to pilot’s view
W Toggle full screen mode on/off (3dfx only)
z/Z Change visibility (fog) forward/backward
F8 Toggle fog on/off
F2 Refresh Scenery tile cache
F4 Force Lighting update
F9 Toggle texturing on/off
F10 Toggle menu on/off

The autopilot is controlled via the following keys:

Tab. 5: Autopilot and related controls.

Key Action
Ctrl + A Altitude hold toggle on/off
Ctrl + G Follow glide slope 1 toggle on/off
Ctrl + H Heading hold toggle on/off
Ctrl + N Follow NAV 1 radial toggle on/off
Ctrl + S Autothrottle toggle on/off
Ctrl + T Terrain follow toggle on/off
Ctrl + U Add 1000 ftṫo your altitude (emergency)
Enter Increase autopilot heading
F6 Toggle autopilot target:

current heading/waypoint
F11 Autopilot altitude dialog
F12 Autopilot heading dialog

Ctrl + T is especially interesting as it makes your little Cessna behave like a cruise
missile. Ctrl + U might be handy in case you feel you’re just about to crash.
(Shouldn’t real planes sport such a key, too?)

In case the autopilot is enabled, some of the numeric keypad keys get a special
meaning:

4.2. KEYBOARD CONTROLS 53

Tab. 6: Special action of keys, if autopilot is enabled. [U.S. keyboard uses "."
instead of ","]

Key Action
8 / 2 Altitude adjust
0 / , Heading adjust
9 / 3 Autothrottle adjust

There are several keys for starting and controlling the engine :
Tab. 7: Engine control keys

Key Action
SPACE Fire starter on selected engine(s)
! Select 1st engine
@ Select 2nd engine
Select 3rd engine
$ Select 4th engine
{ Decrease Magneto on Selected Engine
} Increase Magneto on Selected Engine
∼ Select all Engines

Beside these basic keys there are miscellaneous keys for special actions; some
of these you’ll probably not want to try during your first flight:

54 4. FLIGHT

Tab. 8: Miscellaneous keyboard controls.

Key Action
B Toggle parking brake on/off
b Apply/release all brakes
g/G Toggle landing gear up/down
, Left gear brake (useful for differential braking)
. Right gear brake (useful for differential braking)
l Toggle tail-wheel lock)
]/[Extend/Retract flaps
p Toggle pause on/off
a/A Speed up/slow down (time acceleration)
t/T Time speed up/slow down
m/M Change time offset (warp) used by t/T forward/backward
Shift-F2 Save current flight to fgfs.sav
Shift-F1 Restore flight from fgfs.sav
F3 Save screen shot under fgfs-screen.ppm
Shift-F4 Re-read global preferences from preferences.xml
Shift-F9 Toggle data logging of FDM on/off
ESC Exit program

Note: If you have difficulty processing the screenshot fgfs-screen.ppm on a
windows machine, just recall that simply pressing the “Print” key copies the screen
to the clipboard, from which you can paste it into any graphics program.

Finally: Starting from FlightGear 0.7.7 these key bindings are no longer hard
coded, but user-adjustable. You can check and change these setting via the file
keyboard.xml to be found in the main FlightGear directory. This is a human
readable plain ASCII file. Although it’s perhaps not the best idea for beginners to
start just with modifying this file, more advanced users will find it useful to change
key bindings according to what they like (or, perhaps, know from other simulators).

4.3 Menu entries

By default, the menu is disabled after starting the simulator (you don’t see a menu
in a real plane, do you?). You can turn it on either using the toggle F10 or just by
moving the mouse pointer to the top left corner of the display. In case you want
the menu to disappear just hit F10 again or move the mouse to the bottom of the
screen.

At present, the menu provides the following functions.

• File

– Load flight Loads the current flight, by default from fgfs.sav.

– Save flight Saves the current flight, by default to fgfs.sav.

4.3. MENU ENTRIES 55

– Reset Resets you to the selected starting position. Comes handy in case
you got lost or something went wrong.

– Hires Snap Shot Saves a high resolution Screen Shot under
fgfs-screen-XXX.ppm.

– Snap Shot Saves a normal resolution Screen Shot under
fgfs-screen-XXX.ppm.

– Print Prints screen shot (Linux only).

– Exit Exits the program.

• View

– Properties Provides access to numerous properties managed via Flight-
Gear’s property manager. This is actually a quite powerful tool allow-
ing to set all the values in the property tree. Obviously, this is a good
place to crash the program by entering a “bad” value.

– HUD Alpha Toggles antialiasing of HUD lines on/off.

– Pilot Offset Allows setting a different viewpoint (useful for R/C fly-
ing).

– Toggle Panel Toggles instrument panel on/off.

• Environment

– Goto Airport Enter the airport ID. For details on how to get the IDs
see Section 3.4.5.

• Autopilot

– Set Heading Sets heading manually.

– Set Altitude Sets altitude manually.

– Add Waypoint Adds waypoint to waypoint list.

– Skip Current Waypoint Self explaining.

– Clear Route Clears current route.

– Adjust AP Settings Allows input of several autopilot parameters.

– Toggle HUD format Toggles figures of latitude/longitude in HUD.

• Network (supposes compile option --with-network-olk)

– Unregister for FGD Unregister from FlightGear Daemon.

– Register for FGD Register for FlightGear Daemon.

– Scan for Daemons Scan for daemons on the net.

– Enter Callsign Enter your call sign.

– Toggle Display Toggle call sign etcȯn/off.

56 4. FLIGHT

• Help

– Help Opens your browser and displays an overview on several help
options (including links to this Guide as well as to the FAQ).

4.4 The Instrument Panel

The Cessna instrument panel is activated by default when you start FlightGear, but
can be de-activated by pressing the “P” key. While a complete description of all
the functions of the instrument panel of a Cessna is beyond the scope of this guide,
we will at least try to outline the main flight instruments or gauges.

All panel levers and knobs can be operated with the mouse To change a control,
just click with the left/middle mouse button on the corresponding knob/lever.

Let us start with the most important instruments any simulator pilot must know.
In the center of the instrument panel (Fig. 5), in the upper row, you will find the
artificial horizon (attitude indicator) displaying pitch and bank of your plane. It has
pitch marks as well as bank marks at 10, 20, 30, 60, and 90 degrees.

Left to the artificial horizon, you’ll see the airspeed indicator. Not only does it
provide a speed indication in knots but also several arcs showing characteristic ve-
locity rages you have to consider. At first, there is a green arc indicating the normal
operating range of speed with the flaps fully retracted. The white arc indicates the
range of speed with flaps in action. The yellow arc shows a range, which should
only be used in smooth air. The upper end of it has a red radial indicating the speed
you must never exceeded - at least as long as you won’t brake your plane.

Below the airspeed indicator you can find the turn indicator. The airplane in
the middle indicates the roll of your plane. If the left or right wing of the plane is
aligned with one of the marks, this would indicate a standard turn, i.eȧ turn of 360
degrees in exactly two minutes.

Below the plane, still in the turn indicator, is the inclinometer. It indicates
if rudder and ailerons are coordinated. During turns, you always have to operate
aileron and rudder in such a way that the ball in the tube remains centered; other-
wise the plane is skidding. A simple rule says: “Step onto the ball”, i.eṡtep onto
the left rudder pedal in case the ball is on the l.h.s.

4.4. THE INSTRUMENT PANEL 57

Fig. 5: The panel.

If you don’t have pedals or lack the experience to handle the proper ratio
between aileron/rudder automatically, you can start FlightGear with the option
--enable-auto-coordination.

To the r.h.s of the artificial horizon you will find the altimeter showing the
height above sea level (not ground!) in hundreds of feet. Below the altimeter is the
vertical speed indicator indicating the rate of climbing or sinking of your plane in
hundreds of feet per minute. While you may find it more convenient to use then the
altimeter in cases, keep in mind that its display usually has a certain lag in time.

Further below the vertical speed indicator is the RPM (rotations per minute)
indicator, which displays the rotations per minute in 100 RPMs. The green arc
marks the optimum region for long-time flight.

The group of the main instruments further includes the gyro compass being
situated below the artificial horizon. Besides this one, there is a magnetic compass
sitting on top of the panel.

Four of these gauges being arranged in the from of a “T” are of special impor-
tance: The air speed indicator, the artificial horizon, the altimeter, and the compass
should be scanned regularly during flight.

Besides these, there are several supplementary instruments. To the very left you
will find the clock, obviously being an important tool for instance for determining
turn rates.Below the clock there are several smaller gauges displaying the technical
state of your engine. Certainly the most important of them is the fuel indicator - as

58 4. FLIGHT

any pilot should know.
The ignition switch is situated in the lower left corner of the panel (cf. Fig. 4).

It has five positions: “OFF”, “L”, “R”, “BOTH”, and “START”. The first one is
obvious. “L” and “R” do not refer to two engines (actually the Cessna does only
have one) but to two magnetos being present for safety purposes. The two switch
positions can be used for test puposes during preflight. During normal flight the
switch should point on “BOTH”. The extreme right position is for using a battery-
powered starter (to be operated with the SPACE key in flight gear).

Like in most flight simulators, you actually get a bit more than in a real plane.
The red field directly below the gyro compass displays the state of the brakes, i.e.,
it is lit in case of the brakes being engaged. The instruments below indicate the
position of youryoke. This serves as kind of a compensation for the missing forces
you feel while pushing a real yoke. Three of the arrows correspond to the three axes
of your yoke/pedal controlling nose up/down, bank left/right, rudder left/right, and
throttle. (Keep in mind: They do not reflect the actual position of the plane!) The
left vertical arrow indicates elevator trim.

The right hand side of the panel is occupied by the radio stack. Here you find
two VOR receivers (NAV), an NDB receiver (ADF) and two communication radios
(COMM1/2) as well as the autopilot.

The communication radio is used for communication with air traffic facil-
ities; it is just a usual radio transceiver working in a special frequency range.
The frequency is displayed in the “COMM” field. Usually there are two COM
transceivers; this way you can dial in the frequency of the next controller to con-
tact while still being in contact with the previous one.

The COM radio can be used to display ATIS messages as well. For this pur-
pose, just to dial in the ATIS frequency of the relevant airport.

The VOR (Very High Frequency Omni-Directional Range) receiver is used
for course guidance during flight. The frequency of the sender is displayed in
the ”NAV” field. In a sense, a VOR acts similarly to a light house permitting to
display the position of the aircraft on a radial around the sender. It transmits one
omni-directional ray of radio waves plus a second ray, the phase of which differs
from the first one depending on its direction (which may be envisaged as kind of a
“rotating” signal). The phase difference between the two signals allows evaluating
the angle of the aircraft on a 360 degrees circle around the VOR sender, the so-
called radial. This radial is then displayed on the gauges NAV1 and NAV2, resp.,
left to frequency field. This way it should be clear that the VOR display, while
indicating the position of the aircraft relative to the VOR sender, does not say
anything about the orientation of the plane.

Below the two COM/NAV devices is an NDB receiver called ADF (automatic
direction finder). Again there is a field displaying the frequency of the facility. The
ADF can be used for navigation, too, but contrary to the VOR does not show the
position of the plane in a radial relative to the sender but the direct heading from the
aircraft to the sender. This is displayed on the gauge below the two NAV gauges.

Above the COMM1 display you will see three LEDs in the colors blue, amber,

4.4. THE INSTRUMENT PANEL 59

and white indicating the outer, middle, and, inner, respṁarker beacon. These show
the distance to the runway threshold during landing. They to not require the input
of a frequency.

Below the radios you will find the autopilot. It has five keys for WL = “Wing-
Leveler”, “HDG” = “Heading”, NAV, APR = “Glide-Slope”, and ALT = “Altitude”.
These keys when engaged hold the corresponding property.

You can change the numbers for the radios using the mouse. For this pur-
pose, click left/right to the circular knob below the corresponding number. The
corresponding switch left to this knob can be used for toggling between the ac-
tive/standby frequency.

A detailed description of the workings of these instruments and their use for
navigation lies beyond this Guide; if you are interested in this exciting topic, we
suggest consulting a book on instrument flight (simulation). Besides, this would
be material for a yet to be written FlightGear Flight School.

It should be noted, that you can neglect these radio instruments as long as
you are strictly flying according to VFR (visual flight rules). For those wanting
to do IFR (instrument flight rules) flights, it should be mentioned that FlightGear
includes a huge database of navaids worldwide.

Finally, you find the throttle, mixture, and flap control in the lower right of the
panel (recall, flaps can be set via [and] or just using the mouse).

As with the keyboard, the panel can be re-configured using configuration files.
As these have to be plane specific, they can be found under the directory of the
corresponding plane. As an example, the configuration file for the default Cessna
C172 can be found at FlightGear/Aircraft/c172/Panels as c172-panel.xml.
The accompanying documentation for customizing it (i.eṡhifting, replacing etcġauges
and more) is contained in the file README.xmlpanel written by John Check, to
be found in the source code in the directory docs-mini.

Since version 0.8.0, FlightGear has a 3D cockpit including a 3D cockpit as an
alternative to the 2D panel mentioned above (see Fig. 6). This one can be activated
using the option --aircraft=c172-3d. Its functionality is the same as that
of the 2D panel mentioned above, but it gives a much more realistic view, while
instruments may be better readable in the 2D cockpit.

60 4. FLIGHT

Fig. 6: The 3D cockpit of the Cessna 172.

4.5 The Head Up Display

At current, there are two options for reading off the main flight parameters of the
plane: One is the instrument panel already mentioned, while the other one is the
HUD (Head Up Display) . Neither are HUDs used in usual general aviation planes
nor in civilian ones. Rather they belong to the equipment of modern military jets.
However, some might find it easier to fly using the HUD even with general aviation
aircraft. Several Cessna pilots might actually love to have one, but technology is
simply too expensive for implementing HUDs in general aviation aircraft. Besides,
the HUD displays several useful figures characterizing simulator performance, not
to be read off from the panel.

The HUD shown in Fig. 7 displays all main flight parameters of the plane. In
the center you find the pitch indicator (in degrees) with the aileron indicator above
and the rudder indicator below. A corresponding scale for the elevation can be
found to the left of the pitch scale. On the bottom there is a simple turn indicator.

There are two scales at the extreme left: The inner one displays the speed (in
kts) while the outer one indicates position of the throttle. The Cessna 172 takes off
at around 55 kts. The two scales on the extreme r.h.s display your height, i. eṫhe
left one shows the height above ground while the right of it gives that above zero,
both being displayed in feet.

4.6. MOUSE CONTROLLED ACTIONS 61

Besides this, the HUD delivers some additions information. On the upper left
you will find date and time. Besides, latitude and longitude, resp., of your current
position are shown on top.

You can change color of the HUD using the “H” or “’h” key. Pressing the
toggle “i/I” minimizes/maximizes the HUD.

Fig. 7: The HUD, or Head Up Display.

4.6 Mouse controlled actions

Besides just clicking the menues, your mouse has got certain valuable functions in
FlightGear.

There are three mouse modes. In the normal mode (pointer cursor) panel’s
controls can be operated with the mouse. To change a control, click with the
left/middle mouse button on the corresponding knob/lever. While the left mouse
button leads to small increments/decrements, the middle one makes greater ones.
Clicking on the left hand side of the knob/lever decreases the value, while clicking
on the right hand side increases it.

Right clicking the mouse activates the simulator control mode (cross hair cur-
sor). This allows control of aileron/elevator via the mouse in absence of a joy-
stick/yoke (enable --enable-auto-coordination in this case). If you have
a joystick you certainly will not make use of this mode

62 4. FLIGHT

Right clicking the mouse another time activates the view control mode (arrow
cursor). This allows changing direction of view, i.eṗan and tilt the view, via the
mouse.

Right clicking the mouse once more resets it into the initial state.
If you are looking for some interesting places to discover with FlightGear

(which may or may not require downloading additional scenery) you may want to
check

http://www.flightgear.org/Places/.

There is now a menu entry for entering directly the airport code of the airport you
want to start from.

Finally, if you’re done and are about to leave the plane, just hit the ESC key or
use the corresponding menu entry to exit the program. It is not suggested to simply
“kill” the simulator by clicking the text window.

http://www.flightgear.org/Places/

Part III

Tutorials

63

Chapter 5

Tutorials

5.1 FlightGear Tutorials

A range of FlightGear tutorials are available from various sources targetted at
different users.

Eric Brasseur has written a very good tutorial for people completely new to
FlightGear, and flying in general. It also describes many basic principles of flight.
Accessible here:

http://www.4p8.com/eric.brasseur/flight_simulator_tutorial.html.

Secondly, there is an excellent tutorial written by David Megginson – being one
of the main developers of FlightGear – on flying a basic airport circuit specifically
using FlightGear. This document includes a lot of screen shots, numerical material
etc., and is available from

http://www.flightgear.org/Docs/Tutorials/circuit.

A tutorial describing cross-country flight in FlightGear can be found in the
following section.

5.2 Other Tutorials

There are many non-FlightGear specific tutorials, many of which are applicable.
First, a quite comprehensive manual of this type is the Aeronautical Information
Manual, published by the FAA, and being online available at

http://www.faa.gov/ATPubs/AIM/.

This is the Official Guide to Basic Flight Information and ATC Procedures by
the FAA. It contains a lot of information on flight rules, flight safety, navigation,
and more. If you find this a bit too hard reading, you may prefer the FAA Training
Book,

http://avstop.com/AC/FlightTraingHandbook/,

65

http://www.4p8.com/eric.brasseur/flight_simulator_tutorial.html
http://www.flightgear.org/Docs/Tutorials/circuit
http://www.faa.gov/ATPubs/AIM/
http://avstop.com/AC/FlightTraingHandbook/

66 CHAPTER 5. TUTORIALS

which covers all aspects of flight, beginning with the theory of flight and the
working of airplanes, via procedures like takeoff and landing up to emergency
situations. This is an ideal reading for those who want to learn some basics on flight
but don’t (yet) want to spend bucks on getting a costly paper pilot’s handbook.

While the handbook mentioned above is an excellent introduction on VFR (vi-
sual flight rules), it does not include flying according to IFR (instrument flight
rules). However, an excellent introduction into navigation and flight according to
Instrument Flight Rules written by Charles Wood can be found at

http://www.navfltsm.addr.com/.
Another comprehensive but yet readable text is John Denker’s ”See how it

flies”, available at

http://www.monmouth.com/ jsd/how/htm/title.html.

This is a real online text book, beginning with Bernoulli’s principle, drag and
power, and the like, with the later chapters covering even advanced aspects of VFR
as well as IFR flying

http://www.navfltsm.addr.com/
http://www.monmouth.com/~jsd/how/htm/title.html

Chapter 6

A Cross Country Flight Tutorial

6.1 Introduction

Figure 6.1: Flying over the San Antonio Dam to Livermore

This tutorial simulates a cross-country flight from Reid-Hillview (KRHV) to
Livermore (KLVK) under Visual Flight Rules (VFR). Both airports are included in
the standard FlightGear package, so no additional scenery is required.

I’ll assume that you are happy taking off, climbing, turning, descending and
landing in FlightGear. If not, have alook at the tutorials listed above. This tutorial
is designed to follow on from them and provide information on some of the slightly
more complicated flight systems and procedures.

6.1.1 Disclaimer and Thanks

A quick dislaimer. I’m not a pilot. Most of this information has been gleaned from
various non-authoritive sources. If you find an error or misunderstanding, please
let me know. Mail me at stuart_d_buchanan -at- yahoo.co.uk.

I’d like to thank the following people for helping make this tutorial accurate
and readable. Benno Schulenberg, Sid Boyce. Vassilii Khachaturov, James Briggs.

67

68 CHAPTER 6. A CROSS COUNTRY FLIGHT TUTORIAL

6.2 Flight Planning

Before we begin, we need to plan our flight. Otherwise we’ll be taking off not
knowing whether to turn left or right.

First, have a look at the Sectional for the area. This is a map for flying showing
airports, navigational aids, and obstructions. There are two scales of sectionals for
VFR flight - the 1:500,000 sectionals themselves, and a number of 1:250,000 VFR
Terminal Area Charts which cover particularly busy areas.

They are available from pilot shops, or on the web from various sources. http://aviationtoolbox.org
has TIFF files of all the current sectionals and VFR Terminal Area Charts. We
want the VFR Terminal Area Chart for San Francisco, which is available under
the raw_data/FAA/sectionals/current/Terminal-Area-Charts/ directory as a 29MB
download. An extract from that chart is shown in Figure 6.2.

If that is too big, http://mapserver.maptech.com has an Aeronautical Chart tab
which allows them to be viewed quite easily in smaller views. Search for Reid-
Hillview and Livermore.

If you want a map of the entire area showing exactly where the plane is, you can
use http://atlas.sourceforge.net/Atlas. This is a moving-map program that connects
to FlightGear.

So, how are we going to fly from Reid-Hillview to Livermore?

We’ll be taking off from runway 31R at KRHV. KRHV is the ICAO code for
Reid-Hillview airport, and is shown in the FlightGear wizard. (It is marked on the
sectional as RHV for historic reasons. To get the ICAO code, simply prefix a ‘K’.)

The 31 indicates that the magnetic heading of the runway is around 310 de-
grees, and the R indicates that it’s the runway on the right. As can be seen from
the sectional, there are two parallel runways at KRHV. This is to handle the large
amount of traffic that uses the airport. Each of the runways can be used in either
direction. Runway 31 can be used from the other end as runway 13. So, the run-
ways available are 13R, 13L, 31R, 31L. Taking off and landing is easier done into
the wind, so when the wind is coming from the North West, runways 31L and 31L
will be in use. The name of the runway is written in large letters at the beginning
and is easily seen from the air.

Once we take off we’ll head at 350 degrees magnetic towards Livermore (KLVK).
We’ll fly at about 3,500ft about sea-level. This puts us at least 500ft above any ter-
rain or obstructions like radio masts on the way.

We’ll fly over the Calaveras Reservoir then the San Antonio Reservoir. These
are both large bodies of water and we can use them as navigation aids to ensure we
stay on the right track.

Once we get about 10 miles out of Livermore (above the San Antonia Reser-
voir), we’ll contact the Livermore Air Traffic Control (ATC) to find out where we
should land. We’ll then join the circuit and land.

6.2. FLIGHT PLANNING 69

Figure 6.2: Sectional extract showing Reid-Hillview and Livermore airports

70 CHAPTER 6. A CROSS COUNTRY FLIGHT TUTORIAL

6.3 Getting Up

OK, we know where we’re going and how we’ll get there. Time to get started.
Start FlightGear using the Wizard (or command-line if you prefer). We want to

use a C172P and take off from runway 31R at Reid-Hillview of Santa Clara County
(KRHV). Dawn is a nice time to fly in California.

If you want, you can fly in the current weather at KRHV by clicking the Ad-
vanced button on the final screen of the Wizard, selecting Weather from the left-
hand pane, selecting ‘Fetch real weather’ and clicking OK.

Figure 6.3: On the runway at KRHV

6.3.1 Pre-Flight

Before we take off, we need to pre-flight the aircraft. In the real world, this consists
of walking around the aircraft to check nothing has fallen off, and checking we have
enough fuel.

In our case, we’ll take the opportunity to check the weather, set our altimeter
and pre-set things that are easier to do when you’re not flying.

The weather is obviously important when flying. We need to know if there is
any sort of cross-wind that might affect take-off, at what altitude any clouds are
(this is a VFR flight - so we need to stay well away from clouds at all times), and
any wind that might blow us off course.

We also need to calibrate our altimeter. Altimeters calculate the current aliti-
tude indirectly by measuring air pressure, which decreases as you ascend. How-
ever, weather systems can affect the air pressure and lead to incorrect altimeter
readings, which can be deadly if flying in mountains.

6.3.2 ATIS

Conveniently, airports broadcast the current sea-level pressure along with useful
weather and airport information over the ATIS. This is a recorded message that is

6.3. GETTING UP 71

broadcast over the radio. However, to listen to it, we need to tune the radio to the
correct frequency.

The ATIS frequency is displayed on the sectional (look for ‘ATIS’ near the
airport), but is also available from within FlightGear. To find out the frequencies
for an airport (including the tower, ground and approach if appropriate), use the
ATC/AI menu and select Frequencies. Then enter the ICAO code (KRHV) into the
dialog box. The various frequencies associated with the airport are then displayed.
Duplicates indicate that the airport uses multiple frequencies for that task, and you
may use either.

Either way, the ATIS frequency for Reid-Hillview is 125.2MHz.

6.3.3 Radios

We now need to tune the radio. The radio is located in the Radio Stack to the right
of the main instruments. There are actually two independent radio systems, 1 and
2. Each radio is split in two, with a communications (COMM) radio on the left,
and a navigation (NAV) radio on the right. We want to tune COMM1 to the ATIS
frequency.

Figure 6.4: The C172 communications stack with COMM1 highlighted

The radio has two frequencies, the active frequency, which is currently in use,
and the standby frequency, which we tune to the frequency we wish to use next.
The active frequency is shown on the left 5 digits, while the standby frequency is
shown on the right. We change the standby frequency, then swap the two over, so
the standby becomes active and the active standby. This way, we don’t lose radio
contact while tuning the radio.

To change the frequency, click on the grey knob below the standby frequency
(highlighted in Figure 6.5), just to the right of the ‘STBY’. Using the left mouse
button changes the number after the decimal place, using the middle button changes
the numbers before the decimal place. Click on the right side of the button to
change the frequency up, and the left of the button to change the frequency down.
Most of the FlightGear cockpit controls work this way. If you are having difficulty
clicking on the correct place, press Ctrl-C to highlight the hot-spots for clicking.

72 CHAPTER 6. A CROSS COUNTRY FLIGHT TUTORIAL

Figure 6.5: COMM1 adjustment knob

Figure 6.6: COMM1 switch

6.3. GETTING UP 73

Once you have changed the frequency to 125.2, press the white button between
the words ‘COMM’ and ‘STBY’ to swap the active and standby frequencies (high-
lighted in Figure 6.6). After a second or so, you’ll hear the ATIS information.

6.3.4 Altimeter and Compass

Figure 6.7: Altimeter calibration knob

Listen for the ‘Altimeter’ setting. If you are not using ‘real weather’, the value
will be 2992, which is standard and already set on the plane. If you are using ‘real
weather’, then the altimeter value is likely to be different. We therefore need to
set the altimeter to the correct value. To do this, use the knob at the bottom left
of the altimeter (circled in red in Figure 6.7), in the same way as you changed the
radio frequency. This changes the value in the little window on the right of the
altimeter, which is what you are trying to set, as well as the altitude displayed by
the altimeter.

The other way to set the altimeter is to match it to the elevation above sea-level
of the airport. The elevation is listed on the sectional. For KRHV it is 133ft. This
means you can double-check the pressure value reported over ATIS.

Figure 6.8: Heading adjust knob

74 CHAPTER 6. A CROSS COUNTRY FLIGHT TUTORIAL

We will also take the opportunity to set the heading bug on the compass to
350 - our bearing from KRHV to KLVK. To do this, use the the red button on
the compass housing (highlighted in Figure 6.8), just as you’ve done before. Use
the left mouse button for small adjustments, and middle mouse button to make
big adjustments. The value of 350 is just anti-clockwise of the labeled value of N
(North - 0 degrees).

Figure 6.9: Take-off from KRHV

6.3.5 Take-Off

OK, now we’ve done that we can actually take off!. In my case this usually involves
weaving all over the runway, and swerving to the left once I’ve actually left the
ground, but you’ll probably have better control than me. Once above 1000ft, make
a gentle turn to the right to a heading of 350 degrees. As we’ve set the heading
bug, it will be easy to follow. We’re aiming for a fairly prominent valley.

Continue climbing to 3,500 ft at around 500-700 fpm. Once you reach that
altitude, reduce power, level off to level flight and trim appropriately. Check the
power again and adjust so it’s in the green arc of the RPM guage. We shouldn’t run
the engine at maximum RPM except during take-off.

6.4 Cruising

OK, we’ve taken off and are on our way to Livermore. Now we can make our life
a bit easier by using the autopilot and our plane more fuel efficient by tuning the
engine. We’ll also want to check we’re on-course

6.4.1 The Autopilot

We can make our life a bit easier by handing some control of the aircraft over to
‘George’ - the autopilot.

6.4. CRUISING 75

Figure 6.10: The C172 Autopilot

The autopilot panel is located towards the bottom of the radio stack (high-
lighted in Figure 6.10). It is easily distinguishable as it has many more buttons than
the other components on the stack. It can work in a number of different modes, but
we are only interested in one of them for this flight - HDG. As the names suggest,
HDG will cause the autopilot to follow the heading bug on the compass, which we
set earlier.

To set the autopilot, press the AP button to switch the autopilot on, then press
the HDG button to activate heading mode. While the autopilot is switched on,
it will use the trim controls to keep the plane on the heading. You can change the
heading bug, and the autopilot will maneuver appropriately. However, the autopilot
doesn’t make any allowances for wind speed or direction, it only sets the heading
of the airplane. If flying in a cross-wind, the plane may be pointed in one direction,
but be travelling in quite another.

You should use the trim controls to keep a level flight. You can use the autopilot
for this, but it is a bit more complicated.

Once the aircraft has settled down under the autopilot’s control, we can pay
more attention to the outside world and higher level tasks.

6.4.2 Navigation

As we noted above, we’re going to be travelling over a couple of reservoirs. When
you leveled off, the first (Calaveras) was probably right in front of you. You can
use them to check your position on the map. If it looks like you’re heading off
course, twist the heading bug to compensate.

6.4.3 Mixture

As altitude increases, the air gets thinner and contains less oxygen. This means
that less fuel can be burnt each engine cycle. The engine in the C172 is simple
and doesn’t automatically adjust the amount of fuel to compensate for this lack of
oxygen. This results in an inefficient fuel burn and a reduction in power because the

76 CHAPTER 6. A CROSS COUNTRY FLIGHT TUTORIAL

Figure 6.11: The Calaveras Reservoir

Figure 6.12: The Calaveras Reservoir

6.4. CRUISING 77

fuel-air mixture is too ‘rich’. We can control the amount of fuel entering the engine
every cycle using the mixture control. This is the red lever next to the throttle. By
pulling it out, we ‘lean’ the mixture. We don’t want the mixture too rich, nor too
lean. Both these conditions don’t produce as much power as we’d like. Nor do we
want it perfect, because this causes the fuel-air to explode, rather than burn in a
controlled manner, which is a quick way to trash an engine.

Figure 6.13: Mixture Control

The mixture is controlled by the red lever to the right of the yoke. You may
need to pan your cockpit view to see it.

To pan the cockpit view, right-click with the mouse-button within the Flight-
Gear window until the cursor becomes a double-headed arrow. Moving the mouse
now pans the view. Once you can see the mixture lever clearly, right-click again to
change the mouse back to the normal arrow.

Figure 6.14: Fuel Flow and EGT guages

Pull the mixture lever out slowly (use Ctrl-C to see the hot spots), leaning the
mixture. As you do so, you’ll see various engine instruments (on the left of the
panel) change. Fuel flow will go down (we’re burning less fuel), EGT (Exhaust
Gas Temperature) will go up (we’re getting closer to a ‘perfect mixture’) and RPM
will increase (we’re producing more power). Pull the mixture lever out until you
see the EGT go off the scale, then push it in a bit. We’re now running slightly rich

78 CHAPTER 6. A CROSS COUNTRY FLIGHT TUTORIAL

of peak. While at 3,500ft we don’t need to lean much, at higher altitudes leaning
the engine is critical for performance.

6.5 Getting Down

Once you reach the second reservoir (the San Antonio Reservoir), we need to start
planning our descent and landing at Livermore. Landing is a lot more complicated
than taking off, assuming you want to get down in one piece, so you may want to
pause the simulator (press ‘p’) while reading this.

6.5.1 Air Traffic Control

In the Real World, we’d have been in contact with Air Traffic Control (ATC) con-
tinually, as the bay area is quite congested in the air as well as on the ground. ATC
would probably provide us with a ‘flight following’ service, and would continu-
ally warn us about planes around us, helping to avoid any possible collisions. The
FlightGear skies are generally clear of traffic, so we don’t need a flight following
service. If you want to change the amount of traffic in the sky, you can do so from
the AI menu.

Livermore Airport is Towered (towered airports are drawn in blue on the sec-
tional), so we will need to communicate with the tower to receive instructions on
how and where to land.

Before that, we should listen to the ATIS, and re-adjust our altimeter, just in
case anything has changed. This is quite unlikely on such a short flight, but if
flying hundreds of milesm it might make a difference. To save time when tuning
radios, you can access the Radio Settings dialog from the Equipment menu. The
Livermore ATIS frequency is 119.65MHz.

An ATIS message also has a phonetic letter (Alpha, Bravo, . . . Zulu) to identify
the message. This phonetic is changed each time the recorded message is updated.
When first contacting a tower, the pilot mentions the identifier, so the tower can
double-check the pilot has up to date information.

Besides the altitude and weather information, the ATIS will also say which
runway is in use. This is useful for planning our landing. Normally, due to the
prevalent Westerly wind, Livermore has runways 25R and 25L in use.

Once you’ve got the ATIS, tune the radio to Livermore Tower. The frequency
is 118.1MHz. Depending on the level of AI traffic you have configured on your
system, you may hear Livermore Tower talking to other aircraft that are landing or
departing. This information is not played over the speakers, it is only displayed on
the screen.

Once the frequency goes quiet, press the ’ key. This will bring up the ATC
menu. Click on the radio button on the left to select what you wish to say (you
only have one option), then OK.

6.5. GETTING DOWN 79

Your transmission will be displayed at the top of the screen. It will indicate
who you are (type and tail number), where you are (e.g. 6 miles south), that you
are landing, and the ATIS you have.

After a couple of seconds, Livermore Tower will respond, addressing you by
name and telling you what runway to use, which pattern is in use and when to
contact them, for example

“Golf Foxtrot Sierra, Livermore Tower, Report left downwind runway
two five left.”

To understand what this means, we’ll have to describe the Traffic Pattern.

6.5.2 The Traffic Pattern

With the number of aircraft flying around, there have to be standard procedures
for take-off and landing, otherwise someone might try to land on-top of an aircraft
taking off.

The Traffic Pattern is a standard route all aircraft must follow when near an
airport, either taking off or landing. The traffic pattern has four stages (or ‘legs’),
shown in Figure 6.15. The ‘downwind’ mentioned above refers to one of these, the
one with the number 3.

Figure 6.15: The Traffic Pattern

1. Aircraft take off from the runway and climb. If they are leaving the airport,
they just continue climbing straight ahead until clear of the pattern and then
do whatever they like. If they are returning to the runway (for example to
practise landing), they continue climbing until they reach a couple of hun-
dred feet below ‘pattern altitude’. This varies from country to country, but is
usually between 500ft and 1000ft Above Ground Level (AGL). This is called
the upwind leg.

2. The pilot makes a 90 degree left-hand turn onto the crosswind leg. They
continue their climb to ‘pattern altitude’ and level out.

3. After about 45 seconds to a minute on the crosswind leg, the pilot again
makes a 90 degree left turn onto the downwind leg. Aircraft arriving from
other airports join the pattern at this point, approaching from a 45 degree
angle away from the runway.

80 CHAPTER 6. A CROSS COUNTRY FLIGHT TUTORIAL

4. When a mile or so past the end of the runway (a good guide is when the
runway is 45 degrees behind you), the pilot turns 90 degrees again onto the
base leg and begins the descent to the runway, dropping flaps as appropriate.
A descent rate of about 500fpm is good.

5. After about 45 seconds the pilot turns again onto the final leg. It can be
hard to estimate exactly when to perform this turn. Final adjustments for
landing are made. I usually have to make small turns to align with the runway
properly.

6. The aircraft lands. If the pilot is practising take-offs and landings, full power
can be applied and flaps retracted for takeoff, and the aircraft can take off
once more. This is known as ‘touch-and-go’.

Most patterns at left-handed, i.e. all turns are to the left, as described above.
Right-hand patterns also exist, and are marked as ‘RP’ on the sectional. ATC will
also advise you what pattern is in use.

6.5.3 Approach

Figure 6.16: Sectional extract showing approaches to Livermore

We’re approaching Livermore airport from the South, while the runways run
East/West. Due to the prevailing Westerly wind, we’ll usually be directed to either
runway 25R or 25L. 25R uses a right-hand pattern, while 25L uses a left-hand

6.5. GETTING DOWN 81

pattern. Both the patterns are illustrated in Figure 6.16. Depending on the runway
we’ve been assigned, we’ll approach the airport in one of two ways. If we’ve been
asked to land on runway 25R, we’ll follow the blue line in the diagram. If we’ve
been asked to land on runway 25L, we’ll follow the green line.

We also need to reduce our altitude. We want to end up joining the pattern at
pattern altitude, about 1,000ft above ground level (AGL). Livermore airport is at
400 ft above sea-level (ASL), so we need to descend to an altitude of 1400 ASL.

We want to begin our maneuvers well before we reach the airport. Otherwise
we’re likely to arrive too high, too fast, and probably coming from the wrong di-
rection. Not the best start for a perfect landing :).

So, let‘s start descending immediately.

1. First switch off the autopilot by pressing the AP switch.

2. Return mixture to fully rich (pushed right in). If we were landing at a high
airport, we’d just enrich the mixture slightly and re-adjust when we reached
the pattern.

3. Apply carb-heat. This stops ice forming when the fuel and air mix before
entering the cylinder, something that can often happen during descent in
humid air. The carb-heat lever is located between the throttle and mixture.
Pull it out to apply heat.

4. Reduce power quite a bit. Otherwise we might stress the airframe due to
over-speeding.

5. Drop the nose slightly to start the descent.

6. Trim the aircraft.

Use your location relative to the airport and the two towns of Pleasanton and
Livermore to navigate yourself to the pattern following the general guide above.

Once you’re established on the downwind leg, you’ll need to report to ATC
again. Do this in the same way as before. They will then tell you where you are
in the queue to land. ‘Number 1’ means there are no planes ahead of you, while
‘Number 9’ means you might want to go to a less busy airport! They’ll also tell
you who is ahead of you and where. For example ‘Number 2 for landing, follow
the Cessna on short final’ means that there is a single aircraft in front of you that
is currently on the final leg of the pattern. When they land and are clear of the
runway, they’ll tell ATC, who can then tell you ‘Number 1 for landing’.

6.5.4 VASI

Once on final, you’ll notice two sets of lights on the left of the runway (enhanced
in Figure 6.17). This is the VASI and provides a nice visual clue as to whether
you’re too low or too high on approach. Each set of lights can either be white or

82 CHAPTER 6. A CROSS COUNTRY FLIGHT TUTORIAL

Figure 6.17: On Final at Livermore with VASI on the left

red. White means too high, red means too low. White and red together means
just perfect. On a Cessna approaching at 60kts, a descent rate of about 500fpm
should be fine. If you are too high, just decrease power to increase your descent
rate to 700fpm. If you are too low, increase power to decrease your descent rate to
200fpm.

6.5.5 Go Around

Figure 6.18: Missed approach at Livermore

If for some reason it looks like you’re going to mess up the landing you can
abort the landing and try again. This is called a ‘Go Around’. To do this

1. Apply full power

2. Wait until you have a positive rate of climb - i.e. your altitude is increasing
according to the altimeter.

3. Raise your flaps to 10 degrees (first-stage).

4. Tell ATC you are ‘going around’

5. Climb to pattern height

6.5. GETTING DOWN 83

6. If you aborted on final approach, continue over the runway to re-join the
pattern on the crosswind leg. If on base, fly past the turn for final, then turn
and fly parallel to the runway on the opposite side from downwind to rejoin
on the crosswind leg.

7. Fly the complete pattern, telling ATC when you are on downwind, and try
again.

6.5.6 Clearing the Runway

Figure 6.19: Landing at Livermore

Once you’re on the ground, you should taxi off the runway, then tell ATC you
are clear. At high-altitude airports, you would lean the engine to avoid fouling the
spark-plugs with an over-rich mixture. Find somewhere nice to park, shut down the
engine by pulling mixture to full lean, then throttle off and magnetos to off (knob
on the bottom left of the panel). Switch off the avionics master switch, tie down
the aircraft, then go get that hamburger!

I hope this tutorial is of some use. If you have any comments, please let me
know at stuart_d_buchanan {at} yahoo.co.uk.

84 CHAPTER 6. A CROSS COUNTRY FLIGHT TUTORIAL

Part IV

Appendices

85

Appendix A

Missed approach: If anything
refuses to work

In the following section, we tried to sort some problems according to operating
system, but if you encounter a problem, it may be a wise idea to look beyond
“your” operating system – just in case. If you are experiencing problems, we would
strongly advise you to first check the FAQ maintained by Cameron Moore at

http://www.flightgear.org/Docs/FlightGear-FAQ.html.

Moreover, the source code contains a directory docs-mini containing nu-
merous ideas on and solutions to special problems. This is also a good place to go
for further reading.

A.1 FlightGear Problem Reports

The best place to look for help is generally the mailing lists, specifically the [Flightgear-
User] mailing list. If you happen to be running a CVS version of FlightGear, you
may want to subscribe to the [Flightgear-Devel] list. Instructions for subscription
can be found at

http://www.flightgear.org/mail.html.

It’s often the case that someone has already dealt with the issue you’re dealing
with, so it may be worth your time to search the mailing list archives at

http://www.mail-archive.com/flightgear-users%40flightgear.org/
http://www.mail-archive.com/flightgear-devel%40flightgear.org/.

There are numerous developers and users reading the lists, so questions are gener-
ally answered. However, messages of the type

FlightGear does not compile on my system. What shall I do?
are hard to answer without any further detail given, aren’t they? Here are some
things to consider including in your message when you report a problem:

87

http://www.flightgear.org/Docs/FlightGear-FAQ.html
http://www.flightgear.org/mail.html
http://www.mail-archive.com/flightgear-users%40flightgear.org/
http://www.mail-archive.com/flightgear-devel%40flightgear.org/

88 A. MISSED APPROACH

• Operating system: (Linux Redhat 7.0. . . /Windows 98SE. . .)

• Computer: (Pentium III, 1GHz. . .)

• Graphics board/chip: (Diamond Viper 770/NVIDIA RIVA TNT2. . .)

• Compiler/version: (Cygnus version 1.0. . .)

• Versions of relevant libraries: (PLIB 1.2.0, Mesa 3.0. . .)

• Type of problem: (Linker dies with message. . .)

• Steps to recreate the problem: Start at KSFO, turn off brakes . . .

For getting a trace of the output which FlightGear produces, then following
command may come in handy (may need to be modified on some OSs or may not
work on others at all, though):

%FG ROOT/BIN/fgfs >log.txt 2>&1

One final remark: Please avoid posting binaries to these lists! List subscribers
are widely distributed, and some users have low bandwidth and/or metered connec-
tions. Large messages may be rejected by the mailing list administrator. Thanks.

A.2 General problems

• FlightGear runs SOOO slow.
If FlightGear says it’s running with something like 1 fps (frame per second)
or below you typically don’t have working hardware OpenGL support. There
may be several reasons for this. First, there may be no OpenGL hardware
drivers available for older cards. In this case it is highly recommended to get
a new board.

Second, check if your drivers are properly installed. Several cards need addi-
tional OpenGL support drivers besides the “native” windows ones. For more
detail check Appendix C.

• Either configure or make dies with not found PLIB headers or libraries.
Make sure you have the latest version of PLIB (> version 1.2) compiled and
installed. Its headers like pu.h have to be under /usr/include/plib
and its libraries, like libplibpu.a should be under /lib. Double check
there are no stray PLIB headers/libraries sitting elsewhere!

Besides check careful the error messages of configure. In several cases
it says what is missing.

A.3. POTENTIAL PROBLEMS UNDER LINUX 89

A.3 Potential problems under Linux

Since we don’t have access to all possible flavors of Linux distributions, here are
some thoughts on possible causes of problems. (This Section includes contribu-
tions by Kai Troester.)

• Wrong library versions
This is a rather common cause of grief especially when you prefer to install
the libraries needed by FlightGear by hand. Be sure that especially the
Mesa library contains support for the 3DFX board and that GLIDE libraries
are installed and can be found. If a ldd ẁhich fgfs` complains about
missing libraries you are in trouble.

You should also be sure to always keep the latest version of PLIB on your
system. Lots of people have failed miserably to compile FlightGear just
because of an outdated plib.

• Missing permissions
In case you are using XFree86 before release 4.0 the FlightGear binary may
need to be setuid root in order to be capable of accessing some accelerator
boards (or a special kernel module as described earlier in this document)
based on 3DFX chips. So you can either issue a

chown root.root /usr/local/bin/fgfs ;
chmod 4755 /usr/local/bin/fgfs

to give the FlightGear binary the proper rights or install the 3DFX module.
The latter is the “clean” solution and strongly recommended!

• Non-default install options
FlightGear will display a lot of diagnostics while starting up. If it com-
plains about bad looking or missing files, check that you installed them in
the way they are supposed to be installed (i.eẇith the latest version and in
the proper location). The canonical location FlightGear wants its data files
under /usr/local/lib. Be sure to grab the latest versions of everything
that might be needed!

• Compile problems in general
Make sure you have the latest (official) version of gcc. Old versions of gcc
are a frequent source of trouble! On the other hand, some versions of the
RedHat 7.0 reportedly have certain problems compiling FlightGear as they
include a preliminary version of GCC.

A.4 Potential problems under Windows

• The executable refuses to run.
You may have tried to start the executable directly either by double-clicking

90 A. MISSED APPROACH

fgfs.exe in Windows Explorer or by invoking it within a MS-DOS shell.
Double-clicking via Explorer does never work (unless you set the environ-
ment variable FG_ROOT in autoexec.bat or otherwise). Rather double-
click runfgfs.bat. For more details, check Chapter 3.

Another cause of grief might be that you did not download the most recent
versions of the base package files required by FlightGear, or you did not
download any of them at all. Have a close look at this, as the scenery/texture
format is still under development and may change frequently. For more de-
tails, check Chapter 2.

Next, if you run into trouble at runtime, do not use windows utilities for
unpacking the .tar.gz. If you did, try it in the Cygnus shell with tar
xvfz instead.

• FlightGear ignores the command line parameters.
There is a problem with passing command line options containing a ”=” to
windows batch files. Instead, include the options into runfgfs.bat.

• I am unable to build FlightGear under MSVC/MS DevStudio.
By default, FlightGear is build with GNU GCCṪhe Win32 port of GNU
GCC is known as CygwinḞor hints on Makefiles required for MSVC for
MSC DevStudio have a look into

ftp://www.flightgear.org/pub/flightgear/Source/.

In principle, it should be possible to compile FlightGear with the project
files provided with the source code.

• Compilation of FlightGear dies.
There may be several reasons for this, including true bugs. However, before
trying to do anything else or report a problem, make sure you have the latest
version of the Cygwin compiler, as described in Section B. In case of doubt,
start setup.exe anew and download and install the most recent versions
of bundles as they possibly may have changed.

ftp://www.flightgear.org/pub/flightgear/Source/

Appendix B

Building the plane: Compiling
the program

This appendix describes how to build FlightGear on several systems. In case you
are on a Win32 (i. e. Windows95/98/ME/NT/2000/XP) platform or any of the
other platforms for which binary executables are available, you may not want to
go through that potentially troublesome process but skip this section for now and
go back to the chapter on installing FlightGear one. (Not everyone wants to build
his or her plane himself or herself, right?) However, there may be good reason for
at least trying to build the simulator:

• In case you are on a UNIX/Linux platform there may be no pre-compiled bi-
naries available for your system. In practice it is common to install programs
like this one on UNIX systems by recompiling them.

• There are several options you can set during compile time only.

• You may be proud you did.

On the other hand, compiling FlightGear is not a task for novice users. Thus, if
you’re a beginner (we all were once) on a platform which binaries are available for,
we recommend postponing this task and just starting with the binary distribution
to get you flying.

As you will notice, this Chapter is far from being complete. Basically, we de-
scribe compiling for two operating systems only, Windows and Linux, and for only
one compiler, the GNU C compiler. FlightGear has been shown to be built under
different compilers (including Microsoft Visual C) as well as different systems
(Macintosh) as well. The reason for these limitations are:

• Personally, we have access to a Windows machine running the Cygnus com-
piler only.

• According to the mailing lists, these seem to be the systems with the largest
user base.

91

92 B. BUILDING THE PLANE

• These are the simplest systems to compile FlightGear on. Other compilers
may need special add-ons (workplace etc.) or even modification of the code.

• The GNU compiler is free in the same sense of the GPL as FlightGear is.

You might want to check Section A, Missed approach, if anything fails during
compilation. In case this does not help we recommend sending a note to one of the
mailing lists (for hints on subscription see Chapter D).

There are several Linux distributions on the market, and most of them should
work. Some come even bundled with (often outdated) versions of FlightGear.
However, if you are going to download or buy a distribution, Debian (Sarge) is
highly recommended by most people. SuSE and Ubuntu works well, too.

Contrary to Linux/Unix systems, Windows usually comes without any devel-
opment tools. This way, you first have to install a development environment. On
Windows, in a sense, before building the plane you will have to build the plant
for building planes. This will be the topic of the following section, which can be
omitted by Linux users.

B.1 Preparing the development environment under Win-
dows

There is a powerful development environment available for Windows and this even
for free: The Cygnus development tools, resp. Cygwin. Their home is at

http://sources.redhat.com/cygwin/,

and it is always a good idea to check back what is going on there now and then.
Nowadays, installing Cygwin is nearly automatic. First, make sure the drive

you want Cygwin, PLIB, SimGear and FlightGear to live on, has nearly 1 GB of
free disk space. Create a temporary directory and download the installer from the
site named above to that directory. (While the installer does an automatic installa-
tion of the Cygnus environment, it is a good idea to download a new installer from
time to time.)

Invoke the installer now. It gives you three options. To avoid having to down-
load stuff twice in case of a re-installation or installation on a second machine,
we highly recommended to take a two-step procedure. First, select the option
Download from Internet. Insert the path of your temporary directory, your
Internet connection settings and then choose a mirror form the list. Near servers
might be preferred, but may be sometimes a bit behind with mirroring. We found

ftp://mirrors.rcn.net

a very recent and fast choice. In the next windows the default settings are usually
a good start. Now choose Next, sit back and wait.

If you are done, invoke the installer another time, now with the option Install
from local directory. After confirming the temporary directory you can

http://sources.redhat.com/cygwin/
ftp://mirrors.rcn.net

B.1. PREPARING THE DEVELOPMENT ENVIRONMENT UNDER WINDOWS93

select a root directory (acting as the root directory of your pseudo UNIX file sys-
tem). Cygnus does not recommend taking the actual root directory of a drive, thus
choose c:/Cygwin (while other drives than c: work as well). Now, all Cygwin
stuff and all FlightGear stuff lives under this directory. In addition, select

Default text file type: Unix
In addition, you have the choice to install the compiler for all users or just for you.

The final window before installation gives you a selection of packages to in-
stall. It is hard, to provide a minimum selection of packages required for Flight-
Gear and the accompanying libraries to install. We have observed the following
(non minimum) combination to work:

• Admin skip

• Archive install

• Base install

• Database skip

• Devel install

• Doc install

• Editors skip

• Graphics install

• Interpreters install

• Libs install

• Mail skip

• Net skip

• Shells install

• Text install

• Utils install

• Web skip

• XFree86 do not install!

Note XFree86 must be not installed for building FlightGear and the accom-
panying libraries. If it is installed you have to deinstall it first. Otherwise Flight-
Gear’s configuration scripts will detect the XFree86 OpenGL libraries and link to
them, while the code is not prepared to do so.

94 B. BUILDING THE PLANE

As a final step you should include the binary directory (for instance:
c:/Cygwin/bin) into your path by adding path=c:\Cygwin\bin in your
autoexec.bat under Windows 95/98/MEU̇nder WindowsNT/2000/XP, use the
Extended tab under the System properties page in Windows control
panel. There you’ll find a button Environment variables, where you can
add the named directory.

Now you are done. Fortunately, all this is required only once. At this point you
have a nearly UNIX-like (command line) development environment. Because of
this, the following steps are nearly identical under Windows and Linux/Unix.

B.2 Preparing the development environment under Linux

Linux, like any UNIX, usually comes with a compiler pre-installed. On the other
hand, you still have to make sure several required libraries are present.

First, make sure you have all necessary OpenGL libraries. Fortunately, most of
the recent Linux distributions (i.e. SuSE-7.3) put these already into the right place.
(There have been reports, though, that on Slackware you may have to copy the
libraries to /usr/local/lib and the headers to /usr/local/include by
hand after building glut-3.7). Be sure to install the proper packages: Besides
the basic X11 stuff you want to have - SuSE as an example - the following pack-
ages: mesa, mesa-devel, mesasoft, xf86_glx, xf86glu, xf86glu-devel, mesaglut,
mesaglut-devel and plib.

Also you are expected to have a bunch of tools installed that are usually re-
quired to compile the Linux kernel. So you may use the Linux kernel source
package to determine the required dependencies. The following packages might
prove to be useful when fiddling with the FlightGear sources: automake, auto-
conf, libtool, bison, flex and some more, that are not required to build a Linux
kernel.

Please compare the release of the Plib library with the one that ships with
your Linux distribution. It might be the case that FlightGear requires a newer
one that is not yet provided by your vendor.

B.3 One-time preparations for Linux and Windows users

There are a couple of 3rd party libraries which your Linux or Windows system
may or may not have installed, i.eṫhe ZLIB library. You can either check your list
of installed packages or just try building SimGear: It should exit and spit an error
message (observe this!) if one of these libraries is missing.

If you make this observation, install the missing libraries, which is only re-
quired once (unless you re-install your development environment).

Both libraries come bundled with SimGear, which links to them, but does not
automatically install them. For installing either of them, get the most recent file
SimGear-X.X.X.tar.gz from

B.4. COMPILING FLIGHTGEAR UNDER LINUX/WINDOWS 95

http://www.simgear.org/downloads.html

Download it to /usr/local/source. Change to that directory and unpack
SimGear using

tar xvfz SimGear-X.X.X.tar.gz.
You will observe a directory src-libs which contains the two names li-

braries.

B.3.1 Installation of ZLIB

cd into SimGear-X.X.X/scr-libs and unpack ZLIB using

tar xvfz zlib-X.X.X.tar.gz.

Next, change to the newly created directory zlib-X.X.X and type

./configure
make
make install

Under Linux, you have to become root for being able to make install, for
instance via the su command.

You may want to consult the Readme files under SimGear-X.X.X/scr-libs
in case you run into trouble.

B.4 Compiling FlightGear under Linux/Windows

The following steps are identical under Linux/Unix and under Windows with minor
modifications. Under Windows, just open the Cygwin icon from the Start menu or
from the desktop to get a command line.

To begin with, the FlightGear build process is based on four packages which
you need to built and installed in this order:

• PLIB

• SimGear

• FlightGear, program

• FlightGear, base (data - no compilation required)

1. First, choose an install directory for FlightGear. This will not be the one
your binaries will live in but the one for your source code and compilation
files. We suggest

cd:/usr/local/

mkdir source

http://www.simgear.org/downloads.html

96 B. BUILDING THE PLANE

2. Now, you have to install a support library PLIB which is absolutely essential
for the building process. PLIB contains most of the basic graphics rendering,
audio, and joystick routines. Download the latest stable version of PLIB
from

http://plib.sourceforge.net/

to /usr/local/source. Change to that directory and unpack PLIB us-
ing

tar xvfz plib-X.X.X.tar.gz.

cd into plib-X.X.X and run

./configure
make
make install.

Under Linux, you have to become root for being able to make install,
for instance via the su command.

Confirm you now have PLIB’s header files (as ssg.h etc.) under
/usr/include/plib (and nowhere else).

3. Next, you have to install another library SimGear containing the basic simu-
lation routines. Get the most recent file SimGear-X.X.X.tar.gz from

http://www.simgear.org/downloads.html

Download it to /usr/local/source. Change to that directory and un-
pack SimGear using

tar xvfz SimGear-X.X.X.tar.gz.

cd into SimGear-X.X.X and run

./configure
make
make install

Again, under Linux, you have to become root for being able to make install,
for instance via the su command.

4. Now, you’re prepared to build FlightGear itself, finally. Get
FlightGear-X.X.X.tar.gz from

http://www.flightgear.org/Downloads/

and download it to /usr/local/source. Unpack FlightGear using

tar xvfz FlightGear-X.X.X.tar.gz.

http://plib.sourceforge.net/
http://www.simgear.org/downloads.html
http://www.flightgear.org/Downloads/

B.4. COMPILING FLIGHTGEAR UNDER LINUX/WINDOWS 97

cd into FlightGear-X.X.X and run

./configure

configure knows about numerous options, with the more relevant ones to be
specified via switches as

• --with-network-olk: Include Oliver Delise’s multi-pilot network-
ing support,

• --with-new-environment: Include new experimental environ-
ment subsystem,

• --with-weathercm: Use WeatherCM instead of FGEnvironment,

• --with-plib=PREFIX: Specify the prefix path to PLIB,

• --with-simgear=PREFIX: Specify the prefix path to SimGear,

• --prefix=/XXX: Install FlightGear in the directory XXX.

• --disable-jsbsim: Disable JSBSimm FDM (in case of trouble
compiling it).

• --disable-yasim: Disable YASim FDM (in case of trouble com-
piling it).

• --disable-larcsim: Disable LaRCsim FDM (in case of trouble
compiling it).

• --disable-uiuc: Disable UIUC FDM (in case of trouble compil-
ing it).

A good choice would be --prefix=/usr/local/FlightGear. In
this case FlightGear’s binaries will live under /usr/local/FlightGear/bin.
(If you don’t specify a --prefix the binaries will go into /usr/local/bin
while the base package files are expected under /usr/local/share/FlightGear.)

Assuming configure finished successfully, run

make
make install.

Again, under Linux, you have to become root for being able to make install,
for instance via the su command.

Note: You can save a significant amount of space by stripping all the debug-
ging symbols off the executable. To do this, make a

cd /usr/local/FlightGear/bin

to the directory in the install tree where your binaries live and run

strip *.

98 B. BUILDING THE PLANE

This completes building the executable and should result in a file fgfs (Unix)
or fgfs.exe (Windows) under /usr/local/FlightGear/bin

Note: If for whatever reason you want to re-build the simulator, use the com-
mand make distclean either in the SimGear-X.X.X or in the FlightGear-X.X.X
directory to remove all the build. If you want to re-run configure (for in-
stance because of having installed another version of PLIB etc.), remove the files
config.cache from these same directories before.

B.5 Compiling FlightGear under Mac OS X

For compiling under Mac OS X you will need

• Mac X OS 10.1+ with developer tools installed.

• 500MB disk (minimum) free disk space.

• Fearlessness of command line compiling.

This will need a bit more bravery than building under Windows or Linux. First,
there are less people who tested it under sometimes strange configurations. Second,
the process as described here itself needs a touch more experience by using CVS
repositories.

First, download the development files. They contain files that help simplify the
build process, and software for automake, autoconf, and plib:

http://expert.cc.purdue.edu/˜walisser/fg/fgdev.tar.gz

or

http://homepage.mac.com/walisser

Once you have this extracted, make sure you are using TCSH as your shell, since
the setup script requires it.
Important for Jaguar users:

If you run Mac OS X 10.2 or later, gcc 3.1 is the default compiler. However,
only version 2.95 works with FlightGear as of this writing. To change the default
compiler, run this command (as root). You’ll only have to do this once and it will
have a global effect on the system.

sudo gcc select 2

1. Setup the build environment:
cd fgdev
source bin/prepare.csh

2. Install the latest versions of the automake and autoconf build tools:
cd $BUILDDIR/src/automake-X.X.X
./configure --prefix=$BUILDDIR

http://expert.cc.purdue.edu/~walisser/fg/fgdev.tar.gz
http://homepage.mac.com/walisser

B.5. COMPILING FLIGHTGEAR UNDER MAC OS X 99

make install
rehash

cd $BUILDDIR/src/autoconf-X.XX
./configure --prefix=$BUILDDIR
make install
rehash

3. Download PLIB
cd $BUILDDIR/src
setenv CVSROOT :pserver:anonymous@cvs.plib.sourceforge.net:/cvsroot/plib
cvs login
Press <enter> for password
cvs -z3 checkout plib

4. Build PLIB
cd $BUILDDIR/src/plib
./autogen.sh
./configure --prefix=$BUILDDIR
make install

5. Get the SimGear sources
cd $BUILDDIR/src
setenv CVSROOT :pserver:cvsguest@cvs.simgear.org:/var/cvs/SimGear-0.3
cvs login
Enter <guest> for password
cvs -z3 checkout SimGear

6. Build SimGear
cd $BUILDDIR/src/SimGear
./autogen.sh
./configure -prefix=$BUILDDIR
make install

7. Get the FlightGear sources
cd $BUILDDIR/src
setenv CVSROOT :pserver:cvsguest@cvs.flightgear.org:/var/cvs/FlightGear-0.9
cvs login
Enter <guest> for password
cvs -z3 checkout FlightGear

8. Build FlightGear
cd $BUILDDIR/src/FlightGear
patch -p0 < ../jsb.diff
./autogen.sh

100 B. BUILDING THE PLANE

./configure -prefix=$BUILDDIR
-with-threads -without-x (one line)
make install

9. Get the base data files (if you don’t have them already)
cd $BUILDDIR
setenv CVSROOT :pserver:cvsguest@cvs.flightgear.org:/var/cvs/FlightGear-0.9
cvs login
Password is "guest"
cvs -z3 checkout data

10. Move data files (if you have them already)
just make a symlink or copy data files to "fgfsbase" in $BUILDDIR
alternatively adjust --fg-root=xxx parameter appropriately

11. Run FlightGear
cd $BUILDDIR
src/FlightGear/src/Main/fgfs

B.6 Compiling on other systems

Compiling on other UNIX systems - at least on IRIX and on
Solaris, is pretty similar to the procedure on Linux - given the presence of

a working GNU C compiler. Especially IRIX and also recent releases of So-
laris come with the basic OpenGL libraries. Unfortunately the “glut” libraries are
mostly missing and have to be installed separately (see the introductory remark to
this chapter). As compilation of the “glut” sources is not a trivial task to everyone,
you might want to use a pre-built binary. Everything you need is a static library
“libglut.a” and an include file “glut.h”. An easy way to make them usable is to
place them into /usr/lib/ and /usr/include/GL/. In case you insist on
building the library yourself, you might want to have a look at FreeGLUT

http://freeglut.sourceforge.net/

which should compile with minor tweaks. Necessary patches might be found in

ftp://ftp.uni-duisburg.de/X11/OpenGL/freeglut_portable.patch

Please note that you do not want to create 64 bit binaries in IRIX with GCC (even
if your CPU is a R10/12/14k) because GCC produces a broken “fgfs” binary (in
case the compiler doesn’t stop with “internal compiler error”). Things look better
since Eric Hofman managed to tweak the FlightGear sources for proper compiling
with MIPSPro compiler.

There should be a workplace for Microsoft Visual C++ (MSVC6) included in
the official FlightGear distribution. Macintosh users find the required CodeWarrior
files as a .bin archive at

http://freeglut.sourceforge.net/
ftp://ftp.uni-duisburg.de/X11/OpenGL/freeglut_portable.patch

B.7. INSTALLING THE BASE PACKAGE 101

http://icdweb.cc.purdue.edu/˜walisser/fg/.
Numerous (although outdated, at times) hints on compiling on different sys-

tems are included in the source code under docs-mini.

B.7 Installing the base package

If you succeeded in performing the steps named above, you will have a directory
holding the executables for FlightGear. This is not yet sufficient for performing
FlightGear, though. Besides those, you will need a collection of support data
files (scenery, aircraft, sound) collected in the so-called base package. In case you
compiled the latest official release, the accompanying base package is available
from

ftp://www.flightgear.org/pub/flightgear/Shared/fgfs-base-X.X.X.tar.gz.
This package is usually quite large (around 25 MB), but must be installed for

FlightGear to run. There is no compilation required for it. Just download it to
/usr/local and install it with

tar xvfz fgfs-base-X.X.X.tar.gz.
Now you should find all the FlightGear files under /usr/local/Flightgear
in the following directory structure::

/usr/local/Flightgear
/usr/local/Flightgear/Aircraft
/usr/local/Flightgear/Aircraft-uiuc
. . .
/usr/local/Flightgear/bin
. . .
/usr/local/Flightgear/Weather.

B.8 For test pilots only: Building the CVS snapshots

It you are into adventures or feel you’re an advanced user, you can try one of the
recent bleeding edge snapshots at

http://www.flightgear.org/Downloads/.

In this case you have to get the most recent Snapshot from SimGear at

http://www.simgear.org/downloads.html

as well. But be prepared: These are for development and may (and often do)
contain bugs.

If you are using these CVS snapshots, the base package named above will
usually not be in sync with the recent code and you have to download the most
recent developer’s version from

http://rockfish.net/fg/.

http://icdweb.cc.purdue.edu/~walisser/fg/
ftp://www.flightgear.org/pub/flightgear/Shared/fgfs-base-X.X.X.tar.gz
http://www.flightgear.org/Downloads/
http://www.simgear.org/downloads.html
http://rockfish.net/fg/

102 B. BUILDING THE PLANE

We suggest downloading this package fgfs_base-snap.X.X.X.tar.gz to
a temporary directory. Now, decompress it using

tar xvfz fgfs_base-snap.X.X.X.tar.gz.

Finally, double-check you got the directory structure named above.

Appendix C

Some words on OpenGL graphics
drivers

FlightGear’s graphics engine is based on a graphics library called OpenGL. Its pri-
mary advantage is its platform independence, i. e., programs written with OpenGL
support can be compiled and executed on several platforms, given the proper drivers
having been installed in advance. Thus, independent of if you want to run the bina-
ries only or if you want to compile the program yourself you must have some sort
of OpenGL support installed for your video card.

A good review on OpenGL drivers can be found at

http://www.flightgear.org/Hardware.

Specific information is collected for windows at

http://www.x-plane.com/SYSREQ/v5ibm.html

and for Macintosh at

http://www.x-plane.com/SYSREQ/v5mac.html.

An excellent place to look for documentation about Linux and 3-D accelerators is
theLinux Quake HOWTO at

http://www.linuxquake.com.

This should be your first aid in case something goes wrong with your Linux 3-D
setup.

Unfortunately, there are so many graphics boards, chips and drivers out there
that we are unable to provide a complete description for all systems. Given the
present market dominance of NVIDIA combined with the fact that their chips
have indeed been proven powerful for running FlightGear, we will concentrate
on NVIDIA drivers in what follows.

103

http://www.flightgear.org/Hardware
http://www.x-plane.com/SYSREQ/v5ibm.html
http://www.x-plane.com/SYSREQ/v5mac.html
http://www.linuxquake.com

104 C. GETTING THE ENGINE

C.1 NVIDIA chip based cards under Linux

Recent Linux distributions include and install anything needed to run OpenGL
programs under Linux. Usually there is no need to install anything else.

If for whatever reason this does not work, you may try to download the most
recent drivers from the NVIDIA site at

http://www.nvidia.com/Products/Drivers.nsf/Linux.html

At present, this page has drivers for all NVIDIA chips for the following Linux dis-
tributions: RedHat 7.1, Redhat 7.0, Redhat 6.2, Redhat 6.1, Mandrake 7.1, Man-
drake 7.2, SuSE 7.1, SuSE 7.0 in several formats (.rpm, ṫar.gz). These drivers
support OpenGL natively and do not need any additional stuff.

The page named above contains a detailed README and Installation
Guide giving a step-by-step description, making it unnecessary to copy the ma-
terial here. Please enshure to replace any OpenGL related libraries with those that
are shipped with the NVIDIA driver - not only user space libraries but also those
in the X server extension modules directory.

C.2 NVIDIA chip based cards under Windows

Again, you may first try the drivers coming with your graphics card. Usually they
should include OpenGL support. If for whatever reason the maker of your board
did not include this feature into the driver, you should install the Detonator refer-
ence drivers made by NVIDIA (which might be a good idea anyway). These are
available in three different versions (Windows 95/98/ME, Windows 2000, Win-
dows NT) from

http://www.nvidia.com/products.nsf/htmlmedia/detonator3.html

Just read carefully the Release notes to be found on that page. Notably do not
forget to uninstall your present driver and install a standard VGA graphics adapter
before switching to the new NVIDIA drivers first.

C.3 3DFX chip based cards under Windows

With the Glide drivers no longer provided by 3DFX there seems to be little chance
to get it running (except to find older OpenGL drivers somewhere on the net or
privately). All pages which formerly provided official support or instructions for
3DFX are gone now. For an alternative, you may want to check the next section,
though.

http://www.nvidia.com/Products/Drivers.nsf/Linux.html
http://www.nvidia.com/products.nsf/htmlmedia/detonator3.html

C.4. AN ALTERNATIVE APPROACH FOR WINDOWS USERS 105

C.4 An alternative approach for Windows users

There is now an attempt to build a program which detects the graphics chip on your
board and automatically installs the appropriate OpenGL drivers. This is called
OpenGL Setup and is presently in beta stage. It’s home page can be found at

http://www.glsetup.com/.

We did not try this ourselves, but would suggest it for those completely lost.

C.5 3DFX chip based cards under Linux

Notably, with 3DFX now having been taken over by NVIDIA, manufacturer’s sup-
port already has disappeared. However with XFree86-4.x (with x at least being
greater than 1) Voodoo3 cards are known to be pretty usable in 16 bit color mode.
Newer cards should work fine as well. If you are still running a version of Xfree86
3.X and run into problems, consider an upgrade. The recent distributions by De-
bian or SuSE have been reported to work well.

C.6 ATI chip based cards under Linux

There is support for ATI chips in XFree86-4.1 and greater. Lots of AGP boards
based on the Rage128 chip - from simple Rage128 board to ATI Xpert2000 - are
mostly usable for FlightGear. Since XFree86-4.1 you can use early Radeon chips
- up to Radeon7500 with XFree86-4.2, up to Radeon9100 with XFree86-4.3. Be
careful with stock XFree86-4.3.0, it was released with (known) bugs in the Radeon
driver. Ongoing development provides functional drivers for R100 (Radeon7000
up to 7500) and R200 (Radeon8500 and 9100) chips.

ATI provides an alternative with their binary drivers. You need to build a kernel
module using a script that is supplied with the package and add several X server
modules into your XFree86 tree. In most cases, the RPM installation will do that
for you.

C.7 Building your own OpenGL support under Linux

Setting up proper OpenGL support with a recent Linux distribution should be pretty
simple. As an example SuSE ships everything you need plus some small shell
scripts to adjust the missing bits automagically. If you just want to execute pre-
built binaries of FlightGear, then you’re done by using the supplied FlightGear
package plus the mandantory runtime libraries (and kernel modules). The package
manager will tell you which ones to choose.

In case you want to run a self-made kernel, you want to compile FlightGear
yourself, you’re tweaking your X server configuration file yourself or you even run

http://www.glsetup.com/

106 C. GETTING THE ENGINE

a homebrewed Linux “distribution” (this means, you want to compile everything
yourself), this chapter might be useful for you.

Now let’s have a look at the parts that build OpenGL support on Linux. First
there’s a Linux kernel with support for your graphics adapter.

Examples on which graphics hardware is supported natively by Open Source
drivers are provided on

http://dri.sourceforge.net/dri_status.phtml.

There are a few graphics chip families that are not directly or no more than
partly supported by XFree86, the X window implementation on Linux, because
vendors don’t like to provide programming information on their chips. In these
cases - notably IBM/DIAMOND/now: ATI FireGL graphics boards and NVIDIA
GeForce based cards - you depend on the manufacturers will to follow the on-
going development of the XFree86 graphics display infrastructure. These boards
might prove to deliver impressing performance but in many cases - considering the
CPU’s speed you find in today’s PC’s - you have many choices which all lead to
respectable performance of FlightGear.

As long as you use a distribution provided kernel, you can expect to find all
necessary kernel modules at the appropriate location. If you compile the kernel
yourself, then you have to take care of two sub-menus in the kernel configuration
menu. You’ll find them in the “Character devices” menu. Please notice that AGP
support is not compulsory for hardware accelerated OpenGL support on Linux.
This also works quite fine with some PCI cards (3dfx Voodoo3 PCI for example,
in case you still own one). Although every modern PC graphics card utilizes the
AGP ‘bus’ for fast data transfer.

Besides ”AGP Support” for your chipset - you might want to ask your main-
board manual which one is on - you definitely want to activate “Direct Rendering
Manager” for your graphics board. Please note that recent releases of XFree86 -
namely 4.1.0 and higher might not be supported by the DRI included in older Linux
kernels. Also newer 2.4.x kernels from 2.4.8 up to 2.4.17 do not support DRI in
XFree86-4.0.x.

After building and installing your kernel modules and the kernel itself this task
might be completed by loading the ‘agpgart’ module manually or, in case you
linked it into the kernel, by a reboot in purpose to get the new kernel up and run-
ning. While booting your kernel on an AGP capable mainboard you may expect
boot messages like this one:

> Linux agpgart interface v0.99 (c) Jeff Hartmann
> gpgart: Maximum main memory to use for agp memory: 439M
> agpgart: Detected Via Apollo Pro chipset
> agpgart: AGP aperture is 64M @ 0xe4000000

If you don’t encounter such messages on Linux kernel boot, then you might
have missed the right chip set. Part one of activation hardware accelerated OpenGL
support on your Linux system is now completed.

http://dri.sourceforge.net/dri_status.phtml

C.7. BUILDING YOUR OWN OPENGL SUPPORT UNDER LINUX 107

The second part consists of configuring your X server for OpenGLṪhis is not
a big deal as it simply consists of to instructions to load the appropriate mod-
ules on startup of the X server. This is done by editing the configuration file
/etc/X11/XF86Config. Today’s Linux distributions are supposed to provide
a tool that does this job for you on your demand. Please make sure there are these
two instructions:

Load “glx”
Load “dri”

in the “Module” section your X server configuration file. If everything is right the
X server will take care of loading the appropriate Linux kernel module for DRI
support of your graphics card. The right Linux kernel module name is determined
by the ‘Driver’ statement in the “Device” section of the XF86Config. Please see
three samples on how such a “Device” section should look like:

Section “Device”
BoardName “3dfx Voodoo3 PCI”
BusID “0:8:0”
Driver “tdfx”
Identifier “Device[0]”
Screen 0
VendorName “3Dfx”

EndSection

Section “Device”
BoardName “ATI Xpert2000 AGP”
BusID “1:0:0”
Driver “ati”
Option “AGPMode” “1”
Identifier “Device[0]”
Screen 0
VendorName “ATI”

EndSection

Section “Device”
BoardName “ATI Radeon 32 MB DDR AGP”
BusID “1:0:0”
Driver “radeon”
Option “AGPMode” “4”
Identifier “Device[0]”
Screen 0
VendorName “ATI”

EndSection

By using the Option “AGPMode” you can tune AGP performance as long as
the mainboard and the graphics card permit. The BusID on AGP systems should

108 C. GETTING THE ENGINE

always be set to “1:0:0” - because you only have one AGP slot on your board -
whereas the PCI BusID differs with the slot your graphics card has been applied
to. ‘lspci’ might be your friend in desperate situations. Also a look at the end of
/var/log/XFree86.0.log, which should be written on X server startup, should point
to the PCI slot where your card resides.

This has been the second part of installing hardware accelerated OpenGL sup-
port on your Linux box.

The third part carries two subparts: First there are the OpenGL runtime li-
braries, sufficient to run existing appliactions. For compiling FlightGear you also
need the suiting developmental headers. As compiling the whole X window system
is not subject to this abstract we expect that your distribution ships the necessary
libraries and headers. In case you told your package manager to install some sort
of OpenGL support you are supposed to find some OpenGL test utilities, at least
there should be ‘glxinfo’ or ‘gl-info’.

These command-line utilities are useful to say if the previous steps where suc-
cessfull. If they refuse to start, then your package manager missed something
because he should have known that these utilities usually depend on the existence
of OpenGL runtime libraries. If they start, then you’re one step ahead. Now watch
the output of this tool and and have a look at the line that starts with

OpenGL renderer string:
If you find something like

OpenGL renderer string: FireGL2 / FireGL3 (Pentium3)

or

OpenGL renderer string: Mesa DRI Voodoo3 20000224

or

OpenGL renderer string: Mesa DRI Radeon 20010402
AGP 4x x86

OpenGL renderer string: Mesa GLX Indirect

mind the word ‘Indirect’, then it’s you who missed something, because OpenGL
gets dealt with in a software library running solely on your CPUİn this case you
might want to have a closer look at the preceding paragraphs of this chapter. Now
please make sure all necessary libraries are at their proper location. You will need
three OpenGL libraries for running FlightGear. In most cases you will find them
in /usr/lib/:

/usr/lib/libGL.so.1
/usr/lib/libGLU.so.1
/usr/lib/libglut.so.3
These may be the libraries itself or symlinks to appropriate libraries located

in some other directories. Depending on the distribution you use these libraries

C.8. OPENGL ON MACINTOSH 109

might be shipped in different packages. SuSE for example ships libGL in pack-
age ‘xf86_glx’, libGLU in ‘xf86glu’ and libglut in ‘mesaglut’. Additionally for
FlightGear you need libplib which is part of the ‘plib’ package.

For compiling FlightGear yourself - as already mentioned - you need the ap-
propriate header files which often reside in /usr/include/GL/. Two are necessary
for libGL and they come in - no, not ‘xf86glx-devel’ (o.k., they do but they do not
work correctly) but in ‘mesa-devel’:

/usr/include/GL/gl.h
/usr/include/GL/glx.h

One comes with libGLU in ‘xf86glu-devel’:

/usr/include/GL/glu.h

and one with libglut in ‘mesaglut-devel’

/usr/include/GL/glut.h

The ‘plib’ package comes with some more libraries and headers that are too
many to be mentioned here. If all this is present and you have a comfortable com-
piler environment, then you are ready to compile FlightGear and enjoy the result.

Further information on OpenGL issues of specific XFree86 releases is available
here:

http://www.xfree86.org/<RELEASE NUMBER>/DRI.html

Additional reading on DRI:

http://www.precisioninsight.com/piinsights.html

In case you are missing some ‘spare parts’:

http://dri.sourceforge.net/documentation.phtml

C.8 OpenGL on Macintosh

OpenGL is pre-installed on Mac OS 9.x and later. You may find a newer version
than the one installed for Mac OS 9.x at

http://www.apple.com/opengl

You should receive the updates automatically for Mac OSX.
One final word: We would recommend that you test your OpenGL support with
one of the programs that accompany the drivers, to be absolutely confident that it
is functioning well. There are also many little programs, often available as screen
savers, that can be used for testing. It is important that you are confident in your
graphics acceleration because FlightGear will try to run the card as fast as possible.
If your drivers aren’t working well, or are unstable, you will have difficulty tracking
down the source of any problems and have a frustrating time.

http://www.precisioninsight.com/piinsights.html
http://dri.sourceforge.net/documentation.phtml
http://www.apple.com/opengl

110 C. GETTING THE ENGINE

Appendix D

Landing: Some further thoughts
before leaving the plane

D.1 A Sketch on the History of FlightGear

History may be a boring subject. However, from time to time there are people
asking for the history of FlightGear. As a result, we’ll give a short outline.

The FlightGear project goes back to a discussion among a group of net citizens
in 1996 resulting in a proposal written by David Murr who, unfortunately, dropped
out of the project (as well as the net) later. The original proposal is still available
from the FlightGear web site and can be found under

http://www.flightgear.org/proposal-3.0.1.

Although the names of the people and several of the details have changed over
time, the spirit of that proposal has clearly been retained up to the present time.

Actual coding started in the summer of 1996 and by the end of that year es-
sential graphics routines were completed. At that time, programming was mainly
performed and coordinated by Eric Korpela from Berkeley University. Early code
ran under Linux as well as under DOS, OS/2, Windows 95/NT, and Sun-OS. This
was found to be quite an ambitious project as it involved, among other things, writ-
ing all the graphics routines in a system-independent way entirely from scratch.

Development slowed and finally stopped in the beginning of 1997 when Eric
was completing his thesis. At this point, the project seemed to be dead and traffic
on the mailing list went down to nearly nothing.

It was Curt Olson from the University of Minnesota who re-launched the project
in the middle of 1997. His idea was as simple as it was powerful: Why invent the
wheel a second time? There have been several free flight simulators available run-
ning on workstations under different flavors of UNIX. One of these, LaRCsim (de-
veloped by Bruce Jackson from NASA), seemed to be well suited to the approach.
Curt took this one apart and re-wrote several of the routines such as to make them
build as well as run on the intended target platforms. The key idea in doing so was

111

http://www.flightgear.org/proposal-3.0.1

112 D. LANDING

to exploit a system-independent graphics platform: OpenGL.
In addition, a clever decision on the selection of the basic scenery data was

made in the very first version. FlightGear scenery is created based on satellite data
published by the U. S. Geological Survey. These terrain data are available from

http://edc.usgs.gov/geodata/

for the U.S., and

http://edcdaac.usgs.gov/gtopo30/gtopo30.html,

resp., for other countries. Those freely accessible scenery data, in conjunction
with scenery building tools included with FlightGear!, are an important feature
enabling anyone to create his or her own scenery.

This new FlightGear code - still largely being based on the original LaRCsim
code - was released in July 1997. From that moment the project gained momentum
again. Here are some milestones in the more recent development history.

D.1.1 Scenery

• Texture support was added by Curt Olson in spring 1998. This marked a
significant improvement in terms of reality. Some high-quality textures were
submitted by Eric Mitchell for the FlightGear project. Another set of high-
quality textures was added by Erik Hofman ever since.

• After improving the scenery and texture support frame rate dropped down to
a point where FlightGear became unflyable in spring 1998. This issue was
resolved by exploiting hardware OpenGL support, which became available
at that time, and implementing view frustrum culling (a rendering technique
that ignores the part of the scenery not visible in a scene), done by Curt
Olson. With respect to frame rate one should keep in mind that the code,
at present, is in no way optimized, which leaves room for further improve-
ments.

• In September 1998 Curt Olson succeeded in creating a complete terrain
model for the U.S. The scenery is available worldwide now, via a clickable
map at:

http://www.flightgear.org/Downloads/world-scenery.html.

• Scenery was further improved by adding geographic features including lakes,
rivers,and coastlines later, an effort still going on. Textured runways were
added by Dave Cornish in spring 2001. Light textures add to the visual im-
pression at night. To cope with the constant growth of scenery data, a binary
scenery format was introduced in spring 2001. Runway lighting was intro-
duced by Curt Olson in spring 2001. Finally, a completely new set of scenery
files for the whole world was created by William Riley based on preparatory

http://edc.usgs.gov/geodata/
http://edcdaac.usgs.gov/gtopo30/gtopo30.html
http://www.flightgear.org/Downloads/world-scenery.html

D.1. A SKETCH ON THE HISTORY OF FLIGHTGEAR 113

documentation by David Megginson in summer 2002. This is based on a
data set called VMap0 as an alternative to the GSHHS data used so far. This
scenery is a big improvement as it has world wide coverage of main streets,
rivers, etc., while it’s downside are much less accurate coast lines. Flight-
Gear’s base scenery is based on these new scenery files since summer 2002.
The complete set is available via a clickable map, too, from

http://www.randdtechnologies.com/fgfs/newScenery/world-scenery.html.

• There was support added for static objects to the scenery in 2001, which per-
mits placing buildings, static planes, trees and so on in the scenery. However,
despite a few proofs of concept systematic inclusion of these landmarks is
still missing.

• The world is populated with random ground objects with appropriate type
and density for the local ground cover type since summer 2002. This marks
a mayor improvement of reality and is mainly thanks to work by D. Meggin-
son.

D.1.2 Aircraft

• A HUD (head up display) was added based on code provided by Michele
America and Charlie Hotchkiss in the fall of 1997 and was improved later
by Norman Vine. While not generally available for real Cessna 172, the
HUD conveniently reports the actual flight performance of the simulation
and may be of further use in military jets later.

• A rudimentary autopilot implementing heading hold was contributed by Jeff
Goeke-Smith in April 1998. It was improved by the addition of an altitude
hold and a terrain following switch in October 1998 and further developed
by Norman Vine later.

• Friedemann Reinhard developed early instrument panel code, which was
added in June 1998. Unfortunately, development of that panel slowed down
later. Finally, David Megginson decided to rebuild the panel code from
scratch in January 2000. This led to a rapid addition of new instruments and
features to the panel, resulting in nearly all main instruments being included
until spring 2001. A handy minipanel was added in summer 2001.

• Finally, LaRCsims Navion was replaced as the default aircraft when the
Cessna 172 was stable enough in February 2000 - as move most users will
welcome. There are now several flight model and airplane options to choose
from at runtime. Jon Berndt has invested a lot of time in a more realistic and
versatile flight model with a more powerful aircraft configuration method.
JSBSim, as it has come to be called, did replace LaRCsim as the default
flight dynamics model (FDM), and it is planned to include such features as

http://www.randdtechnologies.com/fgfs/newScenery/world-scenery.html

114 D. LANDING

fuel slosh effects, turbulence, complete flight control systems, and other fea-
tures not often found all together in a flight simulator. As an alternative,
Andy Ross added another flight dynamics model called YASim (Yet Another
Flight Dynamics Simulator) which aims at simplicity of use and is based on
fluid dynamics, by the end of 2001. This one bought us flight models for a
747, an A4, and a DC-3. Alternatively, a group around Michael Selig from
the UIUC group provided another flight model along with several planes
since around 2000.

• A fully operational radio stack and working radios were added to the panel
by Curt Olson in spring 2000. A huge database of Navaids contributed by
Robin Peel allows IFR navigation since then. There was basic ATC support
added in fall 2001 by David Luff. This is not yet fully implemented, but dis-
playing ATIS messages is already possible. A magneto switch with proper
functions was added at the end of 2001 by John Check and David Meggin-
son.. Moreover, several panels were continually improved during 2001 and
2002 by John and others. FlightGear now allows flying ILS approaches and
features a Bendix transponder.

• In 2002 functional multi-engine support found it’s way into FlightGear. JS-
BSim is now the default FDM in FlightGear.

• Support of ‘’true” 3D panels became stable via contributions from John
Check and others in spring 2002. In addition, we got movable control sur-
faces like propellers etc., thanks to David Megginson.

D.1.3 Environment

• The display of sun, moon and stars have been a weak point for PC flight
simulators for a long time. It is one of the great achievements of FlightGear
to include accurate modeling and display of sun, moon, and planets very
early. The corresponding astronomy code was implemented in fall 1997 by
Durk Talsma.

• Christian Mayer, together with Durk Talsma, contributed weather code in the
winter of 1999. This included clouds, winds, and even thunderstorms.

D.1.4 User Interface

• The foundation for a menu system was laid based on another library, the
Portable Library PLIB, in June 1998. After having been idle for a time, the
first working menu entries came to life in spring 1999.

PLIB underwent rapid development later. It has been distributed as a sep-
arate package by Steve Baker with a much broader range of applications in
mind, since spring 1999. It has provided the basic graphics rendering engine
for FlightGear since fall 1999.

D.1. A SKETCH ON THE HISTORY OF FLIGHTGEAR 115

• In 1998 there was basic audio support, i. eȧn audio library and some ba-
sic background engine sound. This was later integrated into the above-
mentioned portable library, PLIB. This same library was extended to sup-
port joystick/yoke/rudder in October 1999, again marking a huge step in
terms of realism. To adapt on different joystick, configuration options were
introduced in fall 2000. Joystick support was further improved by adding
a self detection feature based on xml joystick files, by David Megginson in
summer 2002.

• Networking/multiplayer code has been integrated by Oliver Delise and Curt
Olson starting fall 1999. This effort is aimed at enabling FlightGear to run
concurrently on several machines over a network, either an Intranet or the
Internet, coupling it to a flight planner running on a second machine, and
more. There emerged several approaches for remotely controlling Flight-
Gear over a Network during 2001. Notably there was added support for the
“Atlas” moving map program. Besides, an embedded HTTP server devel-
oped by Curt Olson late in 2001 can now act a property manager for external
programs.

• Manually changing views in a flight simulator is in a sense always “unreal”
but nonetheless required in certain situations. A possible solution was sup-
plied by Norman Vine in the winter of 1999 by implementing code for chang-
ing views using the mouse. Alternatively, you can use a hat switch for this
purpose, today.

• A property manager was implemented by David Megginson in fall 2000. It
allows parsing a file called .fgfsrc under UNIX/Linux and system.fgfsrc
under Windows for input options. This plain ASCII file has proven useful
in submitting the growing number of input options, and notably the joystick
settings. This has shown to be a useful concept, and joystick, keyboard, and
panel settings are no longer hard coded but set using *.xml files since spring
2001 thanks to work mainly by David Megginson and John Check.

During development there were several code reorganization efforts. Various
code subsystems were moved into packages. As a result, code is organized as
follows at present:

The base of the graphics engine is OpenGL, a platform independent graphics
library. Based on OpenGL, the Portable Library PLIB provides basic rendering,
audio, joystick etcṙoutines. Based on PLIB is SimGear, which includes all of the
basic routines required for the flight simulator as well as for building scenery. On
top of SimGear there are (i) FlightGear (the simulator itself), and (ii) TerraGear,
which comprises the scenery building tools.

This is by no means an exhaustive history and most likely some people who
have made important contributions have been left out. Besides the above-named
contributions there was a lot of work done concerning the internal structure by:

116 D. LANDING

Jon S. Berndt, Oliver Delise, Christian Mayer, Curt Olson, Tony Peden, Gary R.
Van Sickle, Norman Vine, and others. A more comprehensive list of contributors
can be found in Chapter D as well as in the Thanks file provided with the code.
Also, the FlightGear Website contains a detailed history worth reading of all of
the notable development milestones at

http://www.flightgear.org/News/

D.2 Those, who did the work

Did you enjoy the flight? In case you did, don’t forget those who devoted hundreds
of hours to that project. All of this work is done on a voluntary basis within spare
time, thus bare with the programmers in case something does not work the way
you want it to. Instead, sit down and write them a kind (!) mail proposing what
to change. Alternatively, you can subscribe to the FlightGear mailing lists and
contribute your thoughts there. Instructions to do so can be found at

http://www.flightgear.org/mail.html.

Essentially there are two lists, one of which being mainly for the developers and the
other one for end users. Besides, there is a very low-traffic list for announcements.

The following names the people who did the job (this information was essentially
taken from the file Thanks accompanying the code).

A1 Free Sounds
Granted permission for the FlightGear project to use some of the sound effects
from their site. Homepage under

http://www.a1freesoundeffects.com/

Raul Alonzo
Mr. Alonzo is the author of Ssystem and provided his kind permission for using the
moon texture. Parts of his code were used as a template when adding the texture.
Ssystem Homepage can be found at:

http://www1.las.es/˜amil/ssystem/.

Michele America
Contributed to the HUD code.

Michael Basler
Author of Installation and Getting Started. Flight Simulation Page at

http://www.geocities.com/pmb.geo/flusi.htm

Jon S. Berndt
Working on a complete C++ rewrite/reimplimentation of the core FDM. Initially he
is using X15 data to test his code, but once things are all in place we should be able

http://www.flightgear.org/News/
http://www.flightgear.org/mail.html
http://www.a1freesoundeffects.com/
http://www1.las.es/~amil/ssystem/
http://www.geocities.com/pmb.geo/flusi.htm

D.2. THOSE, WHO DID THE WORK 117

to simulate arbitrary aircraft. Jon maintains a page dealing with Flight Dynamics
at:

http://jsbsim.sourceforge.net/

Special attention to X15 is paid in separate pages on this site. Besides, Jon con-
tributed via a lot of suggestions/corrections to this Guide.

Paul Bleisch
Redid the debug system so that it would be much more flexible, so it could be
easily disabled for production system, and so that messages for certain subsystems
could be selectively enabled. Also contributed a first stab at a config file/command
line parsing system.

Jim Brennan
Provided a big chunk of online space to store USA scenery for FlightGear!.

Bernie Bright
Many C++ style, usage, and implementation improvements, STL portability and
much, much more. Added threading support and a threaded tile pager.

Bernhard H. Buckel
Contributed the README.Linux. Contributed several sections to earlier versions
of Installation and Getting Started.

Gene Buckle
A lot of work getting FlightGear to compile with the MSVC++ compiler. Numer-
ous hints on detailed improvements.

Ralph Carmichael
Support of the project. The Public Domain Aeronautical Software web site at

http://www.pdas.com/

has the PDAS CD-ROM for sale containing great programs for astronautical engi-
neers.
Didier Chauveau
Provided some initial code to parse the 30 arcsec DEM files found at:

http://edcwww.cr.usgs.gov/landdaac/gtopo30/gtopo30.html.

John Check
John maintains the base package CVS repository. He contributed cloud textures,
wrote an excellent Joystick Howto as well as a panel Howto. Moreover, he con-
tributed new instrument panel configurations. FlightGear page at

http://www.rockfish.net/fg/.

Dave Cornish
Dave created new cool runway textures plus some of our cloud textures.

http://jsbsim.sourceforge.net/
http://www.pdas.com/
http://edcwww.cr.usgs.gov/landdaac/gtopo30/gtopo30.html
http://www.rockfish.net/fg/

118 D. LANDING

Oliver Delise
Started a FAQ, Documentation, Public relations. Working on adding some networking/multi-
user code. Founder of the FlightGear MultiPilot

Jean-Francois Doue
Vector 2D, 3D, 4D and Matrix 3D and 4D inlined C++ classes. (Based on Graphics
Gems IV, Ed. Paul S. Heckbert)

http://www.animats.com/simpleppp/ftp/public_html/topics/developers.html.

Dave Eberly
Contributed some sphere interpolation code used by Christian Mayer’s weather
data base system.

Francine Evans
Wrote the GPL’d tri-striper we use.

http://www.cs.sunysb.edu/˜stripe/

Oscar Everitt
Created single engine piston engine sounds as part of an F4U package for FS98.
They are pretty cool and Oscar was happy to contribute them to our little project.

Bruce Finney
Contributed patches for MSVC5 compatibility.

Melchior Franz
Contributed joystick hat support, a LED font, improvements of the telnet and the
http interface. Notable effort in hunting memory leaks in FlightGear, SimGear,
and JSBSim.

Jean-loup Gailly and Mark Adler
Authors of the zlib library. Used for on-the-fly compression and decompression
routines,

http://www.gzip.org/zlib/.

Mohit Garg
Contributed to the manual.

Thomas Gellekum
Changes and updates for compiling on FreeBSD.

Neetha Girish
Contributed the changes for the xml configurable HUD.

Jeff Goeke-Smith
Contributed our first autopilot (Heading Hold). Better autoconf check for external
timezone/daylight variables.

Michael I. Gold
Patiently answered questions on OpenGL.

http://www.animats.com/simpleppp/ftp/public_html/topics/developers.html
http://www.cs.sunysb.edu/~stripe/
http://www.gzip.org/zlib/

D.2. THOSE, WHO DID THE WORK 119

Habibe
Made RedHat package building changes for SimGear.

Mike Hill
For allowing us to concert and use his wonderful planes, available form

http://www.flightsimnetwork.com/mikehill/home.htm,
for FlightGear.

Erik Hofman
Major overhaul and parameterization of the sound module to allow aircraft-specific
sound configuration at runtime. Contributed SGI IRIX support (including binaries)
and some really great textures.

Charlie Hotchkiss
Worked on improving and enhancing the HUD code. Lots of code style tips and
code tweaks.

Bruce Jackson (NASA)
Developed the LaRCsim code under funding by NASA which we use to provide
the flight model. Bruce has patiently answered many, many questions.

Ove Kaaven
Contributed the Debian binary.

Richard Kaszeta
Contributed screen buffer to ppm screen shot routine. Also helped in the early
development of the "altitude hold autopilot module" by teaching Curt Olson the
basics of Control Theory and helping him code and debug early versions. Curt’s
B́ossB́ob Hain also contributed to that. Further details available at:

http://www.menet.umn.edu/˜curt/fgfs/Docs/Autopilot/AltitudeHold/AltitudeHold.html.

Rich’s Homepage is at

http://www.kaszeta.org/rich/.

Tom Knienieder
Ported the audio library first to OpenBSD and IRIX and after that to Win32.

Reto Koradi
Helped with setting up fog effects.

Bob Kuehne
Redid the Makefile system so it is simpler and more robust.

Kyler B Laird
Contributed corrections to the manual.

David Luff
Contributed heavily to the IO360 piston engine model.

http://www.flightsimnetwork.com/mikehill/home.htm
http://www.menet.umn.edu/~curt/fgfs/Docs/Autopilot/AltitudeHold/AltitudeHold.html
http://www.kaszeta.org/rich/

120 D. LANDING

Christian Mayer
Working on multi-lingual conversion tools for fgfs as a demonstration of technol-
ogy. Contributed code to read Microsoft Flight Simulator scenery textures. Chris-
tian is working on a completely new weather subsystem. Donated a hot air balloon
to the project.

David Megginson
Contributed patches to allow mouse input to control view direction yoke. Con-
tributed financially towards hard drive space for use by the flight gear project.
Updates to README.running. Working on getting fgfs and ssg to work with-
out textures. Also added the new 2-D panel and the save/load support. Further, he
developed new panel code, playing better with OpenGL, with new features. De-
veloped the property manager and contributed to joystick support. Random ground
cover objects

Cameron Moore
FAQ maintainer. Reigning list administrator. Provided man pages.

Eric Mitchell
Contributed some topnotch scenery textures being all original creations by him.

Anders Morken
Former maintainer of European web pages.

Alan Murta
Created the Generic Polygon Clipping library.

http://www.cs.man.ac.uk/aig/staff/alan/software/

Phil Nelson
Author of GNU dbm, a set of database routines that use extendible hashing and
work similar to the standard UNIX dbm routines.

Alexei Novikov
Created European Scenery. Contributed a script to turn fgfs scenery into beautifully
rendered 2-D maps. Wrote a first draft of a Scenery Creation Howto.

Curt Olson
Primary organization of the project.
First implementation and modifications based on LaRCsim.
Besides putting together all the pieces provided by others mainly concentrating on
the scenery subsystem as well as the graphics stuff. Homepage at

http://www.menet.umn.edu/˜curt/

Brian Paul
We made use of his TR library and of course of Mesa:

http://www.mesa3d.org/brianp/TR.html, http://www.mesa3d.org

Tony Peden
Contributions on flight model development, including a LaRCsim based Cessna

http://www.cs.man.ac.uk/aig/staff/alan/software/
http://www.menet.umn.edu/~curt/
http://www.mesa3d.org/brianp/TR.html
http://www.mesa3d.org

D.2. THOSE, WHO DID THE WORK 121

172. Contributed to JSBSim the initial conditions code, a more complete standard
atmosphere model, and other bugfixes/additions.

Robin Peel
Maintains worldwide airport and runway database for FlightGear as well as X-
Plane.

Alex Perry
Contributed code to more accurately model VSI, DG, Altitude. Suggestions for
improvements of the layout of the simulator on the mailing list and help on docu-
mentation.

Friedemann Reinhard
Development of an early textured instrument panel.

Petter Reinholdtsen
Incorporated the GNU automake/autoconf system (with libtool). This should stream-
line and standardize the build process for all UNIX-like platforms. It should have
little effect on IDE type environments since they don’t use the UNIX make system.

William Riley
Contributed code to add ”brakes”. Also wrote a patch to support a first joystick
with more than 2 axis. Did the job to create scenery based on VMap0 data.

Andy Ross
Contributed a new configurable FDM called YASim (Yet Another Flight Dynamics
Simulator, based on geometry information rather than aerodynamic coefficients.

Paul Schlyter
Provided Durk Talsma with all the information he needed to write the astro code.
Mr. Schlyter is also willing to answer astro-related questions whenever one needs
to.

http://www.welcome.to/pausch/

Chris Schoeneman
Contributed ideas on audio support.

Phil Schubert
Contributed various textures and engine modeling.

http://www.zedley.com/Philip/.

Jonathan R. Shewchuk
Author of the Triangle program. Triangle is used to calculate the Delauney trian-
gulation of our irregular terrain.

Gordan Sikic
Contributed a Cherokee flight model for LaRCsim. Currently is not working and
needs to be debugged. Use configure --with-flight-model=cherokee to
build the cherokee instead of the Cessna.

http://www.welcome.to/pausch/
http://www.zedley.com/Philip/

122 D. LANDING

Michael Smith
Contributed cockpit graphics, 3-D models, logos, and other images. Project Bo-
nanza

Martin Spott
Co-Author of the “Getting Started”.

Durk Talsma
Accurate Sun, Moon, and Planets. Sun changes color based on position in sky.
Moon has correct phase and blends well into the sky. Planets are correctly po-
sitioned and have proper magnitude. Help with time functions, GUI, and other
things. Contributed 2-D cloud layer. Website at

http://people.a2000.nl/dtals/.

UIUC - Department of Aeronautical and Astronautical Engineering
Contributed modifications to LaRCsim to allow loading of aircraft parameters from
a file. These modifications were made as part of an icing research project.

Those did the coding and made it all work:
Jeff Scott
Bipin Sehgal
Michael Selig

Moreover, those helped to support the effort:
Jay Thomas
Eunice Lee
Elizabeth Rendon
Sudhi Uppuluri

U. S. Geological Survey

Provided geographic data used by this project.

http://edc.usgs.gov/geodata/

Mark Vallevand
Contributed some METAR parsing code and some win32 screen printing routines.

Gary R. Van Sickle
Contributed some initial GameGLUT support and other fixes. Has done prelimi-
nary work on a binary file format. Check

http://www.woodsoup.org/projs/ORKiD/fgfs.htm.

His Ćygwin Tipsṕage might be helpful for you at

http://www.woodsoup.org/projs/ORKiD/cygwin.htm.

Norman Vine
Provided more numerous URL’s to the “FlightGear Community”. Many perfor-
mance optimizations throughout the code. Many contributions and much advice

http://people.a2000.nl/dtals/
http://edc.usgs.gov/geodata/
http://www.woodsoup.org/projs/ORKiD/fgfs.htm
http://www.woodsoup.org/projs/ORKiD/cygwin.htm

D.2. THOSE, WHO DID THE WORK 123

for the scenery generation section. Lots of Windows related contributions. Con-
tributed wgs84 distance and course routines. Contributed a great circle route au-
topilot mode based on wgs84 routines. Many other GUI, HUD and autopilot con-
tributions. Patch to allow mouse input to control view direction. Ultra hires tiled
screen dumps. Contributed the initial ǵoto airportánd ŕesetf́unctions and the initial
http image server code

Roland Voegtli
Contributed great photorealistic textures. Founder of European Scenery Project for
X-Plane:

http://www.g-point.com/xpcity/esp/

Carmelo Volpe
Porting FlightGear to the Metro Works development environment (PC/Mac).

Darrell Walisser
Contributed a large number of changes to porting FlightGear to the Metro Works
development environment (PC/Mac). Finally produced the first Macintosh port.
Contributed to the Mac part of Getting Started, too.

Ed Williams
Contributed magnetic variation code (impliments Nima WMM 2000). We’ve also
borrowed from Ed’s wonderful aviation formulary at various times as well. Website
at http://williams.best.vwh.net/.

Jim Wilson
Wrote a major overhaul of the viewer code to make it more flexible and modular.
Contributed many small fixes and bug reports. Contributed to the PUI property
browser and to the autopilot.

Jean-Claude Wippler
Author of MetaKit - a portable, embeddible database with a portable data file for-
mat previously used in FlightGear. Please see the following URL for more info:

http://www.equi4.com/metakit/

Woodsoup Project

While FlightGear no longer uses Woodsoup servies we appreciate the sup-
port provided to our project during the time they hosted us. Once they provided
computing resources and services so that the FlightGear project could have a real
home.

http://www.woodsoup.org/

Robert Allan Zeh
Helped tremendously in figuring out the Cygnus Win32 compiler and how to link
with ḋll’s. Without him the first run-able Win32 version of FlightGear would have
been impossible.

http://www.g-point.com/xpcity/esp/
http://williams.best.vwh.net/
http://www.equi4.com/metakit/
http://www.woodsoup.org/

124 D. LANDING

D.3 What remains to be done

If you read (and, maybe, followed) this guide up to this point you may probably
agree: FlightGear even in its present state, is not at all for the birds. It is already a
flight simulator which sports even several selectable flight models, several planes
with panels and even a HUD, terrain scenery, texturing, all the basic controls and
weather.

Despite, FlightGear needs – and gets – further development. Except internal
tweaks, there are several fields where FlightGear needs basics improvement and
development. A first direction is adding airports, buildings, and more of those
things bringing scenery to real life and belonging to realistic airports and cities.
Another task is further implementation of the menu system, which should not be
too hard with the basics being working now. A lot of options at present set via
command line or even during compile time should finally make it into menu entries.
Finally, FlightGear lacks any ATC until now.

There are already people working in all of these directions. If you’re a pro-
grammer and think you can contribute, you are invited to do so.

Achnowledgements

Obviously this document could not have been written without all those contributors
mentioned above making FlightGear a reality.

First, I was very glad to see Martin Spott entering the documentation effort.
Martin provided not only several updates and contributions (notably in the OpenGL
section) on the Linux side of the project but also several general ideas on the doc-
umentation in general.

Besides, I would like to say special thanks to Curt Olson, whose numerous
scattered Readmes, Thanks, Webpages, and personal eMails were of special help
to me and were freely exploited in the making of this booklet.

Next, Bernhard Buckel wrote several sections of early versions of that Guide
and contributed at lot of ideas to it.

Jon S. Berndt supported me by critical proofreading of several versions of the
document, pointing out inconsistences and suggesting improvements.

Moreover, I gained a lot of help and support from Norman Vine. Maybe, with-
out Norman’s answers I would have never been able to tame different versions of
the Cygwin – FlightGear couple.

We were glad, our Mac expert Darrell Walisser contributed the section on com-
piling under Mac OS X. In addition he submitted several Mac related hints and
fixes.

Further contributions and donations on special points came from John Check,
(general layout), Oliver Delise (several suggestions including notes on that chap-
ter), Mohit Garg (OpenGL), Kyler B. Laird (corrections), Alex Perry (OpenGL),
Kai Troester (compile problems), Dave Perry (joystick support), and Michael Selig
(UIUC models).

D.3. WHAT REMAINS TO BE DONE 125

Besides those whose names got lost withing the last-minute-trouble we’d like to
express our gratitude to the following people for contributing valuable ‘bug fixes’
to this version of Getting Started (in random order): Cameron Moore, Melchior
Franz, David Megginson, Jon Berndt, Alex Perry,, Dave Perry,, Andy Ross, Erik
Hofman, and Julian Foad.

Index

.fgfsrc, 28, 113
2D cockpit, 50
3D cockpit, 50
3D panels, 112
3DFX, 87, 103
3dfx, 104

A1 Free Sounds, 114
A4, 16
additional scenery, 19
ADF, 56
Adler, Mark, 116
Aeronautical Information Manual, 63
AGP, 105
AGP Support, 104
aileron, 49, 54
aileron indicator, 58
Air Traffic Control, 76
air traffic facilities, 56
aircraft

installation, 20
selection, 30
survey, 43

aircraft model, 31
airport, 31, 122
airport code, 31, 60
airport ID, 53
airspeed indicator, 54
Airwave Xtreme 150, 17
Alonzo, Raul, 114
Altimeter, 71
altimeter, 55
altitude, 53
altitude hold, 50
America, Michele, 111, 114
anonymous cvs, 16
anti-aliaseded HUD lines, 30
antialiasing, 53
artificial horizon, 54
astronomy code, 112
ATC, 112, 122
ATI, 103, 104
ATIS, 56, 68
ATIS messages, 112

Atlas, 113
attitude indicator, 54
audio library, 117
audio support, 113
auto coordination, 29, 55
autopilot, 50, 53, 57, 72, 111, 116, 117
autopilot controls, 50, 51
autothrottle, 50

Baker, Steve, 112
bank, 54
base package

installation, 99
Basler, Michael, 114
Beech 99, 17
Bendix transponder, 112
Berndt, Jon, 123
Berndt, Jon, S., 111, 114, 122
binaries, 89

directory, 95
pre-compiled, 7

binaries, pre-compiled, 89
binary directory, 92
binary distribution, 5
bleeding edge snapshots, 99
Bleisch, Paul, 115
Boeing 747, 16
brakes, 52, 56, 119
branch, developmental, 15
branch, stable, 15
Brennan, Jim, 115
Bright, Bernie, 115
BSD UNIX, 12
Buckel, Bernhard, 115, 122
Buckle, Gene, 115

call sign, 53
callsign, 34
Carmichael, Ralph, 115
Cessna, 58, 119
Cessna 172, 16, 111
Cessna 182, 16
Cessna 310, 16
Chauveau, Didier, 115

126

INDEX 127

Check, John, 43, 57, 112, 113, 115, 122
Cherokee flight model, 119
clock, 55
cloud layer, 32
clouds, 112, 120
cockpit, 50
CodeWarrior, 98
COM transceiver, 56
COMM1, 56
COMM2, 56
command line options, 28
communication radio, 56
compiler, 15
compiling, 89

IRIX, 98
Linux, 93
Macintosh, 96
other systems, 98
Solaris, 98
Windows, 93

configure, 95
contributors, 114
control device, 29
control surface, movable, 112
Cornish, Dave, 110, 115
cvs, anonymous, 16
Cygnus, 15, 121

development tools, 90
Cygwin, 15, 88

packages to install, 91
setup, 90
XFree86, 91

DC-3, 16
Debian, 90
default settings, 28
Delise, Oliver, 113, 114, 116, 122
Denker, John, 64
Detonator reference drivers, 102
development environment, 90, 92
differential braking, 52
Direct3D, 14
directory structure, 99
disk space, 15, 90
display options, 50
distribution

binary, 89
documentation, 13

installation, 21
DOS, 109
Doue, Jean-Francois, 116
DRI, 107

Eberly, Dave, 116

elevation indicator, 58
elevator trim, 49
engine, 47

starting, 47
engine controls, 51
environment variables, 27
Evans, Francine, 116
Everitt, Oscar, 116
exit, 53, 60

FAA, 63
FAA Training Book, 63
FAQ, 6, 7, 85
FDM, 111, 114

external, 17
pipe, 17

field of view, 33
Finney, Bruce, 116
flaps, 52, 54, 57
flight dynamics model, 16, 31, 111
flight instrument, 54
flight model, 16, 31, 111
flight planner, 113
Flight simulator

civilian, 12
free, 109
multi-platform, 12
open, 12, 13
user-extensible, 12, 13
user-sported, 12
user-supported, 13

FlightGear, 113
directory structure, 99
versions, 15

FlightGear documentation, 17
FlightGear Flight School, 18
FlightGear Programmer’s Guide, 17
FlightGear Scenery Design Guide, 18
FlightGear Website, 17, 114
flightmodels, 16
Foad, Julian, 123
fog, 32
fog effects, 117
frame rate, 15, 32, 110
Franz, Melchior, 116, 123
FreeBSD, 116
FreeGLUT, 98
frozen state, 29
FS98, 116
fuel indicator, 55
full screen display, 28
full screen mode, 33, 50

Gailly, Jean-loup, 116

128 INDEX

GameGLUT, 120
Garg, Mohit, 116, 122
gauge, 54
gear, 52
Geforce, 6
Gellekum, Thomas, 116
geographic features, 110
Girish, Neetha, 116
GLIDE, 87
GNU C++, 15
GNU General Public License, 13
Go Around, 80
Goeke-Smith, Jeff, 111, 116
Gold, Michael, I., 116
GPL, 13
graphics card, 14
graphics library, 101
graphics routines, 109
GSHHS data, 111
gyro compass, 55

Habibe, 117
hang glider, 17
hangar, 43
Harrier, 16
haze, 32, 33
head up display, 58, 111
heading, 53
heading hold, 50
height, 58
help, 54
Hill, Mike, 117
History, 109
history

aircraft, 111
environment, 112
scenery, 110
user interface, 112

Hofman, Eric, 98
Hofman, Erik, 110, 117, 123
hot air balloon, 118
Hotchkiss, Charlie, 111, 117
HTTP server, 113
http server, 34
HUD, 30, 33, 53, 58, 59, 111, 114, 117

icing
modelling, 17

IFR, 57, 64
ignition switch, 47, 56
inclinometer, 54
initial heading, 32
install directory, 93
installing aircraft, 20

instrument flight rules, 57
instrument panel, 30, 50, 54, 111
Internet, 113
IRIX, 98

Jackson, Bruce, 109, 117
joystick, 29, 35, 47, 48, 113

.fgfsrc, 41
joystick settings, 113
joystick/self detection, 113
joysticks, 15
JSBSim, 31

Kaaven, Ove, 117
Kaszeta, Richard, 117
keybindings

configuration, 52
keyboard, 47
keyboard controls, 47–49

miscellaneous, 52
keyboard.xml, 52
Knienieder, Tom, 117
Koradi, Reto, 117
Korpela, Eric, 109
Kuehne, Bob, 117

Laird, Kyler B., 117, 122
landing gear, 52
LaRCsim, 109–111, 117–119
latitude, 59
Launching Flightgear

Linux, 25
Mac OS X, 28
Windows, 26

leaflet, 6
light textures, 110
Linux, 7, 12, 13, 15, 89, 102, 103, 109
Linux distributions, 90
Livermore, 66
load flight, 52
longitude, 59
Luff, David, 112, 117

Mac OS 9.x, 107
Mac OSX, 107
Macintosh, 7, 98
magnetic compass, 55
magneto switch, 112
mailing lists, 85, 114
map, clickable, 110, 111
Marchetti S-211, 17
marker, inner, 57
marker, middle, 57
marker, outer, 57

INDEX 129

Mayer, Christian, 112, 114, 118
Megginson, David, 63, 111–113, 118, 123
menu, 112
menu entries, 52
menu system, 122
MetaKit, 121
Metro Works, 121
Microsoft, 11
Mitchell, Eric, 110, 118
mixture, 57, 75
mixture lever, 48
Moore Cameron, 85
Moore, Cameron, 118, 123
Morken, Anders, 118
mouse, 47, 59
mouse modes, 59
mouse pointer, 29
mouse, actions, 59
MS DevStudio, 88
MSVC, 88, 115
multi-engine support, 112
multi-lingual conversion tools, 118
multiplayer code, 113
Murr, David, 109
Murta, Alan, 118

NAV, 56
navaids, 57
Navion, 111
NDB, 56
Nelson, Phil, 118
network, 53, 113
network options, 34
networking code, 113, 116
networking support, 95
Novikov, Alexei, 118
NumLock, 48
NVIDIA, 6, 102–104

drivers, 101
Linux drivers, 102
Windows drivers, 102

offset, 33
Olson, Curt, 20, 109, 110, 112–114, 118, 122
OpenGL, 6, 14, 15, 17, 86, 101–103, 107, 110,

113, 116
drivers, 15
libraries, 98
Linux, 103
Macintosh, 107
runtime libraries, 106

OpenGL drivers, 101
OpenGL renderer string, 106
OpenGL Setup, 103

Operating Systems, 12
options

aircraft, 30
debugging, 35
features, 30
flight model, 31
general, 28
HUD, 33
initial position, 31
IO, 35
joystick, 36
network, 34
orientation, 31
rendering, 32
route, 34
time, 34
waypoint, 34

options, configure, 95
OS/2, 109

panel, 53, 54, 118, 119
reconfiguration, 57

parking brake, 48, 52
Paul, Brian, 118
pause, 52
PCI, 106
pedal, 35
Peden, Tony, 114, 118
Peel, Robin, 112, 119
permissions, 87
Perry, Alex, 119, 122, 123
Perry, Dave, 122, 123
PFE, 42
pitch, 54
pitch indicator, 58
places to discover, 60
PLIB, 94, 112, 113

header files, 94
preferences, 28
problem report, 85
problems, 85

general, 86
Linux, 87
Windows, 87

programmers, 114
property manager, 53, 113
proposal, 109

Quake, 101

radio, 69
radio stack, 56, 112
random ground objects, 111
README.xmlpanel, 57

130 INDEX

Reid-Hillview, 66
Reinhard, Friedemann, 111, 119
Reinholdtsen, Petter, 119
reset flight, 53
Riley, William, 20, 110, 119
Ross, Andy, 112, 119, 123
RPM indicator, 55
rudder, 48, 49, 54
rudder indicator, 58
rudder pedals, 15, 47
runway lighting, 110

save flight, 52
scenery, 110

additional, 19
scenery directory

path, 28
scenery subsystem, 118
Schlyter, Paul, 119
Schoenemann, Chris, 119
Schubert, Phil, 119
screenshot, 52, 53
Sectional, 66
See how it flies, 64
Selig, Michael, 112, 122
SGI IRIX, 12
SGI Irix, 7
Shewchuk, Jonathan, 119
Sikic, Gordan, 119
SimGear, 92, 94, 113
Smith, Michael, 120
snapshots, 99
Solaris, 98
sound card, 15
sound effects, 15
source code, 13
speed, 58
Spott, Martin, 120, 122
SRTM, 19
starter, 48, 56
Starting Flightgear

Linux, 25
Mac OS X, 28
Windows, 26

starting the engine, 56
starting time, 34
startup latitude, 32
startup longitude, 32
startup pitch angle, 32
startup roll angle, 32
static objects, 111
Sun-OS, 12, 109
SuSE, 90, 103, 107
system requirements, 14

system.fgfsrc, 28, 113

tail-wheel lock, 52
Talsma, Durk, 112, 120
telnet server, 34
TerraGear, 113
terrain, 33
texture, 110
textures, 110, 118
throttle, 48, 49, 57, 58
thunderstorms, 112
time, 34
time offset, 52
time options, 34
TNT, 6
Torvalds, Linus, 13
Traffic Pattern, 77
triangle program, 119
triangles, 33
trim, 49
Troester, Kai, 87, 122
Turbo 310, 16
turn indicator, 54, 58
tutorial, 63

U. S. Geological Survey, 110, 120
UIUC, 112, 120
UIUC airplanes

3D models, 17
UIUC flight model, 16, 31
UNIX, 14, 89, 98, 109

Vallevand, Mark, 120
van Sickle, Gary, R., 114, 120
VASI, 79
velocity rages, 54
vertical speed indicator, 55
VFR, 57, 64
video card, 101
view, 53
view directions, 49
view frustrum culling, 110
view modes, 50
viewpoint, 53
views, 113
Vine, Norman, 111, 113, 114, 120, 122
visibility, 50
Visual C++, 98
visual flight rules, 57
VMap0, 19
VMap0 data, 111
Voegtli, Roland, 121
Volpe, Carmelo, 121
VOR, 56

INDEX 131

Walisser, Darrell, 121, 122
waypoint, 53
weather, 95, 118
Williams, Ed, 121
Wilson, Jim, 121
window size, 33
Windows, 7, 15, 89, 102
Windows 95/98/ME, 12
Windows 95/NT, 109
Windows NT/2000/XP, 12
winds, 112
Wippler, Jean-Claude, 121
wireframe, 33
Wood, Charles, 64
Woodsoup, 121
workstation, 14, 109
Wright Flyer, 17

X server, 105
X15, 16
XFree86, 87, 104, 107

YASim, 16
yoke, 29, 35, 47, 48, 56
yokes, 15

Zeh, Allan, 121
ZLIB

installation, 93
zlib library, 116

	I Installation
	1 Want to have a free flight? Take FlightGear!
	1.1 Yet Another Flight Simulator?
	1.2 System Requirements
	1.3 Choosing A Version
	1.4 Flight Dynamics Models
	1.5 About This Guide

	2 Preflight: Installing FlightGear
	2.1 Installing scenery
	2.2 Installing aircraft
	2.3 Installing documentation

	II Flying with FlightGear
	3 Takeoff: How to start the program
	3.1 Launching the simulator under Unix/Linux
	3.2 Launching the simulator under Windows
	3.3 Launching the simulator under Mac OS X
	3.4 Command line parameters
	3.4.1 General Options
	3.4.2 Features
	3.4.3 Aircraft
	3.4.4 Flight model
	3.4.5 Initial Position and Orientation
	3.4.6 Rendering Options
	3.4.7 HUD Options
	3.4.8 Time Options
	3.4.9 Network Options
	3.4.10 Route/Waypoint Options
	3.4.11 IO Options
	3.4.12 Debugging options

	3.5 Joystick support
	3.5.1 Built-in joystick support
	3.5.2 Joystick support via .fgfsrc entries

	3.6 A glance over our hangar

	4 In-flight: All about instruments, keystrokes and menus
	4.1 Starting the engine
	4.2 Keyboard controls
	4.3 Menu entries
	4.4 The Instrument Panel
	4.5 The Head Up Display
	4.6 Mouse controlled actions

	III Tutorials
	5 Tutorials
	5.1 FlightGear Tutorials
	5.2 Other Tutorials

	6 A Cross Country Flight Tutorial
	6.1 Introduction
	6.1.1 Disclaimer and Thanks

	6.2 Flight Planning
	6.3 Getting Up
	6.3.1 Pre-Flight
	6.3.2 ATIS
	6.3.3 Radios
	6.3.4 Altimeter and Compass
	6.3.5 Take-Off

	6.4 Cruising
	6.4.1 The Autopilot
	6.4.2 Navigation
	6.4.3 Mixture

	6.5 Getting Down
	6.5.1 Air Traffic Control
	6.5.2 The Traffic Pattern
	6.5.3 Approach
	6.5.4 VASI
	6.5.5 Go Around
	6.5.6 Clearing the Runway

	IV Appendices
	A Missed approach: If anything refuses to work
	A.1 FlightGear Problem Reports
	A.2 General problems
	A.3 Potential problems under Linux
	A.4 Potential problems under Windows

	B Building the plane: Compiling the program
	B.1 Preparing the development environment under Windows
	B.2 Preparing the development environment under Linux
	B.3 One-time preparations for Linux and Windows users
	B.3.1 Installation of ZLIB

	B.4 Compiling FlightGear under Linux/Windows
	B.5 Compiling FlightGear under Mac OS X
	B.6 Compiling on other systems
	B.7 Installing the base package
	B.8 For test pilots only: Building the CVS snapshots

	C Some words on OpenGL graphics drivers
	C.1 NVIDIA chip based cards under Linux
	C.2 NVIDIA chip based cards under Windows
	C.3 3DFX chip based cards under Windows
	C.4 An alternative approach for Windows users
	C.5 3DFX chip based cards under Linux
	C.6 ATI chip based cards under Linux
	C.7 Building your own OpenGL support under Linux
	C.8 OpenGL on Macintosh

	D Landing: Some further thoughts before leaving the plane
	D.1 A Sketch on the History of FlightGear
	D.1.1 Scenery
	D.1.2 Aircraft
	D.1.3 Environment
	D.1.4 User Interface

	D.2 Those, who did the work
	D.3 What remains to be done

